qemu-e2k/target/hexagon/idef-parser/parser-helpers.c
Taylor Simpson 421b53d589 Hexagon (target/hexagon) Clean up handling of modifier registers
Currently, the register number (MuN) for modifier registers is the
modifier register number rather than the index into hex_gpr.  This
patch changes MuN to the hex_gpr index, which is consistent with
the handling of control registers.

Note that HELPER(fcircadd) needs the CS register corresponding to the
modifier register specified in the instruction.  We create a TCGv
variable "CS" to hold the value to pass to the helper.

Reviewed-by: Brian Cain <bcain@quicinc.com>
Signed-off-by: Taylor Simpson <ltaylorsimpson@gmail.com>
Message-Id: <20231210220712.491494-2-ltaylorsimpson@gmail.com>
Signed-off-by: Brian Cain <bcain@quicinc.com>
2024-01-21 22:01:42 -08:00

2140 lines
70 KiB
C

/*
* Copyright(c) 2019-2023 rev.ng Labs Srl. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <assert.h>
#include <inttypes.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include "idef-parser.h"
#include "parser-helpers.h"
#include "idef-parser.tab.h"
#include "idef-parser.yy.h"
void yyerror(YYLTYPE *locp,
yyscan_t scanner __attribute__((unused)),
Context *c,
const char *s)
{
const char *code_ptr = c->input_buffer;
fprintf(stderr, "WARNING (%s): '%s'\n", c->inst.name->str, s);
fprintf(stderr, "Problematic range: ");
for (int i = locp->first_column; i < locp->last_column; i++) {
if (code_ptr[i] != '\n') {
fprintf(stderr, "%c", code_ptr[i]);
}
}
fprintf(stderr, "\n");
for (unsigned i = 0;
i < 80 &&
code_ptr[locp->first_column - 10 + i] != '\0' &&
code_ptr[locp->first_column - 10 + i] != '\n';
i++) {
fprintf(stderr, "%c", code_ptr[locp->first_column - 10 + i]);
}
fprintf(stderr, "\n");
for (unsigned i = 0; i < 9; i++) {
fprintf(stderr, " ");
}
fprintf(stderr, "^");
for (int i = 0; i < (locp->last_column - locp->first_column) - 1; i++) {
fprintf(stderr, "~");
}
fprintf(stderr, "\n");
c->inst.error_count++;
}
bool is_direct_predicate(HexValue *value)
{
return value->pred.id >= '0' && value->pred.id <= '3';
}
bool is_inside_ternary(Context *c)
{
return c->ternary->len > 0;
}
/* Print functions */
void str_print(Context *c, YYLTYPE *locp, const char *string)
{
(void) locp;
EMIT(c, "%s", string);
}
void uint8_print(Context *c, YYLTYPE *locp, uint8_t *num)
{
(void) locp;
EMIT(c, "%u", *num);
}
void uint64_print(Context *c, YYLTYPE *locp, uint64_t *num)
{
(void) locp;
EMIT(c, "%" PRIu64, *num);
}
void int_print(Context *c, YYLTYPE *locp, int *num)
{
(void) locp;
EMIT(c, "%d", *num);
}
void uint_print(Context *c, YYLTYPE *locp, unsigned *num)
{
(void) locp;
EMIT(c, "%u", *num);
}
void tmp_print(Context *c, YYLTYPE *locp, HexTmp *tmp)
{
(void) locp;
EMIT(c, "tmp_%d", tmp->index);
}
void pred_print(Context *c, YYLTYPE *locp, HexPred *pred, bool is_dotnew)
{
(void) locp;
char suffix = is_dotnew ? 'N' : 'V';
EMIT(c, "P%c%c", pred->id, suffix);
}
void reg_compose(Context *c, YYLTYPE *locp, HexReg *reg, char reg_id[5])
{
memset(reg_id, 0, 5 * sizeof(char));
switch (reg->type) {
case GENERAL_PURPOSE:
reg_id[0] = 'R';
break;
case CONTROL:
reg_id[0] = 'C';
break;
case MODIFIER:
reg_id[0] = 'M';
break;
case DOTNEW:
reg_id[0] = 'N';
reg_id[1] = reg->id;
reg_id[2] = 'N';
return;
}
switch (reg->bit_width) {
case 32:
reg_id[1] = reg->id;
reg_id[2] = 'V';
break;
case 64:
reg_id[1] = reg->id;
reg_id[2] = reg->id;
reg_id[3] = 'V';
break;
default:
yyassert(c, locp, false, "Unhandled register bit width!\n");
}
}
static void reg_arg_print(Context *c, YYLTYPE *locp, HexReg *reg)
{
char reg_id[5];
reg_compose(c, locp, reg, reg_id);
EMIT(c, "%s", reg_id);
}
void reg_print(Context *c, YYLTYPE *locp, HexReg *reg)
{
(void) locp;
EMIT(c, "hex_gpr[%u]", reg->id);
}
void imm_print(Context *c, YYLTYPE *locp, HexValue *rvalue)
{
HexImm *imm = &rvalue->imm;
switch (imm->type) {
case I:
EMIT(c, "i");
break;
case VARIABLE:
EMIT(c, "%ciV", imm->id);
break;
case VALUE:
if (rvalue->bit_width == 32) {
if (rvalue->signedness == UNSIGNED) {
EMIT(c, "((uint32_t) 0x%" PRIx32 ")", (uint32_t) imm->value);
} else {
EMIT(c, "((int32_t) 0x%" PRIx32 ")", (int32_t) imm->value);
}
} else if (rvalue->bit_width == 64) {
if (rvalue->signedness == UNSIGNED) {
EMIT(c, "((uint64_t) 0x%" PRIx64 "ULL)", (uint64_t) imm->value);
} else {
EMIT(c, "((int64_t) 0x%" PRIx64 "LL)", (int64_t) imm->value);
}
} else {
g_assert_not_reached();
}
break;
case QEMU_TMP:
EMIT(c, "qemu_tmp_%" PRIu64, imm->index);
break;
case IMM_PC:
EMIT(c, "ctx->base.pc_next");
break;
case IMM_CONSTEXT:
EMIT(c, "insn->extension_valid");
break;
default:
yyassert(c, locp, false, "Cannot print this expression!");
}
}
void var_print(Context *c, YYLTYPE *locp, HexVar *var)
{
(void) locp;
EMIT(c, "%s", var->name->str);
}
void rvalue_print(Context *c, YYLTYPE *locp, void *pointer)
{
HexValue *rvalue = (HexValue *) pointer;
switch (rvalue->type) {
case REGISTER:
reg_print(c, locp, &rvalue->reg);
break;
case REGISTER_ARG:
reg_arg_print(c, locp, &rvalue->reg);
break;
case TEMP:
tmp_print(c, locp, &rvalue->tmp);
break;
case IMMEDIATE:
imm_print(c, locp, rvalue);
break;
case VARID:
var_print(c, locp, &rvalue->var);
break;
case PREDICATE:
pred_print(c, locp, &rvalue->pred, rvalue->is_dotnew);
break;
default:
yyassert(c, locp, false, "Cannot print this expression!");
}
}
void out_assert(Context *c, YYLTYPE *locp,
void *dummy __attribute__((unused)))
{
yyassert(c, locp, false, "Unhandled print type!");
}
/* Copy output code buffer */
void commit(Context *c)
{
/* Emit instruction pseudocode */
EMIT_SIG(c, "\n" START_COMMENT " ");
for (char *x = c->inst.code_begin; x < c->inst.code_end; x++) {
EMIT_SIG(c, "%c", *x);
}
EMIT_SIG(c, " " END_COMMENT "\n");
/* Commit instruction code to output file */
fwrite(c->signature_str->str, sizeof(char), c->signature_str->len,
c->output_file);
fwrite(c->header_str->str, sizeof(char), c->header_str->len,
c->output_file);
fwrite(c->out_str->str, sizeof(char), c->out_str->len,
c->output_file);
fwrite(c->signature_str->str, sizeof(char), c->signature_str->len,
c->defines_file);
fprintf(c->defines_file, ";\n");
}
static void gen_c_int_type(Context *c, YYLTYPE *locp, unsigned bit_width,
HexSignedness signedness)
{
const char *signstr = (signedness == UNSIGNED) ? "u" : "";
OUT(c, locp, signstr, "int", &bit_width, "_t");
}
static HexValue gen_constant(Context *c,
YYLTYPE *locp,
const char *value,
unsigned bit_width,
HexSignedness signedness)
{
HexValue rvalue;
assert(bit_width == 32 || bit_width == 64);
memset(&rvalue, 0, sizeof(HexValue));
rvalue.type = TEMP;
rvalue.bit_width = bit_width;
rvalue.signedness = signedness;
rvalue.is_dotnew = false;
rvalue.tmp.index = c->inst.tmp_count;
OUT(c, locp, "TCGv_i", &bit_width, " tmp_", &c->inst.tmp_count,
" = tcg_constant_i", &bit_width, "(", value, ");\n");
c->inst.tmp_count++;
return rvalue;
}
/* Temporary values creation */
HexValue gen_tmp(Context *c,
YYLTYPE *locp,
unsigned bit_width,
HexSignedness signedness)
{
HexValue rvalue;
assert(bit_width == 32 || bit_width == 64);
memset(&rvalue, 0, sizeof(HexValue));
rvalue.type = TEMP;
rvalue.bit_width = bit_width;
rvalue.signedness = signedness;
rvalue.is_dotnew = false;
rvalue.tmp.index = c->inst.tmp_count;
OUT(c, locp, "TCGv_i", &bit_width, " tmp_", &c->inst.tmp_count,
" = tcg_temp_new_i", &bit_width, "();\n");
c->inst.tmp_count++;
return rvalue;
}
static HexValue gen_constant_from_imm(Context *c,
YYLTYPE *locp,
HexValue *value)
{
HexValue rvalue;
assert(value->type == IMMEDIATE);
memset(&rvalue, 0, sizeof(HexValue));
rvalue.type = TEMP;
rvalue.bit_width = value->bit_width;
rvalue.signedness = value->signedness;
rvalue.is_dotnew = false;
rvalue.tmp.index = c->inst.tmp_count;
/*
* Here we output the call to `tcg_constant_i<width>` in
* order to create the temporary value. Note, that we
* add a cast
*
* `tcg_constant_i<width>`((int<width>_t) ...)`
*
* This cast is required to avoid implicit integer
* conversion warnings since all immediates are
* output as `((int64_t) 123ULL)`, even if the
* integer is 32-bit.
