qemu-e2k/block/io.c
Hanna Czenczek 18743311b8 block: Collapse padded I/O vecs exceeding IOV_MAX
When processing vectored guest requests that are not aligned to the
storage request alignment, we pad them by adding head and/or tail
buffers for a read-modify-write cycle.

The guest can submit I/O vectors up to IOV_MAX (1024) in length, but
with this padding, the vector can exceed that limit.  As of
4c002cef0e ("util/iov: make
qemu_iovec_init_extended() honest"), we refuse to pad vectors beyond the
limit, instead returning an error to the guest.

To the guest, this appears as a random I/O error.  We should not return
an I/O error to the guest when it issued a perfectly valid request.

Before 4c002cef0e, we just made the vector
longer than IOV_MAX, which generally seems to work (because the guest
assumes a smaller alignment than we really have, file-posix's
raw_co_prw() will generally see bdrv_qiov_is_aligned() return false, and
so emulate the request, so that the IOV_MAX does not matter).  However,
that does not seem exactly great.

I see two ways to fix this problem:
1. We split such long requests into two requests.
2. We join some elements of the vector into new buffers to make it
   shorter.

I am wary of (1), because it seems like it may have unintended side
effects.

(2) on the other hand seems relatively simple to implement, with
hopefully few side effects, so this patch does that.

To do this, the use of qemu_iovec_init_extended() in bdrv_pad_request()
is effectively replaced by the new function bdrv_create_padded_qiov(),
which not only wraps the request IOV with padding head/tail, but also
ensures that the resulting vector will not have more than IOV_MAX
elements.  Putting that functionality into qemu_iovec_init_extended() is
infeasible because it requires allocating a bounce buffer; doing so
would require many more parameters (buffer alignment, how to initialize
the buffer, and out parameters like the buffer, its length, and the
original elements), which is not reasonable.

Conversely, it is not difficult to move qemu_iovec_init_extended()'s
functionality into bdrv_create_padded_qiov() by using public
qemu_iovec_* functions, so that is what this patch does.

Because bdrv_pad_request() was the only "serious" user of
qemu_iovec_init_extended(), the next patch will remove the latter
function, so the functionality is not implemented twice.

Buglink: https://bugzilla.redhat.com/show_bug.cgi?id=2141964
Signed-off-by: Hanna Czenczek <hreitz@redhat.com>
Message-Id: <20230411173418.19549-3-hreitz@redhat.com>
Reviewed-by: Vladimir Sementsov-Ogievskiy <vsementsov@yandex-team.ru>
2023-06-05 13:11:06 +02:00

3782 lines
114 KiB
C

/*
* Block layer I/O functions
*
* Copyright (c) 2003 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "trace.h"
#include "sysemu/block-backend.h"
#include "block/aio-wait.h"
#include "block/blockjob.h"
#include "block/blockjob_int.h"
#include "block/block_int.h"
#include "block/coroutines.h"
#include "block/dirty-bitmap.h"
#include "block/write-threshold.h"
#include "qemu/cutils.h"
#include "qemu/memalign.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "sysemu/replay.h"
/* Maximum bounce buffer for copy-on-read and write zeroes, in bytes */
#define MAX_BOUNCE_BUFFER (32768 << BDRV_SECTOR_BITS)
static void bdrv_parent_cb_resize(BlockDriverState *bs);
static int coroutine_fn bdrv_co_do_pwrite_zeroes(BlockDriverState *bs,
int64_t offset, int64_t bytes, BdrvRequestFlags flags);
static void bdrv_parent_drained_begin(BlockDriverState *bs, BdrvChild *ignore)
{
BdrvChild *c, *next;
QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
if (c == ignore) {
continue;
}
bdrv_parent_drained_begin_single(c);
}
}
void bdrv_parent_drained_end_single(BdrvChild *c)
{
GLOBAL_STATE_CODE();
assert(c->quiesced_parent);
c->quiesced_parent = false;
if (c->klass->drained_end) {
c->klass->drained_end(c);
}
}
static void bdrv_parent_drained_end(BlockDriverState *bs, BdrvChild *ignore)
{
BdrvChild *c;
QLIST_FOREACH(c, &bs->parents, next_parent) {
if (c == ignore) {
continue;
}
bdrv_parent_drained_end_single(c);
}
}
bool bdrv_parent_drained_poll_single(BdrvChild *c)
{
if (c->klass->drained_poll) {
return c->klass->drained_poll(c);
}
return false;
}
static bool bdrv_parent_drained_poll(BlockDriverState *bs, BdrvChild *ignore,
bool ignore_bds_parents)
{
BdrvChild *c, *next;
bool busy = false;
QLIST_FOREACH_SAFE(c, &bs->parents, next_parent, next) {
if (c == ignore || (ignore_bds_parents && c->klass->parent_is_bds)) {
continue;
}
busy |= bdrv_parent_drained_poll_single(c);
}
return busy;
}
void bdrv_parent_drained_begin_single(BdrvChild *c)
{
GLOBAL_STATE_CODE();
assert(!c->quiesced_parent);
c->quiesced_parent = true;
if (c->klass->drained_begin) {
c->klass->drained_begin(c);
}
}
static void bdrv_merge_limits(BlockLimits *dst, const BlockLimits *src)
{
dst->pdiscard_alignment = MAX(dst->pdiscard_alignment,
src->pdiscard_alignment);
dst->opt_transfer = MAX(dst->opt_transfer, src->opt_transfer);
dst->max_transfer = MIN_NON_ZERO(dst->max_transfer, src->max_transfer);
dst->max_hw_transfer = MIN_NON_ZERO(dst->max_hw_transfer,
src->max_hw_transfer);
dst->opt_mem_alignment = MAX(dst->opt_mem_alignment,
src->opt_mem_alignment);
dst->min_mem_alignment = MAX(dst->min_mem_alignment,
src->min_mem_alignment);
dst->max_iov = MIN_NON_ZERO(dst->max_iov, src->max_iov);
dst->max_hw_iov = MIN_NON_ZERO(dst->max_hw_iov, src->max_hw_iov);
}
typedef struct BdrvRefreshLimitsState {
BlockDriverState *bs;
BlockLimits old_bl;
} BdrvRefreshLimitsState;
static void bdrv_refresh_limits_abort(void *opaque)
{
BdrvRefreshLimitsState *s = opaque;
s->bs->bl = s->old_bl;
}
static TransactionActionDrv bdrv_refresh_limits_drv = {
.abort = bdrv_refresh_limits_abort,
.clean = g_free,
};
/* @tran is allowed to be NULL, in this case no rollback is possible. */
void bdrv_refresh_limits(BlockDriverState *bs, Transaction *tran, Error **errp)
{
ERRP_GUARD();
BlockDriver *drv = bs->drv;
BdrvChild *c;
bool have_limits;
GLOBAL_STATE_CODE();
if (tran) {
BdrvRefreshLimitsState *s = g_new(BdrvRefreshLimitsState, 1);
*s = (BdrvRefreshLimitsState) {
.bs = bs,
.old_bl = bs->bl,
};
tran_add(tran, &bdrv_refresh_limits_drv, s);
}
memset(&bs->bl, 0, sizeof(bs->bl));
if (!drv) {
return;
}
/* Default alignment based on whether driver has byte interface */
bs->bl.request_alignment = (drv->bdrv_co_preadv ||
drv->bdrv_aio_preadv ||
drv->bdrv_co_preadv_part) ? 1 : 512;
/* Take some limits from the children as a default */
have_limits = false;
QLIST_FOREACH(c, &bs->children, next) {
if (c->role & (BDRV_CHILD_DATA | BDRV_CHILD_FILTERED | BDRV_CHILD_COW))
{
bdrv_merge_limits(&bs->bl, &c->bs->bl);
have_limits = true;
}
if (c->role & BDRV_CHILD_FILTERED) {
bs->bl.has_variable_length |= c->bs->bl.has_variable_length;
}
}
if (!have_limits) {
bs->bl.min_mem_alignment = 512;
bs->bl.opt_mem_alignment = qemu_real_host_page_size();
/* Safe default since most protocols use readv()/writev()/etc */
bs->bl.max_iov = IOV_MAX;
}
/* Then let the driver override it */
if (drv->bdrv_refresh_limits) {
drv->bdrv_refresh_limits(bs, errp);
if (*errp) {
return;
}
}
if (bs->bl.request_alignment > BDRV_MAX_ALIGNMENT) {
error_setg(errp, "Driver requires too large request alignment");
}
}
/**
* The copy-on-read flag is actually a reference count so multiple users may
* use the feature without worrying about clobbering its previous state.
* Copy-on-read stays enabled until all users have called to disable it.
*/
void bdrv_enable_copy_on_read(BlockDriverState *bs)
{
IO_CODE();
qatomic_inc(&bs->copy_on_read);
}
void bdrv_disable_copy_on_read(BlockDriverState *bs)
{
int old = qatomic_fetch_dec(&bs->copy_on_read);
IO_CODE();
assert(old >= 1);
}
typedef struct {
Coroutine *co;
BlockDriverState *bs;
bool done;
bool begin;
bool poll;
BdrvChild *parent;
} BdrvCoDrainData;
/* Returns true if BDRV_POLL_WHILE() should go into a blocking aio_poll() */
bool bdrv_drain_poll(BlockDriverState *bs, BdrvChild *ignore_parent,
bool ignore_bds_parents)
{
GLOBAL_STATE_CODE();
if (bdrv_parent_drained_poll(bs, ignore_parent, ignore_bds_parents)) {
return true;
}
if (qatomic_read(&bs->in_flight)) {
return true;
}
return false;
}
static bool bdrv_drain_poll_top_level(BlockDriverState *bs,
BdrvChild *ignore_parent)
{
return bdrv_drain_poll(bs, ignore_parent, false);
}
static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
bool poll);
static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent);
static void bdrv_co_drain_bh_cb(void *opaque)
{
BdrvCoDrainData *data = opaque;
Coroutine *co = data->co;
BlockDriverState *bs = data->bs;
if (bs) {
AioContext *ctx = bdrv_get_aio_context(bs);
aio_context_acquire(ctx);
bdrv_dec_in_flight(bs);
if (data->begin) {
bdrv_do_drained_begin(bs, data->parent, data->poll);
} else {
assert(!data->poll);
bdrv_do_drained_end(bs, data->parent);
}
aio_context_release(ctx);
} else {
assert(data->begin);
bdrv_drain_all_begin();
}
data->done = true;
aio_co_wake(co);
}
static void coroutine_fn bdrv_co_yield_to_drain(BlockDriverState *bs,
bool begin,
BdrvChild *parent,
bool poll)
{
BdrvCoDrainData data;
Coroutine *self = qemu_coroutine_self();
AioContext *ctx = bdrv_get_aio_context(bs);
AioContext *co_ctx = qemu_coroutine_get_aio_context(self);
/* Calling bdrv_drain() from a BH ensures the current coroutine yields and
* other coroutines run if they were queued by aio_co_enter(). */
assert(qemu_in_coroutine());
data = (BdrvCoDrainData) {
.co = self,
.bs = bs,
.done = false,
.begin = begin,
.parent = parent,
.poll = poll,
};
if (bs) {
bdrv_inc_in_flight(bs);
}
/*
* Temporarily drop the lock across yield or we would get deadlocks.
* bdrv_co_drain_bh_cb() reaquires the lock as needed.
*
* When we yield below, the lock for the current context will be
* released, so if this is actually the lock that protects bs, don't drop
* it a second time.
*/
if (ctx != co_ctx) {
aio_context_release(ctx);
}
replay_bh_schedule_oneshot_event(qemu_get_aio_context(),
bdrv_co_drain_bh_cb, &data);
qemu_coroutine_yield();
/* If we are resumed from some other event (such as an aio completion or a
* timer callback), it is a bug in the caller that should be fixed. */
assert(data.done);
/* Reaquire the AioContext of bs if we dropped it */
if (ctx != co_ctx) {
aio_context_acquire(ctx);
}
}
static void bdrv_do_drained_begin(BlockDriverState *bs, BdrvChild *parent,
bool poll)
{
IO_OR_GS_CODE();
if (qemu_in_coroutine()) {
bdrv_co_yield_to_drain(bs, true, parent, poll);
return;
}
GLOBAL_STATE_CODE();
/* Stop things in parent-to-child order */
if (qatomic_fetch_inc(&bs->quiesce_counter) == 0) {
bdrv_parent_drained_begin(bs, parent);
if (bs->drv && bs->drv->bdrv_drain_begin) {
bs->drv->bdrv_drain_begin(bs);
}
}
/*
* Wait for drained requests to finish.
*
* Calling BDRV_POLL_WHILE() only once for the top-level node is okay: The
* call is needed so things in this AioContext can make progress even
* though we don't return to the main AioContext loop - this automatically
* includes other nodes in the same AioContext and therefore all child
* nodes.
*/
if (poll) {
BDRV_POLL_WHILE(bs, bdrv_drain_poll_top_level(bs, parent));
}
}
void bdrv_do_drained_begin_quiesce(BlockDriverState *bs, BdrvChild *parent)
{
bdrv_do_drained_begin(bs, parent, false);
}
void bdrv_drained_begin(BlockDriverState *bs)
{
IO_OR_GS_CODE();
bdrv_do_drained_begin(bs, NULL, true);
}
/**
* This function does not poll, nor must any of its recursively called
* functions.
