qemu-e2k/hw/sh_timer.c
balrog 703243a044 Adds interrupt support to the sh specific timer code (Magnus Damm).
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3812 c046a42c-6fe2-441c-8c8c-71466251a162
2007-12-12 01:11:42 +00:00

330 lines
8.5 KiB
C

/*
* SuperH Timer modules.
*
* Copyright (c) 2007 Magnus Damm
* Based on arm_timer.c by Paul Brook
* Copyright (c) 2005-2006 CodeSourcery.
*
* This code is licenced under the GPL.
*/
#include "hw.h"
#include "sh.h"
#include "qemu-timer.h"
//#define DEBUG_TIMER
#define TIMER_TCR_TPSC (7 << 0)
#define TIMER_TCR_CKEG (3 << 3)
#define TIMER_TCR_UNIE (1 << 5)
#define TIMER_TCR_ICPE (3 << 6)
#define TIMER_TCR_UNF (1 << 8)
#define TIMER_TCR_ICPF (1 << 9)
#define TIMER_TCR_RESERVED (0x3f << 10)
#define TIMER_FEAT_CAPT (1 << 0)
#define TIMER_FEAT_EXTCLK (1 << 1)
typedef struct {
ptimer_state *timer;
uint32_t tcnt;
uint32_t tcor;
uint32_t tcr;
uint32_t tcpr;
int freq;
int int_level;
int old_level;
int feat;
int enabled;
struct intc_source *irq;
} sh_timer_state;
/* Check all active timers, and schedule the next timer interrupt. */
static void sh_timer_update(sh_timer_state *s)
{
int new_level = s->int_level && (s->tcr & TIMER_TCR_UNIE);
if (new_level != s->old_level)
sh_intc_toggle_source(s->irq, 0, new_level ? 1 : -1);
s->old_level = s->int_level;
s->int_level = new_level;
}
static uint32_t sh_timer_read(void *opaque, target_phys_addr_t offset)
{
sh_timer_state *s = (sh_timer_state *)opaque;
switch (offset >> 2) {
case 0:
return s->tcor;
case 1:
return ptimer_get_count(s->timer);
case 2:
return s->tcr | (s->int_level ? TIMER_TCR_UNF : 0);
case 3:
if (s->feat & TIMER_FEAT_CAPT)
return s->tcpr;
default:
cpu_abort (cpu_single_env, "sh_timer_read: Bad offset %x\n",
(int)offset);
return 0;
}
}
static void sh_timer_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
sh_timer_state *s = (sh_timer_state *)opaque;
int freq;
switch (offset >> 2) {
case 0:
s->tcor = value;
ptimer_set_limit(s->timer, s->tcor, 0);
break;
case 1:
s->tcnt = value;
ptimer_set_count(s->timer, s->tcnt);
break;
case 2:
if (s->enabled) {
/* Pause the timer if it is running. This may cause some
inaccuracy dure to rounding, but avoids a whole lot of other
messyness. */
ptimer_stop(s->timer);
}
freq = s->freq;
/* ??? Need to recalculate expiry time after changing divisor. */
switch (value & TIMER_TCR_TPSC) {
case 0: freq >>= 2; break;
case 1: freq >>= 4; break;
case 2: freq >>= 6; break;
case 3: freq >>= 8; break;
case 4: freq >>= 10; break;
case 6:
case 7: if (s->feat & TIMER_FEAT_EXTCLK) break;
default: cpu_abort (cpu_single_env,
"sh_timer_write: Reserved TPSC value\n"); break;
}
switch ((value & TIMER_TCR_CKEG) >> 3) {
case 0: break;
case 1:
case 2:
case 3: if (s->feat & TIMER_FEAT_EXTCLK) break;
default: cpu_abort (cpu_single_env,
"sh_timer_write: Reserved CKEG value\n"); break;
}
switch ((value & TIMER_TCR_ICPE) >> 6) {
case 0: break;
case 2:
case 3: if (s->feat & TIMER_FEAT_CAPT) break;
default: cpu_abort (cpu_single_env,
"sh_timer_write: Reserved ICPE value\n"); break;
}
if ((value & TIMER_TCR_UNF) == 0)
s->int_level = 0;
value &= ~TIMER_TCR_UNF;
if ((value & TIMER_TCR_ICPF) && (!(s->feat & TIMER_FEAT_CAPT)))
cpu_abort (cpu_single_env,
"sh_timer_write: Reserved ICPF value\n");
value &= ~TIMER_TCR_ICPF; /* capture not supported */
if (value & TIMER_TCR_RESERVED)
cpu_abort (cpu_single_env,
"sh_timer_write: Reserved TCR bits set\n");
s->tcr = value;
ptimer_set_limit(s->timer, s->tcor, 0);
ptimer_set_freq(s->timer, freq);
if (s->enabled) {
/* Restart the timer if still enabled. */
ptimer_run(s->timer, 0);
}
break;
case 3:
if (s->feat & TIMER_FEAT_CAPT) {
s->tcpr = value;
break;
}
default:
cpu_abort (cpu_single_env, "sh_timer_write: Bad offset %x\n",
(int)offset);
}
sh_timer_update(s);
}