*/
OUT(c, locp, "TCGv_i", &rvalue.bit_width, " tmp_", &c->inst.tmp_count);
OUT(c, locp, " = tcg_constant_i", &rvalue.bit_width,
"((int", &rvalue.bit_width, "_t) (", value, "));\n");
c->inst.tmp_count++;
return rvalue;
}
HexValue gen_imm_value(Context *c __attribute__((unused)),
YYLTYPE *locp,
int value,
unsigned bit_width,
HexSignedness signedness)
{
(void) locp;
HexValue rvalue;
assert(bit_width == 32 || bit_width == 64);
memset(&rvalue, 0, sizeof(HexValue));
rvalue.type = IMMEDIATE;
rvalue.bit_width = bit_width;
rvalue.signedness = signedness;
rvalue.is_dotnew = false;
rvalue.imm.type = VALUE;
rvalue.imm.value = value;
return rvalue;
}
HexValue gen_imm_qemu_tmp(Context *c, YYLTYPE *locp, unsigned bit_width,
HexSignedness signedness)
{
(void) locp;
HexValue rvalue;
assert(bit_width == 32 || bit_width == 64);
memset(&rvalue, 0, sizeof(HexValue));
rvalue.type = IMMEDIATE;
rvalue.is_dotnew = false;
rvalue.bit_width = bit_width;
rvalue.signedness = signedness;
rvalue.imm.type = QEMU_TMP;
rvalue.imm.index = c->inst.qemu_tmp_count++;
return rvalue;
}
HexValue rvalue_materialize(Context *c, YYLTYPE *locp, HexValue *rvalue)
{
if (rvalue->type == IMMEDIATE) {
return gen_constant_from_imm(c, locp, rvalue);
}
return *rvalue;
}
HexValue gen_rvalue_extend(Context *c, YYLTYPE *locp, HexValue *rvalue)
{
assert_signedness(c, locp, rvalue->signedness);
if (rvalue->bit_width > 32) {
return *rvalue;
}
if (rvalue->type == IMMEDIATE) {
HexValue res = gen_imm_qemu_tmp(c, locp, 64, rvalue->signedness);
gen_c_int_type(c, locp, 64, rvalue->signedness);
OUT(c, locp, " ", &res, " = (");
gen_c_int_type(c, locp, 64, rvalue->signedness);
OUT(c, locp, ")", rvalue, ";\n");
return res;
} else {
HexValue res = gen_tmp(c, locp, 64, rvalue->signedness);
bool is_unsigned = (rvalue->signedness == UNSIGNED);
const char *sign_suffix = is_unsigned ? "u" : "";
OUT(c, locp, "tcg_gen_ext", sign_suffix,
"_i32_i64(", &res, ", ", rvalue, ");\n");
return res;
}
}
HexValue gen_rvalue_truncate(Context *c, YYLTYPE *locp, HexValue *rvalue)
{
if (rvalue->type == IMMEDIATE) {
HexValue res = *rvalue;
res.bit_width = 32;
return res;
} else {
if (rvalue->bit_width == 64) {
HexValue res = gen_tmp(c, locp, 32, rvalue->signedness);
OUT(c, locp, "tcg_gen_trunc_i64_tl(", &res, ", ", rvalue, ");\n");
return res;
}
}
return *rvalue;
}
/*
* Attempts to lookup the `Var` struct associated with the given `varid`.
* The `dst` argument is populated with the found name, bit_width, and
* signedness, given that `dst` is non-NULL. Returns true if the lookup
* succeeded and false otherwise.
*/
static bool try_find_variable(Context *c, YYLTYPE *locp,
HexValue *dst,
HexValue *varid)
{
yyassert(c, locp, varid, "varid to lookup is NULL");
yyassert(c, locp, varid->type == VARID,
"Can only lookup variables by varid");
for (unsigned i = 0; i < c->inst.allocated->len; i++) {
Var *curr = &g_array_index(c->inst.allocated, Var, i);
if (g_string_equal(varid->var.name, curr->name)) {
if (dst) {
dst->var.name = curr->name;
dst->bit_width = curr->bit_width;
dst->signedness = curr->signedness;
}
return true;
}
}
return false;
}
/* Calls `try_find_variable` and asserts success. */
static void find_variable(Context *c, YYLTYPE *locp,
HexValue *dst,
HexValue *varid)
{
bool found = try_find_variable(c, locp, dst, varid);
yyassert(c, locp, found, "Use of undeclared variable!\n");
}
/* Handle signedness, if both unsigned -> result is unsigned, else signed */
static inline HexSignedness bin_op_signedness(Context *c, YYLTYPE *locp,
HexSignedness sign1,
HexSignedness sign2)
{
assert_signedness(c, locp, sign1);
assert_signedness(c, locp, sign2);
return (sign1 == UNSIGNED && sign2 == UNSIGNED) ? UNSIGNED : SIGNED;
}
void gen_varid_allocate(Context *c,
YYLTYPE *locp,
HexValue *varid,
unsigned bit_width,
HexSignedness signedness)
{
const char *bit_suffix = (bit_width == 64) ? "i64" : "i32";
bool found = try_find_variable(c, locp, NULL, varid);
Var new_var;
memset(&new_var, 0, sizeof(Var));
yyassert(c, locp, !found, "Redeclaration of variables not allowed!");
assert_signedness(c, locp, signedness);
/* `varid` only carries name information */
new_var.name = varid->var.name;
new_var.bit_width = bit_width;
new_var.signedness = signedness;
EMIT_HEAD(c, "TCGv_%s %s", bit_suffix, varid->var.name->str);
EMIT_HEAD(c, " = tcg_temp_new_%s();\n", bit_suffix);
g_array_append_val(c->inst.allocated, new_var);
}
enum OpTypes {
IMM_IMM = 0,
IMM_REG = 1,
REG_IMM = 2,
REG_REG = 3,
};
HexValue gen_bin_cmp(Context *c,
YYLTYPE *locp,
TCGCond type,
HexValue *op1,
HexValue *op2)
{
HexValue op1_m = *op1;
HexValue op2_m = *op2;
enum OpTypes op_types = (op1_m.type != IMMEDIATE) << 1
| (op2_m.type != IMMEDIATE);
bool op_is64bit = op1_m.bit_width == 64 || op2_m.bit_width == 64;
const char *bit_suffix = op_is64bit ? "i64" : "i32";
unsigned bit_width = (op_is64bit) ? 64 : 32;
HexValue res = gen_tmp(c, locp, bit_width, UNSIGNED);
/* Extend to 64-bits, if required */
if (op_is64bit) {
op1_m = gen_rvalue_extend(c, locp, &op1_m);
op2_m = gen_rvalue_extend(c, locp, &op2_m);
}
switch (op_types) {
case IMM_IMM:
case IMM_REG:
yyassert(c, locp, false, "Binary comparisons between IMM op IMM and"
"IMM op REG not handled!");
break;
case REG_IMM:
OUT(c, locp, "tcg_gen_setcondi_", bit_suffix, "(");
OUT(c, locp, cond_to_str(type), ", ", &res, ", ", &op1_m, ", ", &op2_m,
");\n");
break;
case REG_REG:
OUT(c, locp, "tcg_gen_setcond_", bit_suffix, "(");
OUT(c, locp, cond_to_str(type), ", ", &res, ", ", &op1_m, ", ", &op2_m,
");\n");
break;
default:
fprintf(stderr, "Error in evaluating immediateness!");
abort();
}
return res;
}
static void gen_simple_op(Context *c, YYLTYPE *locp, unsigned bit_width,
const char *bit_suffix, HexValue *res,
enum OpTypes op_types,
HexValue *op1,
HexValue *op2,
const char *imm_imm,
const char *imm_reg,
const char *reg_imm,
const char *reg_reg)
{
switch (op_types) {
case IMM_IMM: {
HexSignedness signedness = bin_op_signedness(c, locp,
op1->signedness,
op2->signedness);
gen_c_int_type(c, locp, bit_width, signedness);
OUT(c, locp, " ", res,
" = ", op1, imm_imm, op2, ";\n");
} break;
case IMM_REG:
OUT(c, locp, imm_reg, bit_suffix,
"(", res, ", ", op2, ", ", op1, ");\n");
break;
case REG_IMM:
OUT(c, locp, reg_imm, bit_suffix,
"(", res, ", ", op1, ", ", op2, ");\n");
break;
case REG_REG:
OUT(c, locp, reg_reg, bit_suffix,
"(", res, ", ", op1, ", ", op2, ");\n");
break;
}
}
static void gen_sub_op(Context *c, YYLTYPE *locp, unsigned bit_width,
const char *bit_suffix, HexValue *res,
enum OpTypes op_types, HexValue *op1,
HexValue *op2)
{
switch (op_types) {
case IMM_IMM: {
HexSignedness signedness = bin_op_signedness(c, locp,
op1->signedness,
op2->signedness);
gen_c_int_type(c, locp, bit_width, signedness);
OUT(c, locp, " ", res,
" = ", op1, " - ", op2, ";\n");
} break;
case IMM_REG: {
OUT(c, locp, "tcg_gen_subfi_", bit_suffix,
"(", res, ", ", op1, ", ", op2, ");\n");
} break;
case REG_IMM: {
OUT(c, locp, "tcg_gen_subi_", bit_suffix,
"(", res, ", ", op1, ", ", op2, ");\n");
} break;
case REG_REG: {
OUT(c, locp, "tcg_gen_sub_", bit_suffix,