*/
static void bdrv_do_drained_end(BlockDriverState *bs, BdrvChild *parent)
{
int old_quiesce_counter;
IO_OR_GS_CODE();
if (qemu_in_coroutine()) {
bdrv_co_yield_to_drain(bs, false, parent, false);
return;
}
assert(bs->quiesce_counter > 0);
GLOBAL_STATE_CODE();
/* Re-enable things in child-to-parent order */
old_quiesce_counter = qatomic_fetch_dec(&bs->quiesce_counter);
if (old_quiesce_counter == 1) {
if (bs->drv && bs->drv->bdrv_drain_end) {
bs->drv->bdrv_drain_end(bs);
}
bdrv_parent_drained_end(bs, parent);
}
}
void bdrv_drained_end(BlockDriverState *bs)
{
IO_OR_GS_CODE();
bdrv_do_drained_end(bs, NULL);
}
void bdrv_drain(BlockDriverState *bs)
{
IO_OR_GS_CODE();
bdrv_drained_begin(bs);
bdrv_drained_end(bs);
}
static void bdrv_drain_assert_idle(BlockDriverState *bs)
{
BdrvChild *child, *next;
assert(qatomic_read(&bs->in_flight) == 0);
QLIST_FOREACH_SAFE(child, &bs->children, next, next) {
bdrv_drain_assert_idle(child->bs);
}
}
unsigned int bdrv_drain_all_count = 0;
static bool bdrv_drain_all_poll(void)
{
BlockDriverState *bs = NULL;
bool result = false;
GLOBAL_STATE_CODE();
/* bdrv_drain_poll() can't make changes to the graph and we are holding the
* main AioContext lock, so iterating bdrv_next_all_states() is safe. */
while ((bs = bdrv_next_all_states(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
result |= bdrv_drain_poll(bs, NULL, true);
aio_context_release(aio_context);
}
return result;
}
/*
* Wait for pending requests to complete across all BlockDriverStates
*
* This function does not flush data to disk, use bdrv_flush_all() for that
* after calling this function.
*
* This pauses all block jobs and disables external clients. It must
* be paired with bdrv_drain_all_end().
*
* NOTE: no new block jobs or BlockDriverStates can be created between
* the bdrv_drain_all_begin() and bdrv_drain_all_end() calls.
*/
void bdrv_drain_all_begin_nopoll(void)
{
BlockDriverState *bs = NULL;
GLOBAL_STATE_CODE();
/*
* bdrv queue is managed by record/replay,
* waiting for finishing the I/O requests may
* be infinite
*/
if (replay_events_enabled()) {
return;
}
/* AIO_WAIT_WHILE() with a NULL context can only be called from the main
* loop AioContext, so make sure we're in the main context. */
assert(qemu_get_current_aio_context() == qemu_get_aio_context());
assert(bdrv_drain_all_count < INT_MAX);
bdrv_drain_all_count++;
/* Quiesce all nodes, without polling in-flight requests yet. The graph
* cannot change during this loop. */
while ((bs = bdrv_next_all_states(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
bdrv_do_drained_begin(bs, NULL, false);
aio_context_release(aio_context);
}
}
void bdrv_drain_all_begin(void)
{
BlockDriverState *bs = NULL;
if (qemu_in_coroutine()) {
bdrv_co_yield_to_drain(NULL, true, NULL, true);
return;
}
/*
* bdrv queue is managed by record/replay,
* waiting for finishing the I/O requests may
* be infinite
*/
if (replay_events_enabled()) {
return;
}
bdrv_drain_all_begin_nopoll();
/* Now poll the in-flight requests */
AIO_WAIT_WHILE_UNLOCKED(NULL, bdrv_drain_all_poll());
while ((bs = bdrv_next_all_states(bs))) {
bdrv_drain_assert_idle(bs);
}
}
void bdrv_drain_all_end_quiesce(BlockDriverState *bs)
{
GLOBAL_STATE_CODE();
g_assert(bs->quiesce_counter > 0);
g_assert(!bs->refcnt);
while (bs->quiesce_counter) {
bdrv_do_drained_end(bs, NULL);
}
}
void bdrv_drain_all_end(void)
{
BlockDriverState *bs = NULL;
GLOBAL_STATE_CODE();
/*
* bdrv queue is managed by record/replay,
* waiting for finishing the I/O requests may
* be endless
*/
if (replay_events_enabled()) {
return;
}
while ((bs = bdrv_next_all_states(bs))) {
AioContext *aio_context = bdrv_get_aio_context(bs);
aio_context_acquire(aio_context);
bdrv_do_drained_end(bs, NULL);
aio_context_release(aio_context);
}
assert(qemu_get_current_aio_context() == qemu_get_aio_context());
assert(bdrv_drain_all_count > 0);
bdrv_drain_all_count--;
}
void bdrv_drain_all(void)
{
GLOBAL_STATE_CODE();
bdrv_drain_all_begin();
bdrv_drain_all_end();
}
/**
* Remove an active request from the tracked requests list
*
* This function should be called when a tracked request is completing.
*/
static void coroutine_fn tracked_request_end(BdrvTrackedRequest *req)
{
if (req->serialising) {
qatomic_dec(&req->bs->serialising_in_flight);
}
qemu_co_mutex_lock(&req->bs->reqs_lock);
QLIST_REMOVE(req, list);
qemu_co_queue_restart_all(&req->wait_queue);
qemu_co_mutex_unlock(&req->bs->reqs_lock);
}
/**
* Add an active request to the tracked requests list
*/
static void coroutine_fn tracked_request_begin(BdrvTrackedRequest *req,
BlockDriverState *bs,
int64_t offset,
int64_t bytes,
enum BdrvTrackedRequestType type)
{
bdrv_check_request(offset, bytes, &error_abort);
*req = (BdrvTrackedRequest){
.bs = bs,
.offset = offset,
.bytes = bytes,
.type = type,
.co = qemu_coroutine_self(),
.serialising = false,
.overlap_offset = offset,
.overlap_bytes = bytes,
};
qemu_co_queue_init(&req->wait_queue);
qemu_co_mutex_lock(&bs->reqs_lock);
QLIST_INSERT_HEAD(&bs->tracked_requests, req, list);
qemu_co_mutex_unlock(&bs->reqs_lock);
}
static bool tracked_request_overlaps(BdrvTrackedRequest *req,
int64_t offset, int64_t bytes)
{
bdrv_check_request(offset, bytes, &error_abort);
/* aaaa bbbb */
if (offset >= req->overlap_offset + req->overlap_bytes) {
return false;
}
/* bbbb aaaa */
if (req->overlap_offset >= offset + bytes) {
return false;
}
return true;
}
/* Called with self->bs->reqs_lock held */
static coroutine_fn BdrvTrackedRequest *
bdrv_find_conflicting_request(BdrvTrackedRequest *self)
{
BdrvTrackedRequest *req;
QLIST_FOREACH(req, &self->bs->tracked_requests, list) {
if (req == self || (!req->serialising && !self->serialising)) {
continue;
}
if (tracked_request_overlaps(req, self->overlap_offset,
self->overlap_bytes))
{
/*
* Hitting this means there was a reentrant request, for
* example, a block driver issuing nested requests. This must
* never happen since it means deadlock.
*/
assert(qemu_coroutine_self() != req->co);
/*
* If the request is already (indirectly) waiting for us, or
* will wait for us as soon as it wakes up, then just go on
* (instead of producing a deadlock in the former case).
*/
if (!req->waiting_for) {
return req;
}
}
}
return NULL;
}
/* Called with self->bs->reqs_lock held */
static void coroutine_fn
bdrv_wait_serialising_requests_locked(BdrvTrackedRequest *self)
{
BdrvTrackedRequest *req;
while ((req = bdrv_find_conflicting_request(self))) {
self->waiting_for = req;
qemu_co_queue_wait(&req->wait_queue, &self->bs->reqs_lock);
self->waiting_for = NULL;
}
}
/* Called with req->bs->reqs_lock held */
static void tracked_request_set_serialising(BdrvTrackedRequest *req,
uint64_t align)
{
int64_t overlap_offset = req->offset & ~(align - 1);
int64_t overlap_bytes =
ROUND_UP(req->offset + req->bytes, align) - overlap_offset;
bdrv_check_request(req->offset, req->bytes, &error_abort);
if (!req->serialising) {
qatomic_inc(&req->bs->serialising_in_flight);
req->serialising = true;
}
req->overlap_offset = MIN(req->overlap_offset, overlap_offset);
req->overlap_bytes = MAX(req->overlap_bytes, overlap_bytes);
}
/**
* Return the tracked request on @bs for the current coroutine, or
* NULL if there is none.
*/
BdrvTrackedRequest *coroutine_fn bdrv_co_get_self_request(BlockDriverState *bs)
{
BdrvTrackedRequest *req;
Coroutine *self = qemu_coroutine_self();
IO_CODE();
QLIST_FOREACH(req, &bs->tracked_requests, list) {
if (req->co == self) {
return req;
}
}
return NULL;
}
/**
* Round a region to cluster boundaries
*/
void coroutine_fn GRAPH_RDLOCK
bdrv_round_to_clusters(BlockDriverState *bs, int64_t offset, int64_t bytes,
int64_t *cluster_offset, int64_t *cluster_bytes)
{
BlockDriverInfo bdi;
IO_CODE();
if (bdrv_co_get_info(bs, &bdi) < 0 || bdi.cluster_size == 0) {
*cluster_offset = offset;
*cluster_bytes = bytes;
} else {
int64_t c = bdi.cluster_size;
*cluster_offset = QEMU_ALIGN_DOWN(offset, c);
*cluster_bytes = QEMU_ALIGN_UP(offset - *cluster_offset + bytes, c);
}
}
static int coroutine_fn GRAPH_RDLOCK bdrv_get_cluster_size(BlockDriverState *bs)
{
BlockDriverInfo bdi;
int ret;
ret = bdrv_co_get_info(bs, &bdi);
if (ret < 0 || bdi.cluster_size == 0) {
return bs->bl.request_alignment;
} else {
return bdi.cluster_size;
}
}
void bdrv_inc_in_flight(BlockDriverState *bs)
{
IO_CODE();
qatomic_inc(&bs->in_flight);
}
void bdrv_wakeup(BlockDriverState *bs)
{
IO_CODE();
aio_wait_kick();
}
void bdrv_dec_in_flight(BlockDriverState *bs)
{
IO_CODE();
qatomic_dec(&bs->in_flight);
bdrv_wakeup(bs);
}
static void coroutine_fn
bdrv_wait_serialising_requests(BdrvTrackedRequest *self)
{
BlockDriverState *bs = self->bs;
if (!qatomic_read(&bs->serialising_in_flight)) {
return;
}
qemu_co_mutex_lock(&bs->reqs_lock);
bdrv_wait_serialising_requests_locked(self);
qemu_co_mutex_unlock(&bs->reqs_lock);
}
void coroutine_fn bdrv_make_request_serialising(BdrvTrackedRequest *req,
uint64_t align)
{
IO_CODE();
qemu_co_mutex_lock(&req->bs->reqs_lock);
tracked_request_set_serialising(req, align);
bdrv_wait_serialising_requests_locked(req);
qemu_co_mutex_unlock(&req->bs->reqs_lock);
}
int bdrv_check_qiov_request(int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset,
Error **errp)
{
/*
* Check generic offset/bytes correctness
*/
if (offset < 0) {
error_setg(errp, "offset is negative: %" PRIi64, offset);
return -EIO;
}
if (bytes < 0) {
error_setg(errp, "bytes is negative: %" PRIi64, bytes);
return -EIO;
}
if (bytes > BDRV_MAX_LENGTH) {
error_setg(errp, "bytes(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
bytes, BDRV_MAX_LENGTH);
return -EIO;
}
if (offset > BDRV_MAX_LENGTH) {
error_setg(errp, "offset(%" PRIi64 ") exceeds maximum(%" PRIi64 ")",
offset, BDRV_MAX_LENGTH);
return -EIO;
}
if (offset > BDRV_MAX_LENGTH - bytes) {
error_setg(errp, "sum of offset(%" PRIi64 ") and bytes(%" PRIi64 ") "
"exceeds maximum(%" PRIi64 ")", offset, bytes,
BDRV_MAX_LENGTH);
return -EIO;
}
if (!qiov) {
return 0;
}
/*
* Check qiov and qiov_offset
*/
if (qiov_offset > qiov->size) {
error_setg(errp, "qiov_offset(%zu) overflow io vector size(%zu)",
qiov_offset, qiov->size);
return -EIO;
}
if (bytes > qiov->size - qiov_offset) {
error_setg(errp, "bytes(%" PRIi64 ") + qiov_offset(%zu) overflow io "
"vector size(%zu)", bytes, qiov_offset, qiov->size);
return -EIO;
}
return 0;
}
int bdrv_check_request(int64_t offset, int64_t bytes, Error **errp)
{
return bdrv_check_qiov_request(offset, bytes, NULL, 0, errp);
}
static int bdrv_check_request32(int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset)
{
int ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
if (ret < 0) {
return ret;
}
if (bytes > BDRV_REQUEST_MAX_BYTES) {
return -EIO;
}
return 0;
}
/*
* Completely zero out a block device with the help of bdrv_pwrite_zeroes.
* The operation is sped up by checking the block status and only writing
* zeroes to the device if they currently do not return zeroes. Optional
* flags are passed through to bdrv_pwrite_zeroes (e.g. BDRV_REQ_MAY_UNMAP,
* BDRV_REQ_FUA).
*
* Returns < 0 on error, 0 on success. For error codes see bdrv_pwrite().