static void sh_timer_start_stop(void *opaque, int enable)
{
sh_timer_state *s = (sh_timer_state *)opaque;
#ifdef DEBUG_TIMER
printf("sh_timer_start_stop %d (%d)\n", enable, s->enabled);
#endif
if (s->enabled && !enable) {
ptimer_stop(s->timer);
}
if (!s->enabled && enable) {
ptimer_run(s->timer, 0);
}
s->enabled = !!enable;
#ifdef DEBUG_TIMER
printf("sh_timer_start_stop done %d\n", s->enabled);
#endif
}
static void sh_timer_tick(void *opaque)
{
sh_timer_state *s = (sh_timer_state *)opaque;
s->int_level = s->enabled;
sh_timer_update(s);
}
static void *sh_timer_init(uint32_t freq, int feat, struct intc_source *irq)
{
sh_timer_state *s;
QEMUBH *bh;
s = (sh_timer_state *)qemu_mallocz(sizeof(sh_timer_state));
s->freq = freq;
s->feat = feat;
s->tcor = 0xffffffff;
s->tcnt = 0xffffffff;
s->tcpr = 0xdeadbeef;
s->tcor = 0;
s->enabled = 0;
s->irq = irq;
bh = qemu_bh_new(sh_timer_tick, s);
s->timer = ptimer_init(bh);
/* ??? Save/restore. */
return s;
}
typedef struct {
void *timer[3];
int level[3];
uint32_t tocr;
uint32_t tstr;
target_phys_addr_t base;
int feat;
} tmu012_state;
static uint32_t tmu012_read(void *opaque, target_phys_addr_t offset)
{
tmu012_state *s = (tmu012_state *)opaque;
#ifdef DEBUG_TIMER
printf("tmu012_read 0x%lx\n", (unsigned long) offset);
#endif
offset -= s->base;
if (offset >= 0x20) {
if (!(s->feat & TMU012_FEAT_3CHAN))
cpu_abort (cpu_single_env, "tmu012_write: Bad channel offset %x\n",
(int)offset);
return sh_timer_read(s->timer[2], offset - 0x20);
}
if (offset >= 0x14)
return sh_timer_read(s->timer[1], offset - 0x14);
if (offset >= 0x08)
return sh_timer_read(s->timer[0], offset - 0x08);
if (offset == 4)
return s->tstr;
if ((s->feat & TMU012_FEAT_TOCR) && offset == 0)
return s->tocr;
cpu_abort (cpu_single_env, "tmu012_write: Bad offset %x\n",
(int)offset);
return 0;
}
static void tmu012_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
tmu012_state *s = (tmu012_state *)opaque;
#ifdef DEBUG_TIMER
printf("tmu012_write 0x%lx 0x%08x\n", (unsigned long) offset, value);
#endif
offset -= s->base;
if (offset >= 0x20) {
if (!(s->feat & TMU012_FEAT_3CHAN))
cpu_abort (cpu_single_env, "tmu012_write: Bad channel offset %x\n",
(int)offset);
sh_timer_write(s->timer[2], offset - 0x20, value);
return;
}
if (offset >= 0x14) {
sh_timer_write(s->timer[1], offset - 0x14, value);
return;
}
if (offset >= 0x08) {
sh_timer_write(s->timer[0], offset - 0x08, value);
return;
}
if (offset == 4) {
sh_timer_start_stop(s->timer[0], value & (1 << 0));
sh_timer_start_stop(s->timer[1], value & (1 << 1));
if (s->feat & TMU012_FEAT_3CHAN)
sh_timer_start_stop(s->timer[2], value & (1 << 2));
else
if (value & (1 << 2))
cpu_abort (cpu_single_env, "tmu012_write: Bad channel\n");
s->tstr = value;
return;
}
if ((s->feat & TMU012_FEAT_TOCR) && offset == 0) {
s->tocr = value & (1 << 0);
}
}
static CPUReadMemoryFunc *tmu012_readfn[] = {
tmu012_read,
tmu012_read,
tmu012_read
};
static CPUWriteMemoryFunc *tmu012_writefn[] = {
tmu012_write,
tmu012_write,
tmu012_write
};
void tmu012_init(target_phys_addr_t base, int feat, uint32_t freq,
struct intc_source *ch0_irq, struct intc_source *ch1_irq,
struct intc_source *ch2_irq0, struct intc_source *ch2_irq1)
{
int iomemtype;
tmu012_state *s;
int timer_feat = (feat & TMU012_FEAT_EXTCLK) ? TIMER_FEAT_EXTCLK : 0;
s = (tmu012_state *)qemu_mallocz(sizeof(tmu012_state));
s->base = base;
s->feat = feat;
s->timer[0] = sh_timer_init(freq, timer_feat, ch0_irq);
s->timer[1] = sh_timer_init(freq, timer_feat, ch1_irq);
if (feat & TMU012_FEAT_3CHAN)
s->timer[2] = sh_timer_init(freq, timer_feat | TIMER_FEAT_CAPT,
ch2_irq0); /* ch2_irq1 not supported */
iomemtype = cpu_register_io_memory(0, tmu012_readfn,
tmu012_writefn, s);
cpu_register_physical_memory(base, 0x00001000, iomemtype);
/* ??? Save/restore. */
}