"(", res, ", ", op1, ", ", op2, ");\n");
} break;
}
}
static void gen_asl_op(Context *c, YYLTYPE *locp, unsigned bit_width,
bool op_is64bit, const char *bit_suffix,
HexValue *res, enum OpTypes op_types,
HexValue *op1, HexValue *op2)
{
HexValue op1_m = *op1;
HexValue op2_m = *op2;
switch (op_types) {
case IMM_IMM: {
HexSignedness signedness = bin_op_signedness(c, locp,
op1->signedness,
op2->signedness);
gen_c_int_type(c, locp, bit_width, signedness);
OUT(c, locp, " ", res,
" = ", op1, " << ", op2, ";\n");
} break;
case REG_IMM: {
OUT(c, locp, "if (", op2, " >= ", &bit_width, ") {\n");
OUT(c, locp, "tcg_gen_movi_", bit_suffix, "(", res, ", 0);\n");
OUT(c, locp, "} else {\n");
OUT(c, locp, "tcg_gen_shli_", bit_suffix,
"(", res, ", ", op1, ", ", op2, ");\n");
OUT(c, locp, "}\n");
} break;
case IMM_REG:
op1_m.bit_width = bit_width;
op1_m = rvalue_materialize(c, locp, &op1_m);
/* fallthrough */
case REG_REG: {
OUT(c, locp, "tcg_gen_shl_", bit_suffix,
"(", res, ", ", &op1_m, ", ", op2, ");\n");
} break;
}
if (op_types == IMM_REG || op_types == REG_REG) {
/*
* Handle left shift by 64/32 which hexagon-sim expects to clear out
* register
*/
HexValue zero = gen_constant(c, locp, "0", bit_width, UNSIGNED);
HexValue edge = gen_imm_value(c, locp, bit_width, bit_width, UNSIGNED);
edge = rvalue_materialize(c, locp, &edge);
if (op_is64bit) {
op2_m = gen_rvalue_extend(c, locp, &op2_m);
}
op1_m = rvalue_materialize(c, locp, &op1_m);
op2_m = rvalue_materialize(c, locp, &op2_m);
OUT(c, locp, "tcg_gen_movcond_i", &bit_width);
OUT(c, locp, "(TCG_COND_GEU, ", res, ", ", &op2_m, ", ", &edge);
OUT(c, locp, ", ", &zero, ", ", res, ");\n");
}
}
static void gen_asr_op(Context *c, YYLTYPE *locp, unsigned bit_width,
bool op_is64bit, const char *bit_suffix,
HexValue *res, enum OpTypes op_types,
HexValue *op1, HexValue *op2)
{
HexValue op1_m = *op1;
HexValue op2_m = *op2;
switch (op_types) {
case IMM_IMM:
case IMM_REG:
yyassert(c, locp, false, "ASR between IMM op IMM, and IMM op REG"
" not handled!");
break;
case REG_IMM: {
HexSignedness signedness = bin_op_signedness(c, locp,
op1->signedness,
op2->signedness);
OUT(c, locp, "{\n");
gen_c_int_type(c, locp, bit_width, signedness);
OUT(c, locp, " shift = ", op2, ";\n");
OUT(c, locp, "if (", op2, " >= ", &bit_width, ") {\n");
OUT(c, locp, " shift = ", &bit_width, " - 1;\n");
OUT(c, locp, "}\n");
OUT(c, locp, "tcg_gen_sari_", bit_suffix,
"(", res, ", ", op1, ", shift);\n}\n");
} break;
case REG_REG:
OUT(c, locp, "tcg_gen_sar_", bit_suffix,
"(", res, ", ", &op1_m, ", ", op2, ");\n");
break;
}
if (op_types == REG_REG) {
/* Handle right shift by values >= bit_width */
const char *offset = op_is64bit ? "63" : "31";
HexValue tmp = gen_tmp(c, locp, bit_width, SIGNED);
HexValue zero = gen_constant(c, locp, "0", bit_width, SIGNED);
HexValue edge = gen_imm_value(c, locp, bit_width, bit_width, UNSIGNED);
edge = rvalue_materialize(c, locp, &edge);
if (op_is64bit) {
op2_m = gen_rvalue_extend(c, locp, &op2_m);
}
op1_m = rvalue_materialize(c, locp, &op1_m);
op2_m = rvalue_materialize(c, locp, &op2_m);
OUT(c, locp, "tcg_gen_extract_", bit_suffix, "(",
&tmp, ", ", &op1_m, ", ", offset, ", 1);\n");
OUT(c, locp, "tcg_gen_sub_", bit_suffix, "(",
&tmp, ", ", &zero, ", ", &tmp, ");\n");
OUT(c, locp, "tcg_gen_movcond_i", &bit_width);
OUT(c, locp, "(TCG_COND_GEU, ", res, ", ", &op2_m, ", ", &edge);
OUT(c, locp, ", ", &tmp, ", ", res, ");\n");
}
}
static void gen_lsr_op(Context *c, YYLTYPE *locp, unsigned bit_width,
bool op_is64bit, const char *bit_suffix,
HexValue *res, enum OpTypes op_types,
HexValue *op1, HexValue *op2)
{
HexValue op1_m = *op1;
HexValue op2_m = *op2;
switch (op_types) {
case IMM_IMM:
case IMM_REG:
yyassert(c, locp, false, "LSR between IMM op IMM, and IMM op REG"
" not handled!");
break;
case REG_IMM:
OUT(c, locp, "if (", op2, " >= ", &bit_width, ") {\n");
OUT(c, locp, "tcg_gen_movi_", bit_suffix, "(", res, ", 0);\n");
OUT(c, locp, "} else {\n");
OUT(c, locp, "tcg_gen_shri_", bit_suffix,
"(", res, ", ", op1, ", ", op2, ");\n");
OUT(c, locp, "}\n");
break;
case REG_REG:
OUT(c, locp, "tcg_gen_shr_", bit_suffix,
"(", res, ", ", &op1_m, ", ", op2, ");\n");
break;
}
if (op_types == REG_REG) {
/* Handle right shift by values >= bit_width */
HexValue zero = gen_constant(c, locp, "0", bit_width, UNSIGNED);
HexValue edge = gen_imm_value(c, locp, bit_width, bit_width, UNSIGNED);
edge = rvalue_materialize(c, locp, &edge);
if (op_is64bit) {
op2_m = gen_rvalue_extend(c, locp, &op2_m);
}
op1_m = rvalue_materialize(c, locp, &op1_m);
op2_m = rvalue_materialize(c, locp, &op2_m);
OUT(c, locp, "tcg_gen_movcond_i", &bit_width);
OUT(c, locp, "(TCG_COND_GEU, ", res, ", ", &op2_m, ", ", &edge);
OUT(c, locp, ", ", &zero, ", ", res, ");\n");
}
}
/*
* Note: This implementation of logical `and` does not mirror that in C.
* We do not short-circuit logical expressions!
*/
static void gen_andl_op(Context *c, YYLTYPE *locp, unsigned bit_width,
const char *bit_suffix, HexValue *res,
enum OpTypes op_types, HexValue *op1,
HexValue *op2)
{
(void) bit_width;
HexValue tmp1, tmp2;
HexValue zero = gen_constant(c, locp, "0", 32, UNSIGNED);
memset(&tmp1, 0, sizeof(HexValue));
memset(&tmp2, 0, sizeof(HexValue));
switch (op_types) {
case IMM_IMM:
case IMM_REG:
case REG_IMM:
yyassert(c, locp, false, "ANDL between IMM op IMM, IMM op REG, and"
" REG op IMM, not handled!");
break;
case REG_REG:
tmp1 = gen_bin_cmp(c, locp, TCG_COND_NE, op1, &zero);
tmp2 = gen_bin_cmp(c, locp, TCG_COND_NE, op2, &zero);
OUT(c, locp, "tcg_gen_and_", bit_suffix,
"(", res, ", ", &tmp1, ", ", &tmp2, ");\n");
break;
}
}
static void gen_minmax_op(Context *c, YYLTYPE *locp, unsigned bit_width,
HexValue *res, enum OpTypes op_types,
HexValue *op1, HexValue *op2, bool minmax)
{
const char *mm;
HexValue op1_m = *op1;
HexValue op2_m = *op2;
bool is_unsigned;
assert_signedness(c, locp, res->signedness);
is_unsigned = res->signedness == UNSIGNED;
if (minmax) {
/* Max */
mm = is_unsigned ? "tcg_gen_umax" : "tcg_gen_smax";
} else {
/* Min */
mm = is_unsigned ? "tcg_gen_umin" : "tcg_gen_smin";
}
switch (op_types) {
case IMM_IMM:
yyassert(c, locp, false, "MINMAX between IMM op IMM, not handled!");
break;
case IMM_REG:
op1_m.bit_width = bit_width;
op1_m = rvalue_materialize(c, locp, &op1_m);
OUT(c, locp, mm, "_i", &bit_width, "(");
OUT(c, locp, res, ", ", &op1_m, ", ", op2, ");\n");
break;
case REG_IMM:
op2_m.bit_width = bit_width;
op2_m = rvalue_materialize(c, locp, &op2_m);
/* Fallthrough */
case REG_REG:
OUT(c, locp, mm, "_i", &bit_width, "(");
OUT(c, locp, res, ", ", op1, ", ", &op2_m, ");\n");
break;
}
}
/* Code generation functions */
HexValue gen_bin_op(Context *c,
YYLTYPE *locp,
OpType type,
HexValue *op1,
HexValue *op2)
{
/* Replicate operands to avoid side effects */
HexValue op1_m = *op1;
HexValue op2_m = *op2;
enum OpTypes op_types;
bool op_is64bit;
HexSignedness signedness;
unsigned bit_width;
const char *bit_suffix;
HexValue res;
memset(&res, 0, sizeof(HexValue));
/*
* If the operands are VARID's we need to look up the
* type information.