*/
int bdrv_make_zero(BdrvChild *child, BdrvRequestFlags flags)
{
int ret;
int64_t target_size, bytes, offset = 0;
BlockDriverState *bs = child->bs;
IO_CODE();
target_size = bdrv_getlength(bs);
if (target_size < 0) {
return target_size;
}
for (;;) {
bytes = MIN(target_size - offset, BDRV_REQUEST_MAX_BYTES);
if (bytes <= 0) {
return 0;
}
ret = bdrv_block_status(bs, offset, bytes, &bytes, NULL, NULL);
if (ret < 0) {
return ret;
}
if (ret & BDRV_BLOCK_ZERO) {
offset += bytes;
continue;
}
ret = bdrv_pwrite_zeroes(child, offset, bytes, flags);
if (ret < 0) {
return ret;
}
offset += bytes;
}
}
/*
* Writes to the file and ensures that no writes are reordered across this
* request (acts as a barrier)
*
* Returns 0 on success, -errno in error cases.
*/
int coroutine_fn bdrv_co_pwrite_sync(BdrvChild *child, int64_t offset,
int64_t bytes, const void *buf,
BdrvRequestFlags flags)
{
int ret;
IO_CODE();
assert_bdrv_graph_readable();
ret = bdrv_co_pwrite(child, offset, bytes, buf, flags);
if (ret < 0) {
return ret;
}
ret = bdrv_co_flush(child->bs);
if (ret < 0) {
return ret;
}
return 0;
}
typedef struct CoroutineIOCompletion {
Coroutine *coroutine;
int ret;
} CoroutineIOCompletion;
static void bdrv_co_io_em_complete(void *opaque, int ret)
{
CoroutineIOCompletion *co = opaque;
co->ret = ret;
aio_co_wake(co->coroutine);
}
static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_preadv(BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset, int flags)
{
BlockDriver *drv = bs->drv;
int64_t sector_num;
unsigned int nb_sectors;
QEMUIOVector local_qiov;
int ret;
assert_bdrv_graph_readable();
bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
assert(!(flags & ~bs->supported_read_flags));
if (!drv) {
return -ENOMEDIUM;
}
if (drv->bdrv_co_preadv_part) {
return drv->bdrv_co_preadv_part(bs, offset, bytes, qiov, qiov_offset,
flags);
}
if (qiov_offset > 0 || bytes != qiov->size) {
qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
qiov = &local_qiov;
}
if (drv->bdrv_co_preadv) {
ret = drv->bdrv_co_preadv(bs, offset, bytes, qiov, flags);
goto out;
}
if (drv->bdrv_aio_preadv) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = drv->bdrv_aio_preadv(bs, offset, bytes, qiov, flags,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
goto out;
} else {
qemu_coroutine_yield();
ret = co.ret;
goto out;
}
}
sector_num = offset >> BDRV_SECTOR_BITS;
nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
assert(bytes <= BDRV_REQUEST_MAX_BYTES);
assert(drv->bdrv_co_readv);
ret = drv->bdrv_co_readv(bs, sector_num, nb_sectors, qiov);
out:
if (qiov == &local_qiov) {
qemu_iovec_destroy(&local_qiov);
}
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev(BlockDriverState *bs, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset,
BdrvRequestFlags flags)
{
BlockDriver *drv = bs->drv;
bool emulate_fua = false;
int64_t sector_num;
unsigned int nb_sectors;
QEMUIOVector local_qiov;
int ret;
assert_bdrv_graph_readable();
bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
if (!drv) {
return -ENOMEDIUM;
}
if ((flags & BDRV_REQ_FUA) &&
(~bs->supported_write_flags & BDRV_REQ_FUA)) {
flags &= ~BDRV_REQ_FUA;
emulate_fua = true;
}
flags &= bs->supported_write_flags;
if (drv->bdrv_co_pwritev_part) {
ret = drv->bdrv_co_pwritev_part(bs, offset, bytes, qiov, qiov_offset,
flags);
goto emulate_flags;
}
if (qiov_offset > 0 || bytes != qiov->size) {
qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
qiov = &local_qiov;
}
if (drv->bdrv_co_pwritev) {
ret = drv->bdrv_co_pwritev(bs, offset, bytes, qiov, flags);
goto emulate_flags;
}
if (drv->bdrv_aio_pwritev) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = drv->bdrv_aio_pwritev(bs, offset, bytes, qiov, flags,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
goto emulate_flags;
}
sector_num = offset >> BDRV_SECTOR_BITS;
nb_sectors = bytes >> BDRV_SECTOR_BITS;
assert(QEMU_IS_ALIGNED(offset, BDRV_SECTOR_SIZE));
assert(QEMU_IS_ALIGNED(bytes, BDRV_SECTOR_SIZE));
assert(bytes <= BDRV_REQUEST_MAX_BYTES);
assert(drv->bdrv_co_writev);
ret = drv->bdrv_co_writev(bs, sector_num, nb_sectors, qiov, flags);
emulate_flags:
if (ret == 0 && emulate_fua) {
ret = bdrv_co_flush(bs);
}
if (qiov == &local_qiov) {
qemu_iovec_destroy(&local_qiov);
}
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
bdrv_driver_pwritev_compressed(BlockDriverState *bs, int64_t offset,
int64_t bytes, QEMUIOVector *qiov,
size_t qiov_offset)
{
BlockDriver *drv = bs->drv;
QEMUIOVector local_qiov;
int ret;
assert_bdrv_graph_readable();
bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
if (!drv) {
return -ENOMEDIUM;
}
if (!block_driver_can_compress(drv)) {
return -ENOTSUP;
}
if (drv->bdrv_co_pwritev_compressed_part) {
return drv->bdrv_co_pwritev_compressed_part(bs, offset, bytes,
qiov, qiov_offset);
}
if (qiov_offset == 0) {
return drv->bdrv_co_pwritev_compressed(bs, offset, bytes, qiov);
}
qemu_iovec_init_slice(&local_qiov, qiov, qiov_offset, bytes);
ret = drv->bdrv_co_pwritev_compressed(bs, offset, bytes, &local_qiov);
qemu_iovec_destroy(&local_qiov);
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_copy_on_readv(BdrvChild *child, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset, int flags)
{
BlockDriverState *bs = child->bs;
/* Perform I/O through a temporary buffer so that users who scribble over
* their read buffer while the operation is in progress do not end up
* modifying the image file. This is critical for zero-copy guest I/O
* where anything might happen inside guest memory.
*/
void *bounce_buffer = NULL;
BlockDriver *drv = bs->drv;
int64_t cluster_offset;
int64_t cluster_bytes;
int64_t skip_bytes;
int ret;
int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer,
BDRV_REQUEST_MAX_BYTES);
int64_t progress = 0;
bool skip_write;
bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
if (!drv) {
return -ENOMEDIUM;
}
/*
* Do not write anything when the BDS is inactive. That is not
* allowed, and it would not help.
*/
skip_write = (bs->open_flags & BDRV_O_INACTIVE);
/* FIXME We cannot require callers to have write permissions when all they
* are doing is a read request. If we did things right, write permissions
* would be obtained anyway, but internally by the copy-on-read code. As
* long as it is implemented here rather than in a separate filter driver,
* the copy-on-read code doesn't have its own BdrvChild, however, for which
* it could request permissions. Therefore we have to bypass the permission
* system for the moment. */
// assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
/* Cover entire cluster so no additional backing file I/O is required when
* allocating cluster in the image file. Note that this value may exceed
* BDRV_REQUEST_MAX_BYTES (even when the original read did not), which
* is one reason we loop rather than doing it all at once.
*/
bdrv_round_to_clusters(bs, offset, bytes, &cluster_offset, &cluster_bytes);
skip_bytes = offset - cluster_offset;
trace_bdrv_co_do_copy_on_readv(bs, offset, bytes,
cluster_offset, cluster_bytes);
while (cluster_bytes) {
int64_t pnum;
if (skip_write) {
ret = 1; /* "already allocated", so nothing will be copied */
pnum = MIN(cluster_bytes, max_transfer);
} else {
ret = bdrv_is_allocated(bs, cluster_offset,
MIN(cluster_bytes, max_transfer), &pnum);
if (ret < 0) {
/*
* Safe to treat errors in querying allocation as if
* unallocated; we'll probably fail again soon on the
* read, but at least that will set a decent errno.
*/
pnum = MIN(cluster_bytes, max_transfer);
}
/* Stop at EOF if the image ends in the middle of the cluster */
if (ret == 0 && pnum == 0) {
assert(progress >= bytes);
break;
}
assert(skip_bytes < pnum);
}
if (ret <= 0) {
QEMUIOVector local_qiov;
/* Must copy-on-read; use the bounce buffer */
pnum = MIN(pnum, MAX_BOUNCE_BUFFER);
if (!bounce_buffer) {
int64_t max_we_need = MAX(pnum, cluster_bytes - pnum);
int64_t max_allowed = MIN(max_transfer, MAX_BOUNCE_BUFFER);
int64_t bounce_buffer_len = MIN(max_we_need, max_allowed);
bounce_buffer = qemu_try_blockalign(bs, bounce_buffer_len);
if (!bounce_buffer) {
ret = -ENOMEM;
goto err;
}
}
qemu_iovec_init_buf(&local_qiov, bounce_buffer, pnum);
ret = bdrv_driver_preadv(bs, cluster_offset, pnum,
&local_qiov, 0, 0);
if (ret < 0) {
goto err;
}
bdrv_co_debug_event(bs, BLKDBG_COR_WRITE);
if (drv->bdrv_co_pwrite_zeroes &&
buffer_is_zero(bounce_buffer, pnum)) {
/* FIXME: Should we (perhaps conditionally) be setting
* BDRV_REQ_MAY_UNMAP, if it will allow for a sparser copy
* that still correctly reads as zero? */
ret = bdrv_co_do_pwrite_zeroes(bs, cluster_offset, pnum,
BDRV_REQ_WRITE_UNCHANGED);
} else {
/* This does not change the data on the disk, it is not
* necessary to flush even in cache=writethrough mode.
*/
ret = bdrv_driver_pwritev(bs, cluster_offset, pnum,
&local_qiov, 0,
BDRV_REQ_WRITE_UNCHANGED);
}
if (ret < 0) {
/* It might be okay to ignore write errors for guest
* requests. If this is a deliberate copy-on-read
* then we don't want to ignore the error. Simply
* report it in all cases.
*/
goto err;
}
if (!(flags & BDRV_REQ_PREFETCH)) {
qemu_iovec_from_buf(qiov, qiov_offset + progress,
bounce_buffer + skip_bytes,
MIN(pnum - skip_bytes, bytes - progress));
}
} else if (!(flags & BDRV_REQ_PREFETCH)) {
/* Read directly into the destination */
ret = bdrv_driver_preadv(bs, offset + progress,
MIN(pnum - skip_bytes, bytes - progress),
qiov, qiov_offset + progress, 0);
if (ret < 0) {
goto err;
}
}
cluster_offset += pnum;
cluster_bytes -= pnum;
progress += pnum - skip_bytes;
skip_bytes = 0;
}
ret = 0;
err:
qemu_vfree(bounce_buffer);
return ret;
}
/*
* Forwards an already correctly aligned request to the BlockDriver. This
* handles copy on read, zeroing after EOF, and fragmentation of large
* reads; any other features must be implemented by the caller.
*/
static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_preadv(BdrvChild *child, BdrvTrackedRequest *req,
int64_t offset, int64_t bytes, int64_t align,
QEMUIOVector *qiov, size_t qiov_offset, int flags)
{
BlockDriverState *bs = child->bs;
int64_t total_bytes, max_bytes;
int ret = 0;
int64_t bytes_remaining = bytes;
int max_transfer;
bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
assert(is_power_of_2(align));
assert((offset & (align - 1)) == 0);
assert((bytes & (align - 1)) == 0);
assert((bs->open_flags & BDRV_O_NO_IO) == 0);
max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
align);
/*
* TODO: We would need a per-BDS .supported_read_flags and
* potential fallback support, if we ever implement any read flags
* to pass through to drivers. For now, there aren't any
* passthrough flags except the BDRV_REQ_REGISTERED_BUF optimization hint.
*/
assert(!(flags & ~(BDRV_REQ_COPY_ON_READ | BDRV_REQ_PREFETCH |
BDRV_REQ_REGISTERED_BUF)));
/* Handle Copy on Read and associated serialisation */
if (flags & BDRV_REQ_COPY_ON_READ) {
/* If we touch the same cluster it counts as an overlap. This
* guarantees that allocating writes will be serialized and not race
* with each other for the same cluster. For example, in copy-on-read
* it ensures that the CoR read and write operations are atomic and
* guest writes cannot interleave between them. */
bdrv_make_request_serialising(req, bdrv_get_cluster_size(bs));
} else {
bdrv_wait_serialising_requests(req);
}
if (flags & BDRV_REQ_COPY_ON_READ) {
int64_t pnum;
/* The flag BDRV_REQ_COPY_ON_READ has reached its addressee */
flags &= ~BDRV_REQ_COPY_ON_READ;
ret = bdrv_is_allocated(bs, offset, bytes, &pnum);
if (ret < 0) {
goto out;
}
if (!ret || pnum != bytes) {
ret = bdrv_co_do_copy_on_readv(child, offset, bytes,
qiov, qiov_offset, flags);
goto out;
} else if (flags & BDRV_REQ_PREFETCH) {
goto out;
}
}
/* Forward the request to the BlockDriver, possibly fragmenting it */
total_bytes = bdrv_getlength(bs);
if (total_bytes < 0) {
ret = total_bytes;
goto out;
}
assert(!(flags & ~(bs->supported_read_flags | BDRV_REQ_REGISTERED_BUF)));
max_bytes = ROUND_UP(MAX(0, total_bytes - offset), align);
if (bytes <= max_bytes && bytes <= max_transfer) {
ret = bdrv_driver_preadv(bs, offset, bytes, qiov, qiov_offset, flags);
goto out;
}
while (bytes_remaining) {
int64_t num;
if (max_bytes) {
num = MIN(bytes_remaining, MIN(max_bytes, max_transfer));
assert(num);
ret = bdrv_driver_preadv(bs, offset + bytes - bytes_remaining,
num, qiov,
qiov_offset + bytes - bytes_remaining,
flags);
max_bytes -= num;
} else {
num = bytes_remaining;
ret = qemu_iovec_memset(qiov, qiov_offset + bytes - bytes_remaining,
0, bytes_remaining);
}
if (ret < 0) {
goto out;
}
bytes_remaining -= num;
}
out:
return ret < 0 ? ret : 0;
}
/*
* Request padding
*
* |<---- align ----->| |<----- align ---->|
* |<- head ->|<------------- bytes ------------->|<-- tail -->|
* | | | | | |
* -*----------$-------*-------- ... --------*-----$------------*---
* | | | | | |
* | offset | | end |
* ALIGN_DOWN(offset) ALIGN_UP(offset) ALIGN_DOWN(end) ALIGN_UP(end)
* [buf ... ) [tail_buf )
*
* @buf is an aligned allocation needed to store @head and @tail paddings. @head
* is placed at the beginning of @buf and @tail at the @end.