*/
if (op1_m.type == VARID) {
find_variable(c, locp, &op1_m, &op1_m);
}
if (op2_m.type == VARID) {
find_variable(c, locp, &op2_m, &op2_m);
}
op_types = (op1_m.type != IMMEDIATE) << 1
| (op2_m.type != IMMEDIATE);
op_is64bit = op1_m.bit_width == 64 || op2_m.bit_width == 64;
/* Shift greater than 32 are 64 bits wide */
if (type == ASL_OP && op2_m.type == IMMEDIATE &&
op2_m.imm.type == VALUE && op2_m.imm.value >= 32) {
op_is64bit = true;
}
bit_width = (op_is64bit) ? 64 : 32;
bit_suffix = op_is64bit ? "i64" : "i32";
/* Extend to 64-bits, if required */
if (op_is64bit) {
op1_m = gen_rvalue_extend(c, locp, &op1_m);
op2_m = gen_rvalue_extend(c, locp, &op2_m);
}
signedness = bin_op_signedness(c, locp, op1_m.signedness, op2_m.signedness);
if (op_types != IMM_IMM) {
res = gen_tmp(c, locp, bit_width, signedness);
} else {
res = gen_imm_qemu_tmp(c, locp, bit_width, signedness);
}
switch (type) {
case ADD_OP:
gen_simple_op(c, locp, bit_width, bit_suffix, &res,
op_types, &op1_m, &op2_m,
" + ",
"tcg_gen_addi_",
"tcg_gen_addi_",
"tcg_gen_add_");
break;
case SUB_OP:
gen_sub_op(c, locp, bit_width, bit_suffix, &res, op_types,
&op1_m, &op2_m);
break;
case MUL_OP:
gen_simple_op(c, locp, bit_width, bit_suffix, &res,
op_types, &op1_m, &op2_m,
" * ",
"tcg_gen_muli_",
"tcg_gen_muli_",
"tcg_gen_mul_");
break;
case ASL_OP:
gen_asl_op(c, locp, bit_width, op_is64bit, bit_suffix, &res, op_types,
&op1_m, &op2_m);
break;
case ASR_OP:
gen_asr_op(c, locp, bit_width, op_is64bit, bit_suffix, &res, op_types,
&op1_m, &op2_m);
break;
case LSR_OP:
gen_lsr_op(c, locp, bit_width, op_is64bit, bit_suffix, &res, op_types,
&op1_m, &op2_m);
break;
case ANDB_OP:
gen_simple_op(c, locp, bit_width, bit_suffix, &res,
op_types, &op1_m, &op2_m,
" & ",
"tcg_gen_andi_",
"tcg_gen_andi_",
"tcg_gen_and_");
break;
case ORB_OP:
gen_simple_op(c, locp, bit_width, bit_suffix, &res,
op_types, &op1_m, &op2_m,
" | ",
"tcg_gen_ori_",
"tcg_gen_ori_",
"tcg_gen_or_");
break;
case XORB_OP:
gen_simple_op(c, locp, bit_width, bit_suffix, &res,
op_types, &op1_m, &op2_m,
" ^ ",
"tcg_gen_xori_",
"tcg_gen_xori_",
"tcg_gen_xor_");
break;
case ANDL_OP:
gen_andl_op(c, locp, bit_width, bit_suffix, &res, op_types, &op1_m,
&op2_m);
break;
case MINI_OP:
gen_minmax_op(c, locp, bit_width, &res, op_types, &op1_m, &op2_m,
false);
break;
case MAXI_OP:
gen_minmax_op(c, locp, bit_width, &res, op_types, &op1_m, &op2_m, true);
break;
}
return res;
}
HexValue gen_cast_op(Context *c,
YYLTYPE *locp,
HexValue *src,
unsigned target_width,
HexSignedness signedness)
{
HexValue res;
assert_signedness(c, locp, src->signedness);
if (src->bit_width == target_width) {
res = *src;
} else if (src->bit_width < target_width) {
res = gen_rvalue_extend(c, locp, src);
} else {
/* src->bit_width > target_width */
res = gen_rvalue_truncate(c, locp, src);
}
res.signedness = signedness;
return res;
}
/*
* Implements an extension when the `src_width` is an immediate.
* If the `value` to extend is also an immediate we use `extract/sextract`
* from QEMU `bitops.h`. If `value` is a TCGv then we rely on
* `tcg_gen_extract/tcg_gen_sextract`.
*/
static HexValue gen_extend_imm_width_op(Context *c,
YYLTYPE *locp,
HexValue *src_width,
unsigned dst_width,
HexValue *value,
HexSignedness signedness)
{
/*
* If the source width is not an immediate value, we need to guard
* our extend op with if statements to handle the case where
* `src_width_m` is 0.
*/
const char *sign_prefix;
bool need_guarding;
assert_signedness(c, locp, signedness);
assert(dst_width == 64 || dst_width == 32);
assert(src_width->type == IMMEDIATE);
sign_prefix = (signedness == UNSIGNED) ? "" : "s";
need_guarding = (src_width->imm.type != VALUE);
if (src_width->imm.type == VALUE &&
src_width->imm.value == 0) {
/*
* We can bail out early if the source width is known to be zero
* at translation time.
*/
return gen_imm_value(c, locp, 0, dst_width, signedness);
}
if (value->type == IMMEDIATE) {
/*
* If both the value and source width are immediates,
* we can perform the extension at translation time
* using QEMUs bitops.
*/
HexValue res = gen_imm_qemu_tmp(c, locp, dst_width, signedness);
gen_c_int_type(c, locp, dst_width, signedness);
OUT(c, locp, " ", &res, " = 0;\n");
if (need_guarding) {
OUT(c, locp, "if (", src_width, " != 0) {\n");
}
OUT(c, locp, &res, " = ", sign_prefix, "extract", &dst_width);
OUT(c, locp, "(", value, ", 0, ", src_width, ");\n");
if (need_guarding) {
OUT(c, locp, "}\n");
}
return res;
} else {
/*
* If the source width is an immediate and the value to
* extend is a TCGv, then use tcg_gen_extract/tcg_gen_sextract
*/
HexValue res = gen_tmp(c, locp, dst_width, signedness);
/*
* If the width is an immediate value we know it is non-zero
* at this point, otherwise we need an if-statement
*/
if (need_guarding) {
OUT(c, locp, "if (", src_width, " != 0) {\n");
}
OUT(c, locp, "tcg_gen_", sign_prefix, "extract_i", &dst_width);
OUT(c, locp, "(", &res, ", ", value, ", 0, ", src_width,
");\n");
if (need_guarding) {
OUT(c, locp, "} else {\n");
OUT(c, locp, "tcg_gen_movi_i", &dst_width, "(", &res,
", 0);\n");
OUT(c, locp, "}\n");
}
return res;
}
}
/*
* Implements an extension when the `src_width` is given by
* a TCGv. Here we need to reimplement the behaviour of
* `tcg_gen_extract` and the like using shifts and masks.
*/
static HexValue gen_extend_tcg_width_op(Context *c,
YYLTYPE *locp,
HexValue *src_width,
unsigned dst_width,
HexValue *value,
HexSignedness signedness)
{
HexValue src_width_m = rvalue_materialize(c, locp, src_width);
HexValue zero = gen_constant(c, locp, "0", dst_width, UNSIGNED);
HexValue shift = gen_tmp(c, locp, dst_width, UNSIGNED);
HexValue res;
assert_signedness(c, locp, signedness);
assert(dst_width == 64 || dst_width == 32);
assert(src_width->type != IMMEDIATE);
res = gen_tmp(c, locp, dst_width, signedness);
OUT(c, locp, "tcg_gen_subfi_i", &dst_width);
OUT(c, locp, "(", &shift, ", ", &dst_width, ", ", &src_width_m, ");\n");
if (signedness == UNSIGNED) {
HexValue mask = gen_constant(c, locp, "-1", dst_width, UNSIGNED);
OUT(c, locp, "tcg_gen_shr_i", &dst_width, "(",
&res, ", ", &mask, ", ", &shift, ");\n");
OUT(c, locp, "tcg_gen_and_i", &dst_width, "(",
&res, ", ", &res, ", ", value, ");\n");
} else {
OUT(c, locp, "tcg_gen_shl_i", &dst_width, "(",
&res, ", ", value, ", ", &shift, ");\n");
OUT(c, locp, "tcg_gen_sar_i", &dst_width, "(",
&res, ", ", &res, ", ", &shift, ");\n");
}
OUT(c, locp, "tcg_gen_movcond_i", &dst_width, "(TCG_COND_EQ, ", &res,
", ");
OUT(c, locp, &src_width_m, ", ", &zero, ", ", &zero, ", ", &res,
");\n");
return res;
}
HexValue gen_extend_op(Context *c,
YYLTYPE *locp,
HexValue *src_width,
unsigned dst_width,
HexValue *value,
HexSignedness signedness)
{
unsigned bit_width = (dst_width == 64) ? 64 : 32;
HexValue value_m = *value;
HexValue src_width_m = *src_width;
assert_signedness(c, locp, signedness);
yyassert(c, locp, value_m.bit_width <= bit_width &&
src_width_m.bit_width <= bit_width,
"Extending to a size smaller than the current size"
" makes no sense");
if (value_m.bit_width < bit_width) {
value_m = gen_rvalue_extend(c, locp, &value_m);
}
if (src_width_m.bit_width < bit_width) {
src_width_m = gen_rvalue_extend(c, locp, &src_width_m);
}
if (src_width_m.type == IMMEDIATE) {
return gen_extend_imm_width_op(c, locp, &src_width_m, bit_width,
&value_m, signedness);
} else {
return gen_extend_tcg_width_op(c, locp, &src_width_m, bit_width,
&value_m, signedness);
}
}
/*
* Implements `rdeposit` for the special case where `width`
* is of TCGv type. In this case we need to reimplement the behaviour
* of `tcg_gen_deposit*` using binary operations and masks/shifts.