*
* @tail_buf is a pointer to sub-buffer, corresponding to align-sized chunk
* around tail, if tail exists.
*
* @merge_reads is true for small requests,
* if @buf_len == @head + bytes + @tail. In this case it is possible that both
* head and tail exist but @buf_len == align and @tail_buf == @buf.
*
* @write is true for write requests, false for read requests.
*
* If padding makes the vector too long (exceeding IOV_MAX), then we need to
* merge existing vector elements into a single one. @collapse_bounce_buf acts
* as the bounce buffer in such cases. @pre_collapse_qiov has the pre-collapse
* I/O vector elements so for read requests, the data can be copied back after
* the read is done.
*/
typedef struct BdrvRequestPadding {
uint8_t *buf;
size_t buf_len;
uint8_t *tail_buf;
size_t head;
size_t tail;
bool merge_reads;
bool write;
QEMUIOVector local_qiov;
uint8_t *collapse_bounce_buf;
size_t collapse_len;
QEMUIOVector pre_collapse_qiov;
} BdrvRequestPadding;
static bool bdrv_init_padding(BlockDriverState *bs,
int64_t offset, int64_t bytes,
bool write,
BdrvRequestPadding *pad)
{
int64_t align = bs->bl.request_alignment;
int64_t sum;
bdrv_check_request(offset, bytes, &error_abort);
assert(align <= INT_MAX); /* documented in block/block_int.h */
assert(align <= SIZE_MAX / 2); /* so we can allocate the buffer */
memset(pad, 0, sizeof(*pad));
pad->head = offset & (align - 1);
pad->tail = ((offset + bytes) & (align - 1));
if (pad->tail) {
pad->tail = align - pad->tail;
}
if (!pad->head && !pad->tail) {
return false;
}
assert(bytes); /* Nothing good in aligning zero-length requests */
sum = pad->head + bytes + pad->tail;
pad->buf_len = (sum > align && pad->head && pad->tail) ? 2 * align : align;
pad->buf = qemu_blockalign(bs, pad->buf_len);
pad->merge_reads = sum == pad->buf_len;
if (pad->tail) {
pad->tail_buf = pad->buf + pad->buf_len - align;
}
pad->write = write;
return true;
}
static int coroutine_fn GRAPH_RDLOCK
bdrv_padding_rmw_read(BdrvChild *child, BdrvTrackedRequest *req,
BdrvRequestPadding *pad, bool zero_middle)
{
QEMUIOVector local_qiov;
BlockDriverState *bs = child->bs;
uint64_t align = bs->bl.request_alignment;
int ret;
assert(req->serialising && pad->buf);
if (pad->head || pad->merge_reads) {
int64_t bytes = pad->merge_reads ? pad->buf_len : align;
qemu_iovec_init_buf(&local_qiov, pad->buf, bytes);
if (pad->head) {
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_HEAD);
}
if (pad->merge_reads && pad->tail) {
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
}
ret = bdrv_aligned_preadv(child, req, req->overlap_offset, bytes,
align, &local_qiov, 0, 0);
if (ret < 0) {
return ret;
}
if (pad->head) {
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_HEAD);
}
if (pad->merge_reads && pad->tail) {
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
}
if (pad->merge_reads) {
goto zero_mem;
}
}
if (pad->tail) {
qemu_iovec_init_buf(&local_qiov, pad->tail_buf, align);
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_TAIL);
ret = bdrv_aligned_preadv(
child, req,
req->overlap_offset + req->overlap_bytes - align,
align, align, &local_qiov, 0, 0);
if (ret < 0) {
return ret;
}
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_RMW_AFTER_TAIL);
}
zero_mem:
if (zero_middle) {
memset(pad->buf + pad->head, 0, pad->buf_len - pad->head - pad->tail);
}
return 0;
}
/**
* Free *pad's associated buffers, and perform any necessary finalization steps.
*/
static void bdrv_padding_finalize(BdrvRequestPadding *pad)
{
if (pad->collapse_bounce_buf) {
if (!pad->write) {
/*
* If padding required elements in the vector to be collapsed into a
* bounce buffer, copy the bounce buffer content back
*/
qemu_iovec_from_buf(&pad->pre_collapse_qiov, 0,
pad->collapse_bounce_buf, pad->collapse_len);
}
qemu_vfree(pad->collapse_bounce_buf);
qemu_iovec_destroy(&pad->pre_collapse_qiov);
}
if (pad->buf) {
qemu_vfree(pad->buf);
qemu_iovec_destroy(&pad->local_qiov);
}
memset(pad, 0, sizeof(*pad));
}
/*
* Create pad->local_qiov by wrapping @iov in the padding head and tail, while
* ensuring that the resulting vector will not exceed IOV_MAX elements.
*
* To ensure this, when necessary, the first two or three elements of @iov are
* merged into pad->collapse_bounce_buf and replaced by a reference to that
* bounce buffer in pad->local_qiov.
*
* After performing a read request, the data from the bounce buffer must be
* copied back into pad->pre_collapse_qiov (e.g. by bdrv_padding_finalize()).
*/
static int bdrv_create_padded_qiov(BlockDriverState *bs,
BdrvRequestPadding *pad,
struct iovec *iov, int niov,
size_t iov_offset, size_t bytes)
{
int padded_niov, surplus_count, collapse_count;
/* Assert this invariant */
assert(niov <= IOV_MAX);
/*
* Cannot pad if resulting length would exceed SIZE_MAX. Returning an error
* to the guest is not ideal, but there is little else we can do. At least
* this will practically never happen on 64-bit systems.
*/
if (SIZE_MAX - pad->head < bytes ||
SIZE_MAX - pad->head - bytes < pad->tail)
{
return -EINVAL;
}
/* Length of the resulting IOV if we just concatenated everything */
padded_niov = !!pad->head + niov + !!pad->tail;
qemu_iovec_init(&pad->local_qiov, MIN(padded_niov, IOV_MAX));
if (pad->head) {
qemu_iovec_add(&pad->local_qiov, pad->buf, pad->head);
}
/*
* If padded_niov > IOV_MAX, we cannot just concatenate everything.
* Instead, merge the first two or three elements of @iov to reduce the
* number of vector elements as necessary.
*/
if (padded_niov > IOV_MAX) {
/*
* Only head and tail can have lead to the number of entries exceeding
* IOV_MAX, so we can exceed it by the head and tail at most. We need
* to reduce the number of elements by `surplus_count`, so we merge that
* many elements plus one into one element.
*/
surplus_count = padded_niov - IOV_MAX;
assert(surplus_count <= !!pad->head + !!pad->tail);
collapse_count = surplus_count + 1;
/*
* Move the elements to collapse into `pad->pre_collapse_qiov`, then
* advance `iov` (and associated variables) by those elements.
*/
qemu_iovec_init(&pad->pre_collapse_qiov, collapse_count);
qemu_iovec_concat_iov(&pad->pre_collapse_qiov, iov,
collapse_count, iov_offset, SIZE_MAX);
iov += collapse_count;
iov_offset = 0;
niov -= collapse_count;
bytes -= pad->pre_collapse_qiov.size;
/*
* Construct the bounce buffer to match the length of the to-collapse
* vector elements, and for write requests, initialize it with the data
* from those elements. Then add it to `pad->local_qiov`.
*/
pad->collapse_len = pad->pre_collapse_qiov.size;
pad->collapse_bounce_buf = qemu_blockalign(bs, pad->collapse_len);
if (pad->write) {
qemu_iovec_to_buf(&pad->pre_collapse_qiov, 0,
pad->collapse_bounce_buf, pad->collapse_len);
}
qemu_iovec_add(&pad->local_qiov,
pad->collapse_bounce_buf, pad->collapse_len);
}
qemu_iovec_concat_iov(&pad->local_qiov, iov, niov, iov_offset, bytes);
if (pad->tail) {
qemu_iovec_add(&pad->local_qiov,
pad->buf + pad->buf_len - pad->tail, pad->tail);
}
assert(pad->local_qiov.niov == MIN(padded_niov, IOV_MAX));
return 0;
}
/*
* bdrv_pad_request
*
* Exchange request parameters with padded request if needed. Don't include RMW
* read of padding, bdrv_padding_rmw_read() should be called separately if
* needed.
*
* @write is true for write requests, false for read requests.
*
* Request parameters (@qiov, &qiov_offset, &offset, &bytes) are in-out:
* - on function start they represent original request
* - on failure or when padding is not needed they are unchanged
* - on success when padding is needed they represent padded request
*/
static int bdrv_pad_request(BlockDriverState *bs,
QEMUIOVector **qiov, size_t *qiov_offset,
int64_t *offset, int64_t *bytes,
bool write,
BdrvRequestPadding *pad, bool *padded,
BdrvRequestFlags *flags)
{
int ret;
struct iovec *sliced_iov;
int sliced_niov;
size_t sliced_head, sliced_tail;
bdrv_check_qiov_request(*offset, *bytes, *qiov, *qiov_offset, &error_abort);
if (!bdrv_init_padding(bs, *offset, *bytes, write, pad)) {
if (padded) {
*padded = false;
}
return 0;
}
sliced_iov = qemu_iovec_slice(*qiov, *qiov_offset, *bytes,
&sliced_head, &sliced_tail,
&sliced_niov);
/* Guaranteed by bdrv_check_qiov_request() */
assert(*bytes <= SIZE_MAX);
ret = bdrv_create_padded_qiov(bs, pad, sliced_iov, sliced_niov,
sliced_head, *bytes);
if (ret < 0) {
bdrv_padding_finalize(pad);
return ret;
}
*bytes += pad->head + pad->tail;
*offset -= pad->head;
*qiov = &pad->local_qiov;
*qiov_offset = 0;
if (padded) {
*padded = true;
}
if (flags) {
/* Can't use optimization hint with bounce buffer */
*flags &= ~BDRV_REQ_REGISTERED_BUF;
}
return 0;
}
int coroutine_fn bdrv_co_preadv(BdrvChild *child,
int64_t offset, int64_t bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
IO_CODE();
return bdrv_co_preadv_part(child, offset, bytes, qiov, 0, flags);
}
int coroutine_fn bdrv_co_preadv_part(BdrvChild *child,
int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset,
BdrvRequestFlags flags)
{
BlockDriverState *bs = child->bs;
BdrvTrackedRequest req;
BdrvRequestPadding pad;
int ret;
IO_CODE();
trace_bdrv_co_preadv_part(bs, offset, bytes, flags);
if (!bdrv_co_is_inserted(bs)) {
return -ENOMEDIUM;
}
ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
if (ret < 0) {
return ret;
}
if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
/*
* Aligning zero request is nonsense. Even if driver has special meaning
* of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
* it to driver due to request_alignment.
*
* Still, no reason to return an error if someone do unaligned
* zero-length read occasionally.
*/
return 0;
}
bdrv_inc_in_flight(bs);
/* Don't do copy-on-read if we read data before write operation */
if (qatomic_read(&bs->copy_on_read)) {
flags |= BDRV_REQ_COPY_ON_READ;
}
ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, false,
&pad, NULL, &flags);
if (ret < 0) {
goto fail;
}
tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_READ);
ret = bdrv_aligned_preadv(child, &req, offset, bytes,
bs->bl.request_alignment,
qiov, qiov_offset, flags);
tracked_request_end(&req);
bdrv_padding_finalize(&pad);
fail:
bdrv_dec_in_flight(bs);
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_pwrite_zeroes(BlockDriverState *bs, int64_t offset, int64_t bytes,
BdrvRequestFlags flags)
{
BlockDriver *drv = bs->drv;
QEMUIOVector qiov;
void *buf = NULL;
int ret = 0;
bool need_flush = false;
int head = 0;
int tail = 0;
int64_t max_write_zeroes = MIN_NON_ZERO(bs->bl.max_pwrite_zeroes,
INT64_MAX);
int alignment = MAX(bs->bl.pwrite_zeroes_alignment,
bs->bl.request_alignment);
int max_transfer = MIN_NON_ZERO(bs->bl.max_transfer, MAX_BOUNCE_BUFFER);
assert_bdrv_graph_readable();
bdrv_check_request(offset, bytes, &error_abort);
if (!drv) {
return -ENOMEDIUM;
}
if ((flags & ~bs->supported_zero_flags) & BDRV_REQ_NO_FALLBACK) {
return -ENOTSUP;
}
/* By definition there is no user buffer so this flag doesn't make sense */
if (flags & BDRV_REQ_REGISTERED_BUF) {
return -EINVAL;
}
/* Invalidate the cached block-status data range if this write overlaps */
bdrv_bsc_invalidate_range(bs, offset, bytes);
assert(alignment % bs->bl.request_alignment == 0);
head = offset % alignment;
tail = (offset + bytes) % alignment;
max_write_zeroes = QEMU_ALIGN_DOWN(max_write_zeroes, alignment);
assert(max_write_zeroes >= bs->bl.request_alignment);
while (bytes > 0 && !ret) {
int64_t num = bytes;
/* Align request. Block drivers can expect the "bulk" of the request
* to be aligned, and that unaligned requests do not cross cluster
* boundaries.
*/
if (head) {
/* Make a small request up to the first aligned sector. For
* convenience, limit this request to max_transfer even if
* we don't need to fall back to writes. */
num = MIN(MIN(bytes, max_transfer), alignment - head);
head = (head + num) % alignment;
assert(num < max_write_zeroes);
} else if (tail && num > alignment) {
/* Shorten the request to the last aligned sector. */
num -= tail;
}
/* limit request size */
if (num > max_write_zeroes) {
num = max_write_zeroes;
}
ret = -ENOTSUP;
/* First try the efficient write zeroes operation */
if (drv->bdrv_co_pwrite_zeroes) {
ret = drv->bdrv_co_pwrite_zeroes(bs, offset, num,
flags & bs->supported_zero_flags);
if (ret != -ENOTSUP && (flags & BDRV_REQ_FUA) &&
!(bs->supported_zero_flags & BDRV_REQ_FUA)) {
need_flush = true;
}
} else {
assert(!bs->supported_zero_flags);
}
if (ret == -ENOTSUP && !(flags & BDRV_REQ_NO_FALLBACK)) {
/* Fall back to bounce buffer if write zeroes is unsupported */
BdrvRequestFlags write_flags = flags & ~BDRV_REQ_ZERO_WRITE;
if ((flags & BDRV_REQ_FUA) &&
!(bs->supported_write_flags & BDRV_REQ_FUA)) {
/* No need for bdrv_driver_pwrite() to do a fallback
* flush on each chunk; use just one at the end */
write_flags &= ~BDRV_REQ_FUA;
need_flush = true;
}
num = MIN(num, max_transfer);
if (buf == NULL) {
buf = qemu_try_blockalign0(bs, num);
if (buf == NULL) {
ret = -ENOMEM;
goto fail;
}
}
qemu_iovec_init_buf(&qiov, buf, num);
ret = bdrv_driver_pwritev(bs, offset, num, &qiov, 0, write_flags);
/* Keep bounce buffer around if it is big enough for all
* all future requests.
*/
if (num < max_transfer) {
qemu_vfree(buf);
buf = NULL;
}
}
offset += num;
bytes -= num;
}
fail:
if (ret == 0 && need_flush) {
ret = bdrv_co_flush(bs);
}
qemu_vfree(buf);
return ret;
}
static inline int coroutine_fn GRAPH_RDLOCK
bdrv_co_write_req_prepare(BdrvChild *child, int64_t offset, int64_t bytes,
BdrvTrackedRequest *req, int flags)
{
BlockDriverState *bs = child->bs;
bdrv_check_request(offset, bytes, &error_abort);
if (bdrv_is_read_only(bs)) {
return -EPERM;
}
assert(!(bs->open_flags & BDRV_O_INACTIVE));
assert((bs->open_flags & BDRV_O_NO_IO) == 0);
assert(!(flags & ~BDRV_REQ_MASK));
assert(!((flags & BDRV_REQ_NO_WAIT) && !(flags & BDRV_REQ_SERIALISING)));
if (flags & BDRV_REQ_SERIALISING) {
QEMU_LOCK_GUARD(&bs->reqs_lock);
tracked_request_set_serialising(req, bdrv_get_cluster_size(bs));
if ((flags & BDRV_REQ_NO_WAIT) && bdrv_find_conflicting_request(req)) {
return -EBUSY;
}
bdrv_wait_serialising_requests_locked(req);
} else {
bdrv_wait_serialising_requests(req);
}
assert(req->overlap_offset <= offset);
assert(offset + bytes <= req->overlap_offset + req->overlap_bytes);
assert(offset + bytes <= bs->total_sectors * BDRV_SECTOR_SIZE ||
child->perm & BLK_PERM_RESIZE);
switch (req->type) {
case BDRV_TRACKED_WRITE:
case BDRV_TRACKED_DISCARD:
if (flags & BDRV_REQ_WRITE_UNCHANGED) {
assert(child->perm & (BLK_PERM_WRITE_UNCHANGED | BLK_PERM_WRITE));
} else {
assert(child->perm & BLK_PERM_WRITE);
}
bdrv_write_threshold_check_write(bs, offset, bytes);
return 0;
case BDRV_TRACKED_TRUNCATE:
assert(child->perm & BLK_PERM_RESIZE);
return 0;
default:
abort();
}
}
static inline void coroutine_fn
bdrv_co_write_req_finish(BdrvChild *child, int64_t offset, int64_t bytes,
BdrvTrackedRequest *req, int ret)
{
int64_t end_sector = DIV_ROUND_UP(offset + bytes, BDRV_SECTOR_SIZE);
BlockDriverState *bs = child->bs;
bdrv_check_request(offset, bytes, &error_abort);
qatomic_inc(&bs->write_gen);
/*
* Discard cannot extend the image, but in error handling cases, such as
* when reverting a qcow2 cluster allocation, the discarded range can pass
* the end of image file, so we cannot assert about BDRV_TRACKED_DISCARD
* here. Instead, just skip it, since semantically a discard request
* beyond EOF cannot expand the image anyway.
*/
if (ret == 0 &&
(req->type == BDRV_TRACKED_TRUNCATE ||
end_sector > bs->total_sectors) &&
req->type != BDRV_TRACKED_DISCARD) {
bs->total_sectors = end_sector;
bdrv_parent_cb_resize(bs);
bdrv_dirty_bitmap_truncate(bs, end_sector << BDRV_SECTOR_BITS);
}
if (req->bytes) {
switch (req->type) {
case BDRV_TRACKED_WRITE:
stat64_max(&bs->wr_highest_offset, offset + bytes);
/* fall through, to set dirty bits */
case BDRV_TRACKED_DISCARD:
bdrv_set_dirty(bs, offset, bytes);
break;
default:
break;
}
}
}
/*
* Forwards an already correctly aligned write request to the BlockDriver,
* after possibly fragmenting it.
*/
static int coroutine_fn GRAPH_RDLOCK
bdrv_aligned_pwritev(BdrvChild *child, BdrvTrackedRequest *req,
int64_t offset, int64_t bytes, int64_t align,
QEMUIOVector *qiov, size_t qiov_offset,
BdrvRequestFlags flags)
{
BlockDriverState *bs = child->bs;
BlockDriver *drv = bs->drv;
int ret;
int64_t bytes_remaining = bytes;
int max_transfer;
bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, &error_abort);
if (!drv) {
return -ENOMEDIUM;
}
if (bdrv_has_readonly_bitmaps(bs)) {
return -EPERM;
}
assert(is_power_of_2(align));
assert((offset & (align - 1)) == 0);
assert((bytes & (align - 1)) == 0);
max_transfer = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_transfer, INT_MAX),
align);
ret = bdrv_co_write_req_prepare(child, offset, bytes, req, flags);
if (!ret && bs->detect_zeroes != BLOCKDEV_DETECT_ZEROES_OPTIONS_OFF &&
!(flags & BDRV_REQ_ZERO_WRITE) && drv->bdrv_co_pwrite_zeroes &&
qemu_iovec_is_zero(qiov, qiov_offset, bytes)) {
flags |= BDRV_REQ_ZERO_WRITE;
if (bs->detect_zeroes == BLOCKDEV_DETECT_ZEROES_OPTIONS_UNMAP) {
flags |= BDRV_REQ_MAY_UNMAP;
}
/* Can't use optimization hint with bufferless zero write */
flags &= ~BDRV_REQ_REGISTERED_BUF;
}
if (ret < 0) {
/* Do nothing, write notifier decided to fail this request */
} else if (flags & BDRV_REQ_ZERO_WRITE) {
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_ZERO);
ret = bdrv_co_do_pwrite_zeroes(bs, offset, bytes, flags);
} else if (flags & BDRV_REQ_WRITE_COMPRESSED) {
ret = bdrv_driver_pwritev_compressed(bs, offset, bytes,
qiov, qiov_offset);
} else if (bytes <= max_transfer) {
bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
ret = bdrv_driver_pwritev(bs, offset, bytes, qiov, qiov_offset, flags);
} else {
bdrv_co_debug_event(bs, BLKDBG_PWRITEV);
while (bytes_remaining) {
int num = MIN(bytes_remaining, max_transfer);
int local_flags = flags;
assert(num);
if (num < bytes_remaining && (flags & BDRV_REQ_FUA) &&
!(bs->supported_write_flags & BDRV_REQ_FUA)) {
/* If FUA is going to be emulated by flush, we only
* need to flush on the last iteration */
local_flags &= ~BDRV_REQ_FUA;
}
ret = bdrv_driver_pwritev(bs, offset + bytes - bytes_remaining,
num, qiov,
qiov_offset + bytes - bytes_remaining,
local_flags);
if (ret < 0) {
break;
}
bytes_remaining -= num;
}
}
bdrv_co_debug_event(bs, BLKDBG_PWRITEV_DONE);
if (ret >= 0) {
ret = 0;
}
bdrv_co_write_req_finish(child, offset, bytes, req, ret);
return ret;
}
static int coroutine_fn GRAPH_RDLOCK
bdrv_co_do_zero_pwritev(BdrvChild *child, int64_t offset, int64_t bytes,
BdrvRequestFlags flags, BdrvTrackedRequest *req)
{
BlockDriverState *bs = child->bs;
QEMUIOVector local_qiov;
uint64_t align = bs->bl.request_alignment;
int ret = 0;
bool padding;
BdrvRequestPadding pad;
/* This flag doesn't make sense for padding or zero writes */
flags &= ~BDRV_REQ_REGISTERED_BUF;
padding = bdrv_init_padding(bs, offset, bytes, true, &pad);
if (padding) {
assert(!(flags & BDRV_REQ_NO_WAIT));
bdrv_make_request_serialising(req, align);
bdrv_padding_rmw_read(child, req, &pad, true);
if (pad.head || pad.merge_reads) {
int64_t aligned_offset = offset & ~(align - 1);
int64_t write_bytes = pad.merge_reads ? pad.buf_len : align;
qemu_iovec_init_buf(&local_qiov, pad.buf, write_bytes);
ret = bdrv_aligned_pwritev(child, req, aligned_offset, write_bytes,
align, &local_qiov, 0,
flags & ~BDRV_REQ_ZERO_WRITE);
if (ret < 0 || pad.merge_reads) {
/* Error or all work is done */
goto out;
}
offset += write_bytes - pad.head;
bytes -= write_bytes - pad.head;
}
}
assert(!bytes || (offset & (align - 1)) == 0);
if (bytes >= align) {
/* Write the aligned part in the middle. */
int64_t aligned_bytes = bytes & ~(align - 1);
ret = bdrv_aligned_pwritev(child, req, offset, aligned_bytes, align,
NULL, 0, flags);
if (ret < 0) {
goto out;
}
bytes -= aligned_bytes;
offset += aligned_bytes;
}
assert(!bytes || (offset & (align - 1)) == 0);
if (bytes) {
assert(align == pad.tail + bytes);
qemu_iovec_init_buf(&local_qiov, pad.tail_buf, align);
ret = bdrv_aligned_pwritev(child, req, offset, align, align,
&local_qiov, 0,
flags & ~BDRV_REQ_ZERO_WRITE);
}
out:
bdrv_padding_finalize(&pad);
return ret;
}
/*
* Handle a write request in coroutine context
*/
int coroutine_fn bdrv_co_pwritev(BdrvChild *child,
int64_t offset, int64_t bytes, QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
IO_CODE();
return bdrv_co_pwritev_part(child, offset, bytes, qiov, 0, flags);
}
int coroutine_fn bdrv_co_pwritev_part(BdrvChild *child,
int64_t offset, int64_t bytes, QEMUIOVector *qiov, size_t qiov_offset,
BdrvRequestFlags flags)
{
BlockDriverState *bs = child->bs;
BdrvTrackedRequest req;
uint64_t align = bs->bl.request_alignment;
BdrvRequestPadding pad;
int ret;
bool padded = false;
IO_CODE();
trace_bdrv_co_pwritev_part(child->bs, offset, bytes, flags);
if (!bdrv_co_is_inserted(bs)) {
return -ENOMEDIUM;
}
if (flags & BDRV_REQ_ZERO_WRITE) {
ret = bdrv_check_qiov_request(offset, bytes, qiov, qiov_offset, NULL);
} else {
ret = bdrv_check_request32(offset, bytes, qiov, qiov_offset);
}
if (ret < 0) {
return ret;
}
/* If the request is misaligned then we can't make it efficient */
if ((flags & BDRV_REQ_NO_FALLBACK) &&
!QEMU_IS_ALIGNED(offset | bytes, align))
{
return -ENOTSUP;
}
if (bytes == 0 && !QEMU_IS_ALIGNED(offset, bs->bl.request_alignment)) {
/*
* Aligning zero request is nonsense. Even if driver has special meaning
* of zero-length (like qcow2_co_pwritev_compressed_part), we can't pass
* it to driver due to request_alignment.