*
* Note: this is the only type of `rdeposit` that occurs, meaning the
* `width` is _NEVER_ of IMMEDIATE type.
*/
void gen_rdeposit_op(Context *c,
YYLTYPE *locp,
HexValue *dst,
HexValue *value,
HexValue *begin,
HexValue *width)
{
/*
* Otherwise if the width is not known, we fallback on reimplementing
* deposit in TCG.
*/
HexValue begin_m = *begin;
HexValue value_m = *value;
HexValue width_m = *width;
const char *mask_str = (dst->bit_width == 32)
? "0xffffffffUL"
: "0xffffffffffffffffUL";
HexValue mask = gen_constant(c, locp, mask_str, dst->bit_width,
UNSIGNED);
const char *dst_width_str = (dst->bit_width == 32) ? "32" : "64";
HexValue k64 = gen_constant(c, locp, dst_width_str, dst->bit_width,
UNSIGNED);
HexValue res;
HexValue zero;
assert(dst->bit_width >= value->bit_width);
assert(begin->type == IMMEDIATE && begin->imm.type == VALUE);
assert(dst->type == REGISTER_ARG);
yyassert(c, locp, width->type != IMMEDIATE,
"Immediate index to rdeposit not handled!");
yyassert(c, locp, value_m.bit_width == dst->bit_width &&
begin_m.bit_width == dst->bit_width &&
width_m.bit_width == dst->bit_width,
"Extension/truncation should be taken care of"
" before rdeposit!");
width_m = rvalue_materialize(c, locp, &width_m);
/*
* mask = 0xffffffffffffffff >> (64 - width)
* mask = mask << begin
* value = (value << begin) & mask
* res = dst & ~mask
* res = res | value
* dst = (width != 0) ? res : dst
*/
k64 = gen_bin_op(c, locp, SUB_OP, &k64, &width_m);
mask = gen_bin_op(c, locp, LSR_OP, &mask, &k64);
mask = gen_bin_op(c, locp, ASL_OP, &mask, &begin_m);
value_m = gen_bin_op(c, locp, ASL_OP, &value_m, &begin_m);
value_m = gen_bin_op(c, locp, ANDB_OP, &value_m, &mask);
OUT(c, locp, "tcg_gen_not_i", &dst->bit_width, "(", &mask, ", ",
&mask, ");\n");
res = gen_bin_op(c, locp, ANDB_OP, dst, &mask);
res = gen_bin_op(c, locp, ORB_OP, &res, &value_m);
/*
* We don't need to truncate `res` here, since all operations involved use
* the same bit width.
*/
/* If the width is zero, then return the identity dst = dst */
zero = gen_constant(c, locp, "0", res.bit_width, UNSIGNED);
OUT(c, locp, "tcg_gen_movcond_i", &res.bit_width, "(TCG_COND_NE, ",
dst);
OUT(c, locp, ", ", &width_m, ", ", &zero, ", ", &res, ", ", dst,
");\n");
}
void gen_deposit_op(Context *c,
YYLTYPE *locp,
HexValue *dst,
HexValue *value,
HexValue *index,
HexCast *cast)
{
HexValue value_m = *value;
unsigned bit_width = (dst->bit_width == 64) ? 64 : 32;
unsigned width = cast->bit_width;
yyassert(c, locp, index->type == IMMEDIATE,
"Deposit index must be immediate!\n");
/*
* Using tcg_gen_deposit_i**(dst, dst, ...) requires dst to be
* initialized.
*/
gen_inst_init_args(c, locp);
/* If the destination value is 32, truncate the value, otherwise extend */
if (dst->bit_width != value->bit_width) {
if (bit_width == 32) {
value_m = gen_rvalue_truncate(c, locp, &value_m);
} else {
value_m = gen_rvalue_extend(c, locp, &value_m);
}
}
value_m = rvalue_materialize(c, locp, &value_m);
OUT(c, locp, "tcg_gen_deposit_i", &bit_width, "(", dst, ", ", dst, ", ");
OUT(c, locp, &value_m, ", ", index, " * ", &width, ", ", &width, ");\n");
}
HexValue gen_rextract_op(Context *c,
YYLTYPE *locp,
HexValue *src,
unsigned begin,
unsigned width)
{
unsigned bit_width = (src->bit_width == 64) ? 64 : 32;
HexValue res = gen_tmp(c, locp, bit_width, UNSIGNED);
OUT(c, locp, "tcg_gen_extract_i", &bit_width, "(", &res);
OUT(c, locp, ", ", src, ", ", &begin, ", ", &width, ");\n");
return res;
}
HexValue gen_extract_op(Context *c,
YYLTYPE *locp,
HexValue *src,
HexValue *index,
HexExtract *extract)
{
unsigned bit_width = (src->bit_width == 64) ? 64 : 32;
unsigned width = extract->bit_width;
const char *sign_prefix;
HexValue res;
yyassert(c, locp, index->type == IMMEDIATE,
"Extract index must be immediate!\n");
assert_signedness(c, locp, extract->signedness);
sign_prefix = (extract->signedness == UNSIGNED) ? "" : "s";
res = gen_tmp(c, locp, bit_width, extract->signedness);
OUT(c, locp, "tcg_gen_", sign_prefix, "extract_i", &bit_width,
"(", &res, ", ", src);
OUT(c, locp, ", ", index, " * ", &width, ", ", &width, ");\n");
/* Some extract operations have bit_width != storage_bit_width */
if (extract->storage_bit_width > bit_width) {
HexValue tmp = gen_tmp(c, locp, extract->storage_bit_width,
extract->signedness);
const char *sign_suffix = (extract->signedness == UNSIGNED) ? "u" : "";
OUT(c, locp, "tcg_gen_ext", sign_suffix, "_i32_i64(",
&tmp, ", ", &res, ");\n");
res = tmp;
}
return res;
}
void gen_write_reg(Context *c, YYLTYPE *locp, HexValue *reg, HexValue *value)
{
HexValue value_m = *value;
yyassert(c, locp, reg->type == REGISTER, "reg must be a register!");
value_m = gen_rvalue_truncate(c, locp, &value_m);
value_m = rvalue_materialize(c, locp, &value_m);
OUT(c,
locp,
"gen_log_reg_write(ctx, ", &reg->reg.id, ", ",
&value_m, ");\n");
}
void gen_assign(Context *c,
YYLTYPE *locp,
HexValue *dst,
HexValue *value)
{
HexValue value_m = *value;
unsigned bit_width;
yyassert(c, locp, !is_inside_ternary(c),
"Assign in ternary not allowed!");
if (dst->type == REGISTER) {
gen_write_reg(c, locp, dst, &value_m);
return;
}
if (dst->type == VARID) {
find_variable(c, locp, dst, dst);
}
bit_width = dst->bit_width == 64 ? 64 : 32;
if (bit_width != value_m.bit_width) {
if (bit_width == 64) {
value_m = gen_rvalue_extend(c, locp, &value_m);
} else {
value_m = gen_rvalue_truncate(c, locp, &value_m);
}
}
const char *imm_suffix = (value_m.type == IMMEDIATE) ? "i" : "";
OUT(c, locp, "tcg_gen_mov", imm_suffix, "_i", &bit_width,
"(", dst, ", ", &value_m, ");\n");
}
HexValue gen_convround(Context *c,
YYLTYPE *locp,
HexValue *src)
{
HexValue src_m = *src;
unsigned bit_width = src_m.bit_width;
const char *size = (bit_width == 32) ? "32" : "64";
HexValue res = gen_tmp(c, locp, bit_width, src->signedness);
HexValue mask = gen_constant(c, locp, "0x3", bit_width, UNSIGNED);
HexValue one = gen_constant(c, locp, "1", bit_width, UNSIGNED);
HexValue and;
HexValue src_p1;
and = gen_bin_op(c, locp, ANDB_OP, &src_m, &mask);
src_p1 = gen_bin_op(c, locp, ADD_OP, &src_m, &one);
OUT(c, locp, "tcg_gen_movcond_i", size, "(TCG_COND_EQ, ", &res);
OUT(c, locp, ", ", &and, ", ", &mask, ", ");
OUT(c, locp, &src_p1, ", ", &src_m, ");\n");
return res;
}
static HexValue gen_convround_n_b(Context *c,
YYLTYPE *locp,
HexValue *a,
HexValue *n)
{
HexValue one = gen_constant(c, locp, "1", 32, UNSIGNED);
HexValue res = gen_tmp(c, locp, 64, UNSIGNED);
HexValue tmp = gen_tmp(c, locp, 32, UNSIGNED);
HexValue tmp_64 = gen_tmp(c, locp, 64, UNSIGNED);
assert(n->type != IMMEDIATE);
OUT(c, locp, "tcg_gen_ext_i32_i64(", &res, ", ", a, ");\n");
OUT(c, locp, "tcg_gen_shl_i32(", &tmp);
OUT(c, locp, ", ", &one, ", ", n, ");\n");
OUT(c, locp, "tcg_gen_and_i32(", &tmp);
OUT(c, locp, ", ", &tmp, ", ", a, ");\n");
OUT(c, locp, "tcg_gen_shri_i32(", &tmp);
OUT(c, locp, ", ", &tmp, ", 1);\n");
OUT(c, locp, "tcg_gen_ext_i32_i64(", &tmp_64, ", ", &tmp, ");\n");
OUT(c, locp, "tcg_gen_add_i64(", &res);
OUT(c, locp, ", ", &res, ", ", &tmp_64, ");\n");
return res;
}
static HexValue gen_convround_n_c(Context *c,
YYLTYPE *locp,
HexValue *a,
HexValue *n)
{
HexValue res = gen_tmp(c, locp, 64, UNSIGNED);
HexValue one = gen_constant(c, locp, "1", 32, UNSIGNED);
HexValue tmp = gen_tmp(c, locp, 32, UNSIGNED);
HexValue tmp_64 = gen_tmp(c, locp, 64, UNSIGNED);
OUT(c, locp, "tcg_gen_ext_i32_i64(", &res, ", ", a, ");\n");
OUT(c, locp, "tcg_gen_subi_i32(", &tmp);
OUT(c, locp, ", ", n, ", 1);\n");
OUT(c, locp, "tcg_gen_shl_i32(", &tmp);
OUT(c, locp, ", ", &one, ", ", &tmp, ");\n");
OUT(c, locp, "tcg_gen_ext_i32_i64(", &tmp_64, ", ", &tmp, ");\n");
OUT(c, locp, "tcg_gen_add_i64(", &res);
OUT(c, locp, ", ", &res, ", ", &tmp_64, ");\n");
return res;
}
HexValue gen_convround_n(Context *c,
YYLTYPE *locp,
HexValue *src,
HexValue *pos)
{
HexValue zero = gen_constant(c, locp, "0", 64, UNSIGNED);
HexValue l_32 = gen_constant(c, locp, "1", 32, UNSIGNED);
HexValue cond = gen_tmp(c, locp, 32, UNSIGNED);
HexValue cond_64 = gen_tmp(c, locp, 64, UNSIGNED);
HexValue mask = gen_tmp(c, locp, 32, UNSIGNED);
HexValue n_64 = gen_tmp(c, locp, 64, UNSIGNED);
HexValue res = gen_tmp(c, locp, 64, UNSIGNED);
/* If input is 64 bit cast it to 32 */
HexValue src_casted = gen_cast_op(c, locp, src, 32, src->signedness);
HexValue pos_casted = gen_cast_op(c, locp, pos, 32, pos->signedness);
HexValue r1;
HexValue r2;
HexValue r3;
src_casted = rvalue_materialize(c, locp, &src_casted);
pos_casted = rvalue_materialize(c, locp, &pos_casted);
/*
* r1, r2, and r3 represent the results of three different branches.
* - r1 picked if pos_casted == 0
* - r2 picked if (src_casted & ((1 << (pos_casted - 1)) - 1)) == 0),
* that is if bits 0, ..., pos_casted-1 are all 0.
* - r3 picked otherwise.
*/
r1 = gen_rvalue_extend(c, locp, &src_casted);
r2 = gen_convround_n_b(c, locp, &src_casted, &pos_casted);
r3 = gen_convround_n_c(c, locp, &src_casted, &pos_casted);
/*
* Calculate the condition
* (src_casted & ((1 << (pos_casted - 1)) - 1)) == 0),
* which checks if the bits 0,...,pos-1 are all 0.
*/
OUT(c, locp, "tcg_gen_sub_i32(", &mask);
OUT(c, locp, ", ", &pos_casted, ", ", &l_32, ");\n");
OUT(c, locp, "tcg_gen_shl_i32(", &mask);
OUT(c, locp, ", ", &l_32, ", ", &mask, ");\n");
OUT(c, locp, "tcg_gen_sub_i32(", &mask);
OUT(c, locp, ", ", &mask, ", ", &l_32, ");\n");
OUT(c, locp, "tcg_gen_and_i32(", &cond);
OUT(c, locp, ", ", &src_casted, ", ", &mask, ");\n");
OUT(c, locp, "tcg_gen_extu_i32_i64(", &cond_64, ", ", &cond, ");\n");
OUT(c, locp, "tcg_gen_ext_i32_i64(", &n_64, ", ", &pos_casted, ");\n");
/*
* if the bits 0, ..., pos_casted-1 are all 0, then pick r2 otherwise,
* pick r3.
*/
OUT(c, locp, "tcg_gen_movcond_i64");
OUT(c, locp, "(TCG_COND_EQ, ", &res, ", ", &cond_64, ", ", &zero);
OUT(c, locp, ", ", &r2, ", ", &r3, ");\n");
/* Lastly, if the pos_casted == 0, then pick r1 */
OUT(c, locp, "tcg_gen_movcond_i64");
OUT(c, locp, "(TCG_COND_EQ, ", &res, ", ", &n_64, ", ", &zero);
OUT(c, locp, ", ", &r1, ", ", &res, ");\n");
/* Finally shift back val >>= n */
OUT(c, locp, "tcg_gen_shr_i64(", &res);
OUT(c, locp, ", ", &res, ", ", &n_64, ");\n");
res = gen_rvalue_truncate(c, locp, &res);
return res;
}
HexValue gen_round(Context *c,
YYLTYPE *locp,
HexValue *src,
HexValue *pos)
{
HexValue zero = gen_constant(c, locp, "0", 64, UNSIGNED);
HexValue one = gen_constant(c, locp, "1", 64, UNSIGNED);
HexValue res;
HexValue n_m1;
HexValue shifted;
HexValue sum;
HexValue src_width;
HexValue a;
HexValue b;
assert_signedness(c, locp, src->signedness);
yyassert(c, locp, src->bit_width <= 32,
"fRNDN not implemented for bit widths > 32!");
res = gen_tmp(c, locp, 64, src->signedness);
src_width = gen_imm_value(c, locp, src->bit_width, 32, UNSIGNED);
a = gen_extend_op(c, locp, &src_width, 64, src, SIGNED);
a = rvalue_materialize(c, locp, &a);
src_width = gen_imm_value(c, locp, 5, 32, UNSIGNED);
b = gen_extend_op(c, locp, &src_width, 64, pos, UNSIGNED);
b = rvalue_materialize(c, locp, &b);
n_m1 = gen_bin_op(c, locp, SUB_OP, &b, &one);
shifted = gen_bin_op(c, locp, ASL_OP, &one, &n_m1);
sum = gen_bin_op(c, locp, ADD_OP, &shifted, &a);
OUT(c, locp, "tcg_gen_movcond_i64");
OUT(c, locp, "(TCG_COND_EQ, ", &res, ", ", &b, ", ", &zero);
OUT(c, locp, ", ", &a, ", ", &sum, ");\n");
return res;
}
/* Circular addressing mode with auto-increment */
void gen_circ_op(Context *c,
YYLTYPE *locp,
HexValue *addr,
HexValue *increment,
HexValue *modifier)
{
HexValue increment_m = *increment;
increment_m = rvalue_materialize(c, locp, &increment_m);
OUT(c,
locp,
"gen_helper_fcircadd(",
addr,
", ",
addr,
", ",
&increment_m,
", ",
modifier);
OUT(c, locp, ", CS);\n");
}
HexValue gen_locnt_op(Context *c, YYLTYPE *locp, HexValue *src)
{
const char *bit_suffix = src->bit_width == 64 ? "64" : "32";
HexValue src_m = *src;
HexValue res;
assert_signedness(c, locp, src->signedness);
res = gen_tmp(c, locp, src->bit_width == 64 ? 64 : 32, src->signedness);
src_m = rvalue_materialize(c, locp, &src_m);
OUT(c, locp, "tcg_gen_not_i", bit_suffix, "(",
&res, ", ", &src_m, ");\n");
OUT(c, locp, "tcg_gen_clzi_i", bit_suffix, "(", &res, ", ", &res, ", ");
OUT(c, locp, bit_suffix, ");\n");
return res;
}
HexValue gen_ctpop_op(Context *c, YYLTYPE *locp, HexValue *src)
{
const char *bit_suffix = src->bit_width == 64 ? "64" : "32";
HexValue src_m = *src;
HexValue res;
assert_signedness(c, locp, src->signedness);
res = gen_tmp(c, locp, src->bit_width == 64 ? 64 : 32, src->signedness);
src_m = rvalue_materialize(c, locp, &src_m);
OUT(c, locp, "tcg_gen_ctpop_i", bit_suffix,
"(", &res, ", ", &src_m, ");\n");
return res;
}
HexValue gen_rotl(Context *c, YYLTYPE *locp, HexValue *src, HexValue *width)
{
const char *suffix = src->bit_width == 64 ? "i64" : "i32";
HexValue amount = *width;
HexValue res;
assert_signedness(c, locp, src->signedness);
res = gen_tmp(c, locp, src->bit_width, src->signedness);
if (amount.bit_width < src->bit_width) {
amount = gen_rvalue_extend(c, locp, &amount);
} else {
amount = gen_rvalue_truncate(c, locp, &amount);
}
amount = rvalue_materialize(c, locp, &amount);
OUT(c, locp, "tcg_gen_rotl_", suffix, "(",
&res, ", ", src, ", ", &amount, ");\n");
return res;
}
HexValue gen_carry_from_add(Context *c,
YYLTYPE *locp,
HexValue *op1,
HexValue *op2,
HexValue *op3)
{
HexValue zero = gen_constant(c, locp, "0", 64, UNSIGNED);
HexValue res = gen_tmp(c, locp, 64, UNSIGNED);
HexValue cf = gen_tmp(c, locp, 64, UNSIGNED);
HexValue op1_m = rvalue_materialize(c, locp, op1);
HexValue op2_m = rvalue_materialize(c, locp, op2);
HexValue op3_m = rvalue_materialize(c, locp, op3);
op3_m = gen_rvalue_extend(c, locp, &op3_m);
OUT(c, locp, "tcg_gen_add2_i64(", &res, ", ", &cf, ", ", &op1_m, ", ",
&zero);
OUT(c, locp, ", ", &op3_m, ", ", &zero, ");\n");
OUT(c, locp, "tcg_gen_add2_i64(", &res, ", ", &cf, ", ", &res, ", ", &cf);
OUT(c, locp, ", ", &op2_m, ", ", &zero, ");\n");
return cf;
}
void gen_addsat64(Context *c,
YYLTYPE *locp,
HexValue *dst,
HexValue *op1,
HexValue *op2)
{
HexValue op1_m = rvalue_materialize(c, locp, op1);
HexValue op2_m = rvalue_materialize(c, locp, op2);
OUT(c, locp, "gen_add_sat_i64(ctx, ", dst, ", ", &op1_m, ", ",
&op2_m, ");\n");
}
void gen_inst(Context *c, GString *iname)
{
c->total_insn++;
c->inst.name = iname;
c->inst.allocated = g_array_new(FALSE, FALSE, sizeof(Var));
c->inst.init_list = g_array_new(FALSE, FALSE, sizeof(HexValue));
c->inst.strings = g_array_new(FALSE, FALSE, sizeof(GString *));
EMIT_SIG(c, "void emit_%s(DisasContext *ctx, Insn *insn, Packet *pkt",
c->inst.name->str);
}
/*
* Initialize declared but uninitialized registers, but only for
* non-conditional instructions
*/
void gen_inst_init_args(Context *c, YYLTYPE *locp)
{
if (!c->inst.init_list) {
return;
}
for (unsigned i = 0; i < c->inst.init_list->len; i++) {
HexValue *val = &g_array_index(c->inst.init_list, HexValue, i);
if (val->type == REGISTER_ARG) {
/* Nothing to do here */
} else if (val->type == PREDICATE) {
char suffix = val->is_dotnew ? 'N' : 'V';
EMIT_HEAD(c, "tcg_gen_movi_i%u(P%c%c, 0);\n", val->bit_width,
val->pred.id, suffix);
} else {
yyassert(c, locp, false, "Invalid arg type!");
}
}
/* Free argument init list once we have initialized everything */
g_array_free(c->inst.init_list, TRUE);
c->inst.init_list = NULL;
}
void gen_inst_code(Context *c, YYLTYPE *locp)
{
if (c->inst.error_count != 0) {
fprintf(stderr,
"Parsing of instruction %s generated %d errors!\n",
c->inst.name->str,
c->inst.error_count);
} else {
c->implemented_insn++;
fprintf(c->enabled_file, "%s\n", c->inst.name->str);
emit_footer(c);
commit(c);
}
free_instruction(c);
}
void gen_pred_assign(Context *c, YYLTYPE *locp, HexValue *left_pred,
HexValue *right_pred)
{
char pred_id[2] = {left_pred->pred.id, 0};
bool is_direct = is_direct_predicate(left_pred);
HexValue r = rvalue_materialize(c, locp, right_pred);
r = gen_rvalue_truncate(c, locp, &r);
yyassert(c, locp, !is_inside_ternary(c),
"Predicate assign not allowed in ternary!");