*
* Still, no reason to return an error if someone do unaligned
* zero-length write occasionally.
*/
return 0;
}
if (!(flags & BDRV_REQ_ZERO_WRITE)) {
/*
* Pad request for following read-modify-write cycle.
* bdrv_co_do_zero_pwritev() does aligning by itself, so, we do
* alignment only if there is no ZERO flag.
*/
ret = bdrv_pad_request(bs, &qiov, &qiov_offset, &offset, &bytes, true,
&pad, &padded, &flags);
if (ret < 0) {
return ret;
}
}
bdrv_inc_in_flight(bs);
tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_WRITE);
if (flags & BDRV_REQ_ZERO_WRITE) {
assert(!padded);
ret = bdrv_co_do_zero_pwritev(child, offset, bytes, flags, &req);
goto out;
}
if (padded) {
/*
* Request was unaligned to request_alignment and therefore
* padded. We are going to do read-modify-write, and must
* serialize the request to prevent interactions of the
* widened region with other transactions.
*/
assert(!(flags & BDRV_REQ_NO_WAIT));
bdrv_make_request_serialising(&req, align);
bdrv_padding_rmw_read(child, &req, &pad, false);
}
ret = bdrv_aligned_pwritev(child, &req, offset, bytes, align,
qiov, qiov_offset, flags);
bdrv_padding_finalize(&pad);
out:
tracked_request_end(&req);
bdrv_dec_in_flight(bs);
return ret;
}
int coroutine_fn bdrv_co_pwrite_zeroes(BdrvChild *child, int64_t offset,
int64_t bytes, BdrvRequestFlags flags)
{
IO_CODE();
trace_bdrv_co_pwrite_zeroes(child->bs, offset, bytes, flags);
assert_bdrv_graph_readable();
if (!(child->bs->open_flags & BDRV_O_UNMAP)) {
flags &= ~BDRV_REQ_MAY_UNMAP;
}
return bdrv_co_pwritev(child, offset, bytes, NULL,
BDRV_REQ_ZERO_WRITE | flags);
}
/*
* Flush ALL BDSes regardless of if they are reachable via a BlkBackend or not.
*/
int bdrv_flush_all(void)
{
BdrvNextIterator it;
BlockDriverState *bs = NULL;
int result = 0;
GLOBAL_STATE_CODE();
/*
* bdrv queue is managed by record/replay,
* creating new flush request for stopping
* the VM may break the determinism
*/
if (replay_events_enabled()) {
return result;
}
for (bs = bdrv_first(&it); bs; bs = bdrv_next(&it)) {
AioContext *aio_context = bdrv_get_aio_context(bs);
int ret;
aio_context_acquire(aio_context);
ret = bdrv_flush(bs);
if (ret < 0 && !result) {
result = ret;
}
aio_context_release(aio_context);
}
return result;
}
/*
* Returns the allocation status of the specified sectors.
* Drivers not implementing the functionality are assumed to not support
* backing files, hence all their sectors are reported as allocated.
*
* If 'want_zero' is true, the caller is querying for mapping
* purposes, with a focus on valid BDRV_BLOCK_OFFSET_VALID, _DATA, and
* _ZERO where possible; otherwise, the result favors larger 'pnum',
* with a focus on accurate BDRV_BLOCK_ALLOCATED.
*
* If 'offset' is beyond the end of the disk image the return value is
* BDRV_BLOCK_EOF and 'pnum' is set to 0.
*
* 'bytes' is the max value 'pnum' should be set to. If bytes goes
* beyond the end of the disk image it will be clamped; if 'pnum' is set to
* the end of the image, then the returned value will include BDRV_BLOCK_EOF.
*
* 'pnum' is set to the number of bytes (including and immediately
* following the specified offset) that are easily known to be in the
* same allocated/unallocated state. Note that a second call starting
* at the original offset plus returned pnum may have the same status.
* The returned value is non-zero on success except at end-of-file.
*
* Returns negative errno on failure. Otherwise, if the
* BDRV_BLOCK_OFFSET_VALID bit is set, 'map' and 'file' (if non-NULL) are
* set to the host mapping and BDS corresponding to the guest offset.
*/
static int coroutine_fn GRAPH_RDLOCK
bdrv_co_block_status(BlockDriverState *bs, bool want_zero,
int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map, BlockDriverState **file)
{
int64_t total_size;
int64_t n; /* bytes */
int ret;
int64_t local_map = 0;
BlockDriverState *local_file = NULL;
int64_t aligned_offset, aligned_bytes;
uint32_t align;
bool has_filtered_child;
assert(pnum);
assert_bdrv_graph_readable();
*pnum = 0;
total_size = bdrv_getlength(bs);
if (total_size < 0) {
ret = total_size;
goto early_out;
}
if (offset >= total_size) {
ret = BDRV_BLOCK_EOF;
goto early_out;
}
if (!bytes) {
ret = 0;
goto early_out;
}
n = total_size - offset;
if (n < bytes) {
bytes = n;
}
/* Must be non-NULL or bdrv_getlength() would have failed */
assert(bs->drv);
has_filtered_child = bdrv_filter_child(bs);
if (!bs->drv->bdrv_co_block_status && !has_filtered_child) {
*pnum = bytes;
ret = BDRV_BLOCK_DATA | BDRV_BLOCK_ALLOCATED;
if (offset + bytes == total_size) {
ret |= BDRV_BLOCK_EOF;
}
if (bs->drv->protocol_name) {
ret |= BDRV_BLOCK_OFFSET_VALID;
local_map = offset;
local_file = bs;
}
goto early_out;
}
bdrv_inc_in_flight(bs);
/* Round out to request_alignment boundaries */
align = bs->bl.request_alignment;
aligned_offset = QEMU_ALIGN_DOWN(offset, align);
aligned_bytes = ROUND_UP(offset + bytes, align) - aligned_offset;
if (bs->drv->bdrv_co_block_status) {
/*
* Use the block-status cache only for protocol nodes: Format
* drivers are generally quick to inquire the status, but protocol
* drivers often need to get information from outside of qemu, so
* we do not have control over the actual implementation. There
* have been cases where inquiring the status took an unreasonably
* long time, and we can do nothing in qemu to fix it.
* This is especially problematic for images with large data areas,
* because finding the few holes in them and giving them special
* treatment does not gain much performance. Therefore, we try to
* cache the last-identified data region.
*
* Second, limiting ourselves to protocol nodes allows us to assume
* the block status for data regions to be DATA | OFFSET_VALID, and
* that the host offset is the same as the guest offset.
*
* Note that it is possible that external writers zero parts of
* the cached regions without the cache being invalidated, and so
* we may report zeroes as data. This is not catastrophic,
* however, because reporting zeroes as data is fine.
*/
if (QLIST_EMPTY(&bs->children) &&
bdrv_bsc_is_data(bs, aligned_offset, pnum))
{
ret = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID;
local_file = bs;
local_map = aligned_offset;
} else {
ret = bs->drv->bdrv_co_block_status(bs, want_zero, aligned_offset,
aligned_bytes, pnum, &local_map,
&local_file);
/*
* Note that checking QLIST_EMPTY(&bs->children) is also done when
* the cache is queried above. Technically, we do not need to check
* it here; the worst that can happen is that we fill the cache for
* non-protocol nodes, and then it is never used. However, filling
* the cache requires an RCU update, so double check here to avoid
* such an update if possible.
*
* Check want_zero, because we only want to update the cache when we
* have accurate information about what is zero and what is data.
*/
if (want_zero &&
ret == (BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID) &&
QLIST_EMPTY(&bs->children))
{
/*
* When a protocol driver reports BLOCK_OFFSET_VALID, the
* returned local_map value must be the same as the offset we
* have passed (aligned_offset), and local_bs must be the node
* itself.
* Assert this, because we follow this rule when reading from
* the cache (see the `local_file = bs` and
* `local_map = aligned_offset` assignments above), and the
* result the cache delivers must be the same as the driver
* would deliver.
*/
assert(local_file == bs);
assert(local_map == aligned_offset);
bdrv_bsc_fill(bs, aligned_offset, *pnum);
}
}
} else {
/* Default code for filters */
local_file = bdrv_filter_bs(bs);
assert(local_file);
*pnum = aligned_bytes;
local_map = aligned_offset;
ret = BDRV_BLOCK_RAW | BDRV_BLOCK_OFFSET_VALID;
}
if (ret < 0) {
*pnum = 0;
goto out;
}
/*
* The driver's result must be a non-zero multiple of request_alignment.
* Clamp pnum and adjust map to original request.
*/
assert(*pnum && QEMU_IS_ALIGNED(*pnum, align) &&
align > offset - aligned_offset);
if (ret & BDRV_BLOCK_RECURSE) {
assert(ret & BDRV_BLOCK_DATA);
assert(ret & BDRV_BLOCK_OFFSET_VALID);
assert(!(ret & BDRV_BLOCK_ZERO));
}
*pnum -= offset - aligned_offset;
if (*pnum > bytes) {
*pnum = bytes;
}
if (ret & BDRV_BLOCK_OFFSET_VALID) {
local_map += offset - aligned_offset;
}
if (ret & BDRV_BLOCK_RAW) {
assert(ret & BDRV_BLOCK_OFFSET_VALID && local_file);
ret = bdrv_co_block_status(local_file, want_zero, local_map,
*pnum, pnum, &local_map, &local_file);
goto out;
}
if (ret & (BDRV_BLOCK_DATA | BDRV_BLOCK_ZERO)) {
ret |= BDRV_BLOCK_ALLOCATED;
} else if (bs->drv->supports_backing) {
BlockDriverState *cow_bs = bdrv_cow_bs(bs);
if (!cow_bs) {
ret |= BDRV_BLOCK_ZERO;
} else if (want_zero) {
int64_t size2 = bdrv_getlength(cow_bs);
if (size2 >= 0 && offset >= size2) {
ret |= BDRV_BLOCK_ZERO;
}
}
}
if (want_zero && ret & BDRV_BLOCK_RECURSE &&
local_file && local_file != bs &&
(ret & BDRV_BLOCK_DATA) && !(ret & BDRV_BLOCK_ZERO) &&
(ret & BDRV_BLOCK_OFFSET_VALID)) {
int64_t file_pnum;
int ret2;
ret2 = bdrv_co_block_status(local_file, want_zero, local_map,
*pnum, &file_pnum, NULL, NULL);
if (ret2 >= 0) {
/* Ignore errors. This is just providing extra information, it
* is useful but not necessary.
*/
if (ret2 & BDRV_BLOCK_EOF &&
(!file_pnum || ret2 & BDRV_BLOCK_ZERO)) {
/*
* It is valid for the format block driver to read
* beyond the end of the underlying file's current
* size; such areas read as zero.
*/
ret |= BDRV_BLOCK_ZERO;
} else {
/* Limit request to the range reported by the protocol driver */
*pnum = file_pnum;
ret |= (ret2 & BDRV_BLOCK_ZERO);
}
}
}
out:
bdrv_dec_in_flight(bs);
if (ret >= 0 && offset + *pnum == total_size) {
ret |= BDRV_BLOCK_EOF;
}
early_out:
if (file) {
*file = local_file;
}
if (map) {
*map = local_map;
}
return ret;
}
int coroutine_fn
bdrv_co_common_block_status_above(BlockDriverState *bs,
BlockDriverState *base,
bool include_base,
bool want_zero,
int64_t offset,
int64_t bytes,
int64_t *pnum,
int64_t *map,
BlockDriverState **file,
int *depth)
{
int ret;
BlockDriverState *p;
int64_t eof = 0;
int dummy;
IO_CODE();
assert(!include_base || base); /* Can't include NULL base */
assert_bdrv_graph_readable();
if (!depth) {
depth = &dummy;
}
*depth = 0;
if (!include_base && bs == base) {
*pnum = bytes;
return 0;
}
ret = bdrv_co_block_status(bs, want_zero, offset, bytes, pnum, map, file);
++*depth;
if (ret < 0 || *pnum == 0 || ret & BDRV_BLOCK_ALLOCATED || bs == base) {
return ret;
}
if (ret & BDRV_BLOCK_EOF) {
eof = offset + *pnum;
}
assert(*pnum <= bytes);
bytes = *pnum;
for (p = bdrv_filter_or_cow_bs(bs); include_base || p != base;
p = bdrv_filter_or_cow_bs(p))
{
ret = bdrv_co_block_status(p, want_zero, offset, bytes, pnum, map,
file);
++*depth;
if (ret < 0) {
return ret;
}
if (*pnum == 0) {
/*
* The top layer deferred to this layer, and because this layer is
* short, any zeroes that we synthesize beyond EOF behave as if they
* were allocated at this layer.
*
* We don't include BDRV_BLOCK_EOF into ret, as upper layer may be
* larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
* below.
*/
assert(ret & BDRV_BLOCK_EOF);
*pnum = bytes;
if (file) {
*file = p;
}
ret = BDRV_BLOCK_ZERO | BDRV_BLOCK_ALLOCATED;
break;
}
if (ret & BDRV_BLOCK_ALLOCATED) {
/*
* We've found the node and the status, we must break.
*
* Drop BDRV_BLOCK_EOF, as it's not for upper layer, which may be
* larger. We'll add BDRV_BLOCK_EOF if needed at function end, see
* below.
*/
ret &= ~BDRV_BLOCK_EOF;
break;
}
if (p == base) {
assert(include_base);
break;
}
/*
* OK, [offset, offset + *pnum) region is unallocated on this layer,
* let's continue the diving.
*/
assert(*pnum <= bytes);
bytes = *pnum;
}
if (offset + *pnum == eof) {
ret |= BDRV_BLOCK_EOF;
}
return ret;
}
int coroutine_fn bdrv_co_block_status_above(BlockDriverState *bs,
BlockDriverState *base,
int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map,
BlockDriverState **file)
{
IO_CODE();
return bdrv_co_common_block_status_above(bs, base, false, true, offset,
bytes, pnum, map, file, NULL);
}
int bdrv_block_status_above(BlockDriverState *bs, BlockDriverState *base,
int64_t offset, int64_t bytes, int64_t *pnum,
int64_t *map, BlockDriverState **file)
{
IO_CODE();
return bdrv_common_block_status_above(bs, base, false, true, offset, bytes,
pnum, map, file, NULL);
}
int bdrv_block_status(BlockDriverState *bs, int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map, BlockDriverState **file)
{
IO_CODE();
return bdrv_block_status_above(bs, bdrv_filter_or_cow_bs(bs),
offset, bytes, pnum, map, file);
}
/*
* Check @bs (and its backing chain) to see if the range defined
* by @offset and @bytes is known to read as zeroes.
* Return 1 if that is the case, 0 otherwise and -errno on error.
* This test is meant to be fast rather than accurate so returning 0
* does not guarantee non-zero data.
*/
int coroutine_fn bdrv_co_is_zero_fast(BlockDriverState *bs, int64_t offset,
int64_t bytes)
{
int ret;
int64_t pnum = bytes;
IO_CODE();
if (!bytes) {
return 1;
}
ret = bdrv_co_common_block_status_above(bs, NULL, false, false, offset,
bytes, &pnum, NULL, NULL, NULL);
if (ret < 0) {
return ret;
}
return (pnum == bytes) && (ret & BDRV_BLOCK_ZERO);
}
int coroutine_fn bdrv_co_is_allocated(BlockDriverState *bs, int64_t offset,
int64_t bytes, int64_t *pnum)
{
int ret;
int64_t dummy;
IO_CODE();
ret = bdrv_co_common_block_status_above(bs, bs, true, false, offset,
bytes, pnum ? pnum : &dummy, NULL,
NULL, NULL);
if (ret < 0) {
return ret;
}
return !!(ret & BDRV_BLOCK_ALLOCATED);
}
int bdrv_is_allocated(BlockDriverState *bs, int64_t offset, int64_t bytes,
int64_t *pnum)
{
int ret;
int64_t dummy;
IO_CODE();
ret = bdrv_common_block_status_above(bs, bs, true, false, offset,
bytes, pnum ? pnum : &dummy, NULL,
NULL, NULL);
if (ret < 0) {
return ret;
}
return !!(ret & BDRV_BLOCK_ALLOCATED);
}
/* See bdrv_is_allocated_above for documentation */
int coroutine_fn bdrv_co_is_allocated_above(BlockDriverState *top,
BlockDriverState *base,
bool include_base, int64_t offset,
int64_t bytes, int64_t *pnum)
{
int depth;
int ret;
IO_CODE();
ret = bdrv_co_common_block_status_above(top, base, include_base, false,
offset, bytes, pnum, NULL, NULL,
&depth);
if (ret < 0) {
return ret;
}
if (ret & BDRV_BLOCK_ALLOCATED) {
return depth;
}
return 0;
}
/*
* Given an image chain: ... -> [BASE] -> [INTER1] -> [INTER2] -> [TOP]
*
* Return a positive depth if (a prefix of) the given range is allocated
* in any image between BASE and TOP (BASE is only included if include_base
* is set). Depth 1 is TOP, 2 is the first backing layer, and so forth.
* BASE can be NULL to check if the given offset is allocated in any
* image of the chain. Return 0 otherwise, or negative errno on
* failure.
*
* 'pnum' is set to the number of bytes (including and immediately
* following the specified offset) that are known to be in the same
* allocated/unallocated state. Note that a subsequent call starting
* at 'offset + *pnum' may return the same allocation status (in other
* words, the result is not necessarily the maximum possible range);
* but 'pnum' will only be 0 when end of file is reached.
*/
int bdrv_is_allocated_above(BlockDriverState *top,
BlockDriverState *base,
bool include_base, int64_t offset,
int64_t bytes, int64_t *pnum)
{
int depth;
int ret;
IO_CODE();
ret = bdrv_common_block_status_above(top, base, include_base, false,
offset, bytes, pnum, NULL, NULL,
&depth);
if (ret < 0) {
return ret;
}
if (ret & BDRV_BLOCK_ALLOCATED) {
return depth;
}
return 0;
}
int coroutine_fn
bdrv_co_readv_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
BlockDriver *drv = bs->drv;
BlockDriverState *child_bs = bdrv_primary_bs(bs);
int ret;
IO_CODE();
assert_bdrv_graph_readable();
ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
if (ret < 0) {
return ret;
}
if (!drv) {
return -ENOMEDIUM;
}
bdrv_inc_in_flight(bs);
if (drv->bdrv_co_load_vmstate) {
ret = drv->bdrv_co_load_vmstate(bs, qiov, pos);
} else if (child_bs) {
ret = bdrv_co_readv_vmstate(child_bs, qiov, pos);
} else {
ret = -ENOTSUP;
}
bdrv_dec_in_flight(bs);
return ret;
}
int coroutine_fn
bdrv_co_writev_vmstate(BlockDriverState *bs, QEMUIOVector *qiov, int64_t pos)
{
BlockDriver *drv = bs->drv;
BlockDriverState *child_bs = bdrv_primary_bs(bs);
int ret;
IO_CODE();
assert_bdrv_graph_readable();
ret = bdrv_check_qiov_request(pos, qiov->size, qiov, 0, NULL);
if (ret < 0) {
return ret;
}
if (!drv) {
return -ENOMEDIUM;
}
bdrv_inc_in_flight(bs);
if (drv->bdrv_co_save_vmstate) {
ret = drv->bdrv_co_save_vmstate(bs, qiov, pos);
} else if (child_bs) {
ret = bdrv_co_writev_vmstate(child_bs, qiov, pos);
} else {
ret = -ENOTSUP;
}
bdrv_dec_in_flight(bs);
return ret;
}
int bdrv_save_vmstate(BlockDriverState *bs, const uint8_t *buf,
int64_t pos, int size)
{
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
int ret = bdrv_writev_vmstate(bs, &qiov, pos);
IO_CODE();
return ret < 0 ? ret : size;
}
int bdrv_load_vmstate(BlockDriverState *bs, uint8_t *buf,
int64_t pos, int size)
{
QEMUIOVector qiov = QEMU_IOVEC_INIT_BUF(qiov, buf, size);
int ret = bdrv_readv_vmstate(bs, &qiov, pos);
IO_CODE();
return ret < 0 ? ret : size;
}
/**************************************************************/
/* async I/Os */
void bdrv_aio_cancel(BlockAIOCB *acb)
{
IO_CODE();
qemu_aio_ref(acb);
bdrv_aio_cancel_async(acb);
while (acb->refcnt > 1) {
if (acb->aiocb_info->get_aio_context) {
aio_poll(acb->aiocb_info->get_aio_context(acb), true);
} else if (acb->bs) {
/* qemu_aio_ref and qemu_aio_unref are not thread-safe, so
* assert that we're not using an I/O thread. Thread-safe
* code should use bdrv_aio_cancel_async exclusively.
*/
assert(bdrv_get_aio_context(acb->bs) == qemu_get_aio_context());
aio_poll(bdrv_get_aio_context(acb->bs), true);
} else {
abort();
}
}
qemu_aio_unref(acb);
}
/* Async version of aio cancel. The caller is not blocked if the acb implements
* cancel_async, otherwise we do nothing and let the request normally complete.
* In either case the completion callback must be called. */
void bdrv_aio_cancel_async(BlockAIOCB *acb)
{
IO_CODE();
if (acb->aiocb_info->cancel_async) {
acb->aiocb_info->cancel_async(acb);
}
}
/**************************************************************/
/* Coroutine block device emulation */
int coroutine_fn bdrv_co_flush(BlockDriverState *bs)
{
BdrvChild *primary_child = bdrv_primary_child(bs);
BdrvChild *child;
int current_gen;
int ret = 0;
IO_CODE();
assert_bdrv_graph_readable();
bdrv_inc_in_flight(bs);
if (!bdrv_co_is_inserted(bs) || bdrv_is_read_only(bs) ||
bdrv_is_sg(bs)) {
goto early_exit;
}
qemu_co_mutex_lock(&bs->reqs_lock);
current_gen = qatomic_read(&bs->write_gen);
/* Wait until any previous flushes are completed */
while (bs->active_flush_req) {
qemu_co_queue_wait(&bs->flush_queue, &bs->reqs_lock);
}
/* Flushes reach this point in nondecreasing current_gen order. */
bs->active_flush_req = true;
qemu_co_mutex_unlock(&bs->reqs_lock);
/* Write back all layers by calling one driver function */
if (bs->drv->bdrv_co_flush) {
ret = bs->drv->bdrv_co_flush(bs);
goto out;
}
/* Write back cached data to the OS even with cache=unsafe */
BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_OS);
if (bs->drv->bdrv_co_flush_to_os) {
ret = bs->drv->bdrv_co_flush_to_os(bs);
if (ret < 0) {
goto out;
}
}
/* But don't actually force it to the disk with cache=unsafe */
if (bs->open_flags & BDRV_O_NO_FLUSH) {
goto flush_children;
}
/* Check if we really need to flush anything */
if (bs->flushed_gen == current_gen) {
goto flush_children;
}
BLKDBG_EVENT(primary_child, BLKDBG_FLUSH_TO_DISK);
if (!bs->drv) {
/* bs->drv->bdrv_co_flush() might have ejected the BDS
* (even in case of apparent success) */
ret = -ENOMEDIUM;
goto out;
}
if (bs->drv->bdrv_co_flush_to_disk) {
ret = bs->drv->bdrv_co_flush_to_disk(bs);
} else if (bs->drv->bdrv_aio_flush) {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_flush(bs, bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
} else {
/*
* Some block drivers always operate in either writethrough or unsafe
* mode and don't support bdrv_flush therefore. Usually qemu doesn't
* know how the server works (because the behaviour is hardcoded or
* depends on server-side configuration), so we can't ensure that
* everything is safe on disk. Returning an error doesn't work because
* that would break guests even if the server operates in writethrough
* mode.
*
* Let's hope the user knows what he's doing.
*/
ret = 0;
}
if (ret < 0) {
goto out;
}
/* Now flush the underlying protocol. It will also have BDRV_O_NO_FLUSH
* in the case of cache=unsafe, so there are no useless flushes.
*/
flush_children:
ret = 0;
QLIST_FOREACH(child, &bs->children, next) {
if (child->perm & (BLK_PERM_WRITE | BLK_PERM_WRITE_UNCHANGED)) {
int this_child_ret = bdrv_co_flush(child->bs);
if (!ret) {
ret = this_child_ret;
}
}
}
out:
/* Notify any pending flushes that we have completed */
if (ret == 0) {
bs->flushed_gen = current_gen;
}
qemu_co_mutex_lock(&bs->reqs_lock);
bs->active_flush_req = false;
/* Return value is ignored - it's ok if wait queue is empty */
qemu_co_queue_next(&bs->flush_queue);
qemu_co_mutex_unlock(&bs->reqs_lock);
early_exit:
bdrv_dec_in_flight(bs);
return ret;
}
int coroutine_fn bdrv_co_pdiscard(BdrvChild *child, int64_t offset,
int64_t bytes)
{
BdrvTrackedRequest req;
int ret;
int64_t max_pdiscard;
int head, tail, align;
BlockDriverState *bs = child->bs;
IO_CODE();
assert_bdrv_graph_readable();
if (!bs || !bs->drv || !bdrv_co_is_inserted(bs)) {
return -ENOMEDIUM;
}
if (bdrv_has_readonly_bitmaps(bs)) {
return -EPERM;
}
ret = bdrv_check_request(offset, bytes, NULL);
if (ret < 0) {
return ret;
}
/* Do nothing if disabled. */
if (!(bs->open_flags & BDRV_O_UNMAP)) {
return 0;
}
if (!bs->drv->bdrv_co_pdiscard && !bs->drv->bdrv_aio_pdiscard) {
return 0;
}
/* Invalidate the cached block-status data range if this discard overlaps */
bdrv_bsc_invalidate_range(bs, offset, bytes);
/* Discard is advisory, but some devices track and coalesce
* unaligned requests, so we must pass everything down rather than
* round here. Still, most devices will just silently ignore
* unaligned requests (by returning -ENOTSUP), so we must fragment
* the request accordingly. */
align = MAX(bs->bl.pdiscard_alignment, bs->bl.request_alignment);
assert(align % bs->bl.request_alignment == 0);
head = offset % align;
tail = (offset + bytes) % align;
bdrv_inc_in_flight(bs);
tracked_request_begin(&req, bs, offset, bytes, BDRV_TRACKED_DISCARD);
ret = bdrv_co_write_req_prepare(child, offset, bytes, &req, 0);
if (ret < 0) {
goto out;
}
max_pdiscard = QEMU_ALIGN_DOWN(MIN_NON_ZERO(bs->bl.max_pdiscard, INT64_MAX),
align);
assert(max_pdiscard >= bs->bl.request_alignment);
while (bytes > 0) {
int64_t num = bytes;
if (head) {
/* Make small requests to get to alignment boundaries. */
num = MIN(bytes, align - head);
if (!QEMU_IS_ALIGNED(num, bs->bl.request_alignment)) {
num %= bs->bl.request_alignment;
}
head = (head + num) % align;
assert(num < max_pdiscard);
} else if (tail) {
if (num > align) {
/* Shorten the request to the last aligned cluster. */
num -= tail;
} else if (!QEMU_IS_ALIGNED(tail, bs->bl.request_alignment) &&
tail > bs->bl.request_alignment) {
tail %= bs->bl.request_alignment;
num -= tail;
}
}
/* limit request size */
if (num > max_pdiscard) {
num = max_pdiscard;
}
if (!bs->drv) {
ret = -ENOMEDIUM;
goto out;
}
if (bs->drv->bdrv_co_pdiscard) {
ret = bs->drv->bdrv_co_pdiscard(bs, offset, num);
} else {
BlockAIOCB *acb;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
acb = bs->drv->bdrv_aio_pdiscard(bs, offset, num,
bdrv_co_io_em_complete, &co);
if (acb == NULL) {
ret = -EIO;
goto out;
} else {
qemu_coroutine_yield();
ret = co.ret;
}
}
if (ret && ret != -ENOTSUP) {
goto out;
}
offset += num;
bytes -= num;
}
ret = 0;
out:
bdrv_co_write_req_finish(child, req.offset, req.bytes, &req, ret);
tracked_request_end(&req);
bdrv_dec_in_flight(bs);
return ret;
}
int coroutine_fn bdrv_co_ioctl(BlockDriverState *bs, int req, void *buf)
{
BlockDriver *drv = bs->drv;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
BlockAIOCB *acb;
IO_CODE();
assert_bdrv_graph_readable();
bdrv_inc_in_flight(bs);
if (!drv || (!drv->bdrv_aio_ioctl && !drv->bdrv_co_ioctl)) {
co.ret = -ENOTSUP;
goto out;
}
if (drv->bdrv_co_ioctl) {
co.ret = drv->bdrv_co_ioctl(bs, req, buf);
} else {
acb = drv->bdrv_aio_ioctl(bs, req, buf, bdrv_co_io_em_complete, &co);
if (!acb) {
co.ret = -ENOTSUP;
goto out;
}
qemu_coroutine_yield();
}
out:
bdrv_dec_in_flight(bs);
return co.ret;
}
int coroutine_fn bdrv_co_zone_report(BlockDriverState *bs, int64_t offset,
unsigned int *nr_zones,
BlockZoneDescriptor *zones)
{
BlockDriver *drv = bs->drv;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
IO_CODE();
bdrv_inc_in_flight(bs);
if (!drv || !drv->bdrv_co_zone_report || bs->bl.zoned == BLK_Z_NONE) {
co.ret = -ENOTSUP;
goto out;
}
co.ret = drv->bdrv_co_zone_report(bs, offset, nr_zones, zones);
out:
bdrv_dec_in_flight(bs);
return co.ret;
}
int coroutine_fn bdrv_co_zone_mgmt(BlockDriverState *bs, BlockZoneOp op,
int64_t offset, int64_t len)
{
BlockDriver *drv = bs->drv;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
IO_CODE();
bdrv_inc_in_flight(bs);
if (!drv || !drv->bdrv_co_zone_mgmt || bs->bl.zoned == BLK_Z_NONE) {
co.ret = -ENOTSUP;
goto out;
}
co.ret = drv->bdrv_co_zone_mgmt(bs, op, offset, len);
out:
bdrv_dec_in_flight(bs);
return co.ret;
}
int coroutine_fn bdrv_co_zone_append(BlockDriverState *bs, int64_t *offset,
QEMUIOVector *qiov,
BdrvRequestFlags flags)
{
int ret;
BlockDriver *drv = bs->drv;
CoroutineIOCompletion co = {
.coroutine = qemu_coroutine_self(),
};
IO_CODE();
ret = bdrv_check_qiov_request(*offset, qiov->size, qiov, 0, NULL);
if (ret < 0) {
return ret;
}
bdrv_inc_in_flight(bs);
if (!drv || !drv->bdrv_co_zone_append || bs->bl.zoned == BLK_Z_NONE) {
co.ret = -ENOTSUP;
goto out;
}
co.ret = drv->bdrv_co_zone_append(bs, offset, qiov, flags);
out:
bdrv_dec_in_flight(bs);
return co.ret;
}
void *qemu_blockalign(BlockDriverState *bs, size_t size)
{
IO_CODE();
return qemu_memalign(bdrv_opt_mem_align(bs), size);
}
void *qemu_blockalign0(BlockDriverState *bs, size_t size)
{
IO_CODE();
return memset(qemu_blockalign(bs, size), 0, size);
}
void *qemu_try_blockalign(BlockDriverState *bs, size_t size)
{
size_t align = bdrv_opt_mem_align(bs);
IO_CODE();
/* Ensure that NULL is never returned on success */
assert(align > 0);
if (size == 0) {
size = align;
}
return qemu_try_memalign(align, size);
}
void *qemu_try_blockalign0(BlockDriverState *bs, size_t size)
{
void *mem = qemu_try_blockalign(bs, size);
IO_CODE();
if (mem) {
memset(mem, 0, size);
}
return mem;
}
/* Helper that undoes bdrv_register_buf() when it fails partway through */
static void GRAPH_RDLOCK
bdrv_register_buf_rollback(BlockDriverState *bs, void *host, size_t size,
BdrvChild *final_child)
{
BdrvChild *child;
GLOBAL_STATE_CODE();
assert_bdrv_graph_readable();
QLIST_FOREACH(child, &bs->children, next) {
if (child == final_child) {
break;
}
bdrv_unregister_buf(child->bs, host, size);
}
if (bs->drv && bs->drv->bdrv_unregister_buf) {
bs->drv->bdrv_unregister_buf(bs, host, size);
}
}
bool bdrv_register_buf(BlockDriverState *bs, void *host, size_t size,
Error **errp)
{
BdrvChild *child;
GLOBAL_STATE_CODE();
GRAPH_RDLOCK_GUARD_MAINLOOP();
if (bs->drv && bs->drv->bdrv_register_buf) {
if (!bs->drv->bdrv_register_buf(bs, host, size, errp)) {
return false;
}
}
QLIST_FOREACH(child, &bs->children, next) {
if (!bdrv_register_buf(child->bs, host, size, errp)) {
bdrv_register_buf_rollback(bs, host, size, child);
return false;
}
}
return true;
}
void bdrv_unregister_buf(BlockDriverState *bs, void *host, size_t size)
{
BdrvChild *child;
GLOBAL_STATE_CODE();
GRAPH_RDLOCK_GUARD_MAINLOOP();
if (bs->drv && bs->drv->bdrv_unregister_buf) {
bs->drv->bdrv_unregister_buf(bs, host, size);
}
QLIST_FOREACH(child, &bs->children, next) {
bdrv_unregister_buf(child->bs, host, size);
}
}
static int coroutine_fn GRAPH_RDLOCK bdrv_co_copy_range_internal(
BdrvChild *src, int64_t src_offset, BdrvChild *dst,
int64_t dst_offset, int64_t bytes,
BdrvRequestFlags read_flags, BdrvRequestFlags write_flags,
bool recurse_src)
{
BdrvTrackedRequest req;
int ret;
assert_bdrv_graph_readable();
/* TODO We can support BDRV_REQ_NO_FALLBACK here */
assert(!(read_flags & BDRV_REQ_NO_FALLBACK));
assert(!(write_flags & BDRV_REQ_NO_FALLBACK));
assert(!(read_flags & BDRV_REQ_NO_WAIT));
assert(!(write_flags & BDRV_REQ_NO_WAIT));
if (!dst || !dst->bs || !bdrv_co_is_inserted(dst->bs)) {
return -ENOMEDIUM;
}
ret = bdrv_check_request32(dst_offset, bytes, NULL, 0);
if (ret) {
return ret;
}
if (write_flags & BDRV_REQ_ZERO_WRITE) {
return bdrv_co_pwrite_zeroes(dst, dst_offset, bytes, write_flags);
}
if (!src || !src->bs || !bdrv_co_is_inserted(src->bs)) {
return -ENOMEDIUM;
}
ret = bdrv_check_request32(src_offset, bytes, NULL, 0);
if (ret) {
return ret;
}
if (!src->bs->drv->bdrv_co_copy_range_from
|| !dst->bs->drv->bdrv_co_copy_range_to
|| src->bs->encrypted || dst->bs->encrypted) {
return -ENOTSUP;
}
if (recurse_src) {
bdrv_inc_in_flight(src->bs);
tracked_request_begin(&req, src->bs, src_offset, bytes,
BDRV_TRACKED_READ);
/* BDRV_REQ_SERIALISING is only for write operation */
assert(!(read_flags & BDRV_REQ_SERIALISING));
bdrv_wait_serialising_requests(&req);
ret = src->bs->drv->bdrv_co_copy_range_from(src->bs,
src, src_offset,
dst, dst_offset,
bytes,
read_flags, write_flags);
tracked_request_end(&req);
bdrv_dec_in_flight(src->bs);
} else {
bdrv_inc_in_flight(dst->bs);
tracked_request_begin(&req, dst->bs, dst_offset, bytes,
BDRV_TRACKED_WRITE);
ret = bdrv_co_write_req_prepare(dst, dst_offset, bytes, &req,
write_flags);
if (!ret) {
ret = dst->bs->drv->bdrv_co_copy_range_to(dst->bs,
src, src_offset,
dst, dst_offset,
bytes,
read_flags, write_flags);
}
bdrv_co_write_req_finish(dst, dst_offset, bytes, &req, ret);
tracked_request_end(&req);
bdrv_dec_in_flight(dst->bs);
}
return ret;
}
/* Copy range from @src to @dst.
*
* See the comment of bdrv_co_copy_range for the parameter and return value
* semantics. */
int coroutine_fn bdrv_co_copy_range_from(BdrvChild *src, int64_t src_offset,
BdrvChild *dst, int64_t dst_offset,
int64_t bytes,
BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
IO_CODE();
assert_bdrv_graph_readable();
trace_bdrv_co_copy_range_from(src, src_offset, dst, dst_offset, bytes,
read_flags, write_flags);
return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
bytes, read_flags, write_flags, true);
}
/* Copy range from @src to @dst.
*
* See the comment of bdrv_co_copy_range for the parameter and return value
* semantics. */
int coroutine_fn bdrv_co_copy_range_to(BdrvChild *src, int64_t src_offset,
BdrvChild *dst, int64_t dst_offset,
int64_t bytes,
BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
IO_CODE();
assert_bdrv_graph_readable();
trace_bdrv_co_copy_range_to(src, src_offset, dst, dst_offset, bytes,
read_flags, write_flags);
return bdrv_co_copy_range_internal(src, src_offset, dst, dst_offset,
bytes, read_flags, write_flags, false);
}
int coroutine_fn bdrv_co_copy_range(BdrvChild *src, int64_t src_offset,
BdrvChild *dst, int64_t dst_offset,
int64_t bytes, BdrvRequestFlags read_flags,
BdrvRequestFlags write_flags)
{
IO_CODE();
assert_bdrv_graph_readable();
return bdrv_co_copy_range_from(src, src_offset,
dst, dst_offset,
bytes, read_flags, write_flags);
}
static void bdrv_parent_cb_resize(BlockDriverState *bs)
{
BdrvChild *c;
QLIST_FOREACH(c, &bs->parents, next_parent) {
if (c->klass->resize) {
c->klass->resize(c);
}
}
}
/**
* Truncate file to 'offset' bytes (needed only for file protocols)
*
* If 'exact' is true, the file must be resized to exactly the given
* 'offset'. Otherwise, it is sufficient for the node to be at least
* 'offset' bytes in length.
*/
int coroutine_fn bdrv_co_truncate(BdrvChild *child, int64_t offset, bool exact,
PreallocMode prealloc, BdrvRequestFlags flags,
Error **errp)
{
BlockDriverState *bs = child->bs;
BdrvChild *filtered, *backing;
BlockDriver *drv = bs->drv;
BdrvTrackedRequest req;
int64_t old_size, new_bytes;
int ret;
IO_CODE();
assert_bdrv_graph_readable();
/* if bs->drv == NULL, bs is closed, so there's nothing to do here */
if (!drv) {
error_setg(errp, "No medium inserted");
return -ENOMEDIUM;
}
if (offset < 0) {
error_setg(errp, "Image size cannot be negative");
return -EINVAL;
}
ret = bdrv_check_request(offset, 0, errp);
if (ret < 0) {
return ret;
}
old_size = bdrv_getlength(bs);
if (old_size < 0) {
error_setg_errno(errp, -old_size, "Failed to get old image size");
return old_size;
}
if (bdrv_is_read_only(bs)) {
error_setg(errp, "Image is read-only");
return -EACCES;
}
if (offset > old_size) {
new_bytes = offset - old_size;
} else {
new_bytes = 0;
}
bdrv_inc_in_flight(bs);
tracked_request_begin(&req, bs, offset - new_bytes, new_bytes,
BDRV_TRACKED_TRUNCATE);
/* If we are growing the image and potentially using preallocation for the
* new area, we need to make sure that no write requests are made to it
* concurrently or they might be overwritten by preallocation. */
if (new_bytes) {
bdrv_make_request_serialising(&req, 1);
}
ret = bdrv_co_write_req_prepare(child, offset - new_bytes, new_bytes, &req,
0);
if (ret < 0) {
error_setg_errno(errp, -ret,
"Failed to prepare request for truncation");
goto out;
}
filtered = bdrv_filter_child(bs);
backing = bdrv_cow_child(bs);
/*
* If the image has a backing file that is large enough that it would
* provide data for the new area, we cannot leave it unallocated because
* then the backing file content would become visible. Instead, zero-fill
* the new area.
*
* Note that if the image has a backing file, but was opened without the
* backing file, taking