/* Extract predicate TCGv */
if (is_direct) {
*left_pred = gen_tmp(c, locp, 32, UNSIGNED);
}
/* Extract first 8 bits, and store new predicate value */
OUT(c, locp, "tcg_gen_andi_i32(", left_pred, ", ", &r, ", 0xff);\n");
if (is_direct) {
OUT(c, locp, "gen_log_pred_write(ctx, ", pred_id, ", ", left_pred,
");\n");
}
}
void gen_cancel(Context *c, YYLTYPE *locp)
{
OUT(c, locp, "gen_cancel(insn->slot);\n");
}
void gen_load_cancel(Context *c, YYLTYPE *locp)
{
OUT(c, locp, "if (insn->slot == 0 && pkt->pkt_has_store_s1) {\n");
OUT(c, locp, "ctx->s1_store_processed = false;\n");
OUT(c, locp, "process_store(ctx, 1);\n");
OUT(c, locp, "}\n");
}
void gen_load(Context *c, YYLTYPE *locp, HexValue *width,
HexSignedness signedness, HexValue *ea, HexValue *dst)
{
unsigned dst_bit_width;
unsigned src_bit_width;
/* Memop width is specified in the load macro */
assert_signedness(c, locp, signedness);
/* If dst is a variable, assert that is declared and load the type info */
if (dst->type == VARID) {
find_variable(c, locp, dst, dst);
}
src_bit_width = width->imm.value * 8;
dst_bit_width = MAX(dst->bit_width, 32);
/* Lookup the effective address EA */
find_variable(c, locp, ea, ea);
OUT(c, locp, "if (insn->slot == 0 && pkt->pkt_has_store_s1) {\n");
OUT(c, locp, "probe_noshuf_load(", ea, ", ", width, ", ctx->mem_idx);\n");
OUT(c, locp, "process_store(ctx, 1);\n");
OUT(c, locp, "}\n");
OUT(c, locp, "tcg_gen_qemu_ld_i", &dst_bit_width);
OUT(c, locp, "(");
OUT(c, locp, dst, ", ", ea, ", ctx->mem_idx, MO_", &src_bit_width);
if (signedness == SIGNED) {
OUT(c, locp, " | MO_SIGN");
}
OUT(c, locp, " | MO_TE);\n");
}
void gen_store(Context *c, YYLTYPE *locp, HexValue *width, HexValue *ea,
HexValue *src)
{
HexValue src_m = *src;
/* Memop width is specified in the store macro */
unsigned mem_width = width->imm.value;
/* Lookup the effective address EA */
find_variable(c, locp, ea, ea);
src_m = rvalue_materialize(c, locp, &src_m);
OUT(c, locp, "gen_store", &mem_width, "(tcg_env, ", ea, ", ", &src_m);
OUT(c, locp, ", insn->slot);\n");
}
void gen_sethalf(Context *c, YYLTYPE *locp, HexCast *sh, HexValue *n,
HexValue *dst, HexValue *value)
{
yyassert(c, locp, n->type == IMMEDIATE,
"Deposit index must be immediate!\n");
if (dst->type == VARID) {
find_variable(c, locp, dst, dst);
}
gen_deposit_op(c, locp, dst, value, n, sh);
}
void gen_setbits(Context *c, YYLTYPE *locp, HexValue *hi, HexValue *lo,
HexValue *dst, HexValue *value)
{
unsigned len;
HexValue tmp;
yyassert(c, locp, hi->type == IMMEDIATE &&
hi->imm.type == VALUE &&
lo->type == IMMEDIATE &&
lo->imm.type == VALUE,
"Range deposit needs immediate values!\n");
*value = gen_rvalue_truncate(c, locp, value);
len = hi->imm.value + 1 - lo->imm.value;
tmp = gen_tmp(c, locp, 32, value->signedness);
/* Emit an `and` to ensure `value` is either 0 or 1. */
OUT(c, locp, "tcg_gen_andi_i32(", &tmp, ", ", value, ", 1);\n");
/* Use `neg` to map 0 -> 0 and 1 -> 0xffff... */
OUT(c, locp, "tcg_gen_neg_i32(", &tmp, ", ", &tmp, ");\n");
OUT(c, locp, "tcg_gen_deposit_i32(", dst, ", ", dst,
", ", &tmp, ", ");
OUT(c, locp, lo, ", ", &len, ");\n");
}
unsigned gen_if_cond(Context *c, YYLTYPE *locp, HexValue *cond)
{
const char *bit_suffix;
/* Generate an end label, if false branch to that label */
OUT(c, locp, "TCGLabel *if_label_", &c->inst.if_count,
" = gen_new_label();\n");
*cond = rvalue_materialize(c, locp, cond);
bit_suffix = (cond->bit_width == 64) ? "i64" : "i32";
OUT(c, locp, "tcg_gen_brcondi_", bit_suffix, "(TCG_COND_EQ, ", cond,
", 0, if_label_", &c->inst.if_count, ");\n");
return c->inst.if_count++;
}
unsigned gen_if_else(Context *c, YYLTYPE *locp, unsigned index)
{
unsigned if_index = c->inst.if_count++;
/* Generate label to jump if else is not verified */
OUT(c, locp, "TCGLabel *if_label_", &if_index,
" = gen_new_label();\n");
/* Jump out of the else statement */
OUT(c, locp, "tcg_gen_br(if_label_", &if_index, ");\n");
/* Fix the else label */
OUT(c, locp, "gen_set_label(if_label_", &index, ");\n");
return if_index;
}
HexValue gen_rvalue_pred(Context *c, YYLTYPE *locp, HexValue *pred)
{
/* Predicted instructions need to zero out result args */
gen_inst_init_args(c, locp);
if (is_direct_predicate(pred)) {
bool is_dotnew = pred->is_dotnew;
char predicate_id[2] = { pred->pred.id, '\0' };
char *pred_str = (char *) &predicate_id;
*pred = gen_tmp(c, locp, 32, UNSIGNED);
if (is_dotnew) {
OUT(c, locp, "tcg_gen_mov_i32(", pred,
", ctx->new_pred_value[");
OUT(c, locp, pred_str, "]);\n");
} else {
OUT(c, locp, "gen_read_preg(", pred, ", ", pred_str, ");\n");
}
}
return *pred;
}
HexValue gen_rvalue_var(Context *c, YYLTYPE *locp, HexValue *var)
{
find_variable(c, locp, var, var);
return *var;
}
HexValue gen_rvalue_mpy(Context *c, YYLTYPE *locp, HexMpy *mpy,
HexValue *op1, HexValue *op2)
{
HexValue res;
memset(&res, 0, sizeof(HexValue));
assert_signedness(c, locp, mpy->first_signedness);
assert_signedness(c, locp, mpy->second_signedness);
*op1 = gen_cast_op(c, locp, op1, mpy->first_bit_width * 2,
mpy->first_signedness);
/* Handle fMPTY3216.. */
if (mpy->first_bit_width == 32) {
*op2 = gen_cast_op(c, locp, op2, 64, mpy->second_signedness);
} else {
*op2 = gen_cast_op(c, locp, op2, mpy->second_bit_width * 2,
mpy->second_signedness);
}
res = gen_bin_op(c, locp, MUL_OP, op1, op2);
/* Handle special cases required by the language */
if (mpy->first_bit_width == 16 && mpy->second_bit_width == 16) {
HexValue src_width = gen_imm_value(c, locp, 32, 32, UNSIGNED);
HexSignedness signedness = bin_op_signedness(c, locp,
mpy->first_signedness,
mpy->second_signedness);
res = gen_extend_op(c, locp, &src_width, 64, &res,
signedness);
}
return res;
}
static inline HexValue gen_rvalue_simple_unary(Context *c, YYLTYPE *locp,
HexValue *value,
const char *c_code,
const char *tcg_code)
{
unsigned bit_width = (value->bit_width == 64) ? 64 : 32;
HexValue res;
if (value->type == IMMEDIATE) {
res = gen_imm_qemu_tmp(c, locp, bit_width, value->signedness);
gen_c_int_type(c, locp, value->bit_width, value->signedness);
OUT(c, locp, " ", &res, " = ", c_code, "(", value, ");\n");
} else {
res = gen_tmp(c, locp, bit_width, value->signedness);
OUT(c, locp, tcg_code, "_i", &bit_width, "(", &res, ", ", value,
");\n");
}
return res;
}
HexValue gen_rvalue_not(Context *c, YYLTYPE *locp, HexValue *value)
{
return gen_rvalue_simple_unary(c, locp, value, "~", "tcg_gen_not");
}
HexValue gen_rvalue_notl(Context *c, YYLTYPE *locp, HexValue *value)
{
unsigned bit_width = (value->bit_width == 64) ? 64 : 32;
HexValue res;
if (value->type == IMMEDIATE) {
res = gen_imm_qemu_tmp(c, locp, bit_width, value->signedness);
gen_c_int_type(c, locp, value->bit_width, value->signedness);
OUT(c, locp, " ", &res, " = !(", value, ");\n");
} else {
HexValue zero = gen_constant(c, locp, "0", bit_width, UNSIGNED);
HexValue one = gen_constant(c, locp, "0xff", bit_width, UNSIGNED);
res = gen_tmp(c, locp, bit_width, value->signedness);
OUT(c, locp, "tcg_gen_movcond_i", &bit_width);
OUT(c, locp, "(TCG_COND_EQ, ", &res, ", ", value, ", ", &zero);
OUT(c, locp, ", ", &one, ", ", &zero, ");\n");
}
return res;
}
HexValue gen_rvalue_sat(Context *c, YYLTYPE *locp, HexSat *sat,
HexValue *width, HexValue *value)
{
const char *unsigned_str;
const char *bit_suffix = (value->bit_width == 64) ? "i64" : "i32";
HexValue res;
HexValue ovfl;
/*
* Note: all saturates are assumed to implicitly set overflow.
* This assumption holds for the instructions currently parsed
* by idef-parser.
*/
yyassert(c, locp, width->imm.value < value->bit_width,
"To compute overflow, source width must be greater than"
" saturation width!");
yyassert(c, locp, !is_inside_ternary(c),
"Saturating from within a ternary is not allowed!");
assert_signedness(c, locp, sat->signedness);
unsigned_str = (sat->signedness == UNSIGNED) ? "u" : "";
res = gen_tmp(c, locp, value->bit_width, sat->signedness);
ovfl = gen_tmp(c, locp, 32, sat->signedness);
OUT(c, locp, "gen_sat", unsigned_str, "_", bit_suffix, "_ovfl(");
OUT(c, locp, &ovfl, ", ", &res, ", ", value, ", ", &width->imm.value,
");\n");
OUT(c, locp, "gen_set_usr_field_if(ctx, USR_OVF,", &ovfl, ");\n");
return res;
}
HexValue gen_rvalue_fscr(Context *c, YYLTYPE *locp, HexValue *value)
{
HexValue key = gen_tmp(c, locp, 64, UNSIGNED);
HexValue res = gen_tmp(c, locp, 64, UNSIGNED);
HexValue frame_key = gen_tmp(c, locp, 32, UNSIGNED);
*value = gen_rvalue_extend(c, locp, value);
OUT(c, locp, "gen_read_reg(", &frame_key, ", HEX_REG_FRAMEKEY);\n");
OUT(c, locp, "tcg_gen_concat_i32_i64(",
&key, ", ", &frame_key, ", ", &frame_key, ");\n");
OUT(c, locp, "tcg_gen_xor_i64(", &res, ", ", value, ", ", &key, ");\n");
return res;
}
HexValue gen_rvalue_abs(Context *c, YYLTYPE *locp, HexValue *value)
{
return gen_rvalue_simple_unary(c, locp, value, "abs", "tcg_gen_abs");
}
HexValue gen_rvalue_neg(Context *c, YYLTYPE *locp, HexValue *value)
{
return gen_rvalue_simple_unary(c, locp, value, "-", "tcg_gen_neg");
}
HexValue gen_rvalue_brev(Context *c, YYLTYPE *locp, HexValue *value)
{
HexValue res;
yyassert(c, locp, value->bit_width <= 32,
"fbrev not implemented for 64-bit integers!");
res = gen_tmp(c, locp, value->bit_width, value->signedness);
*value = rvalue_materialize(c, locp, value);
OUT(c, locp, "gen_helper_fbrev(", &res, ", ", value, ");\n");
return res;
}
HexValue gen_rvalue_ternary(Context *c, YYLTYPE *locp, HexValue *cond,
HexValue *true_branch, HexValue *false_branch)
{
bool is_64bit = (true_branch->bit_width == 64) ||
(false_branch->bit_width == 64);
unsigned bit_width = (is_64bit) ? 64 : 32;
HexValue zero = gen_constant(c, locp, "0", bit_width, UNSIGNED);
HexValue res = gen_tmp(c, locp, bit_width, UNSIGNED);
if (is_64bit) {
*cond = gen_rvalue_extend(c, locp, cond);
*true_branch = gen_rvalue_extend(c, locp, true_branch);
*false_branch = gen_rvalue_extend(c, locp, false_branch);
} else {
*cond = gen_rvalue_truncate(c, locp, cond);
}
*cond = rvalue_materialize(c, locp, cond);
*true_branch = rvalue_materialize(c, locp, true_branch);
*false_branch = rvalue_materialize(c, locp, false_branch);
OUT(c, locp, "tcg_gen_movcond_i", &bit_width);
OUT(c, locp, "(TCG_COND_NE, ", &res, ", ", cond, ", ", &zero);
OUT(c, locp, ", ", true_branch, ", ", false_branch, ");\n");
assert(c->ternary->len > 0);
g_array_remove_index(c->ternary, c->ternary->len - 1);
return res;
}
const char *cond_to_str(TCGCond cond)
{
switch (cond) {
case TCG_COND_NEVER:
return "TCG_COND_NEVER";
case TCG_COND_ALWAYS:
return "TCG_COND_ALWAYS";
case TCG_COND_EQ:
return "TCG_COND_EQ";
case TCG_COND_NE:
return "TCG_COND_NE";
case TCG_COND_LT:
return "TCG_COND_LT";
case TCG_COND_GE:
return "TCG_COND_GE";
case TCG_COND_LE:
return "TCG_COND_LE";
case TCG_COND_GT:
return "TCG_COND_GT";
case TCG_COND_LTU:
return "TCG_COND_LTU";
case TCG_COND_GEU:
return "TCG_COND_GEU";
case TCG_COND_LEU:
return "TCG_COND_LEU";
case TCG_COND_GTU:
return "TCG_COND_GTU";
default:
abort();
}
}
void emit_arg(Context *c, YYLTYPE *locp, HexValue *arg)
{
switch (arg->type) {
case REGISTER_ARG:
if (arg->reg.type == DOTNEW) {
EMIT_SIG(c, ", TCGv N%cN", arg->reg.id);
} else {
bool is64 = (arg->bit_width == 64);
const char *type = is64 ? "TCGv_i64" : "TCGv_i32";
char reg_id[5];
reg_compose(c, locp, &(arg->reg), reg_id);
EMIT_SIG(c, ", %s %s", type, reg_id);
/* MuV register requires also CS for circular addressing*/
if (arg->reg.type == MODIFIER) {
EMIT_SIG(c, ", TCGv CS");
}
}
break;
case PREDICATE:
{
char suffix = arg->is_dotnew ? 'N' : 'V';
EMIT_SIG(c, ", TCGv P%c%c", arg->pred.id, suffix);
}
break;
default:
{
fprintf(stderr, "emit_arg got unsupported argument!");
abort();
}
}
}
void emit_footer(Context *c)
{
EMIT(c, "}\n");
EMIT(c, "\n");
}
void track_string(Context *c, GString *s)
{
g_array_append_val(c->inst.strings, s);
}
void free_instruction(Context *c)
{
assert(!is_inside_ternary(c));
/* Free the strings */
g_string_truncate(c->signature_str, 0);
g_string_truncate(c->out_str, 0);
g_string_truncate(c->header_str, 0);
/* Free strings allocated by the instruction */
for (unsigned i = 0; i < c->inst.strings->len; i++) {
g_string_free(g_array_index(c->inst.strings, GString*, i), TRUE);
}
g_array_free(c->inst.strings, TRUE);
/* Free INAME token value */
g_string_free(c->inst.name, TRUE);
/* Free variables and registers */
g_array_free(c->inst.allocated, TRUE);
/* Initialize instruction-specific portion of the context */
memset(&(c->inst), 0, sizeof(Inst));
}
void assert_signedness(Context *c,
YYLTYPE *locp,
HexSignedness signedness)
{
yyassert(c, locp,
signedness != UNKNOWN_SIGNEDNESS,
"Unspecified signedness");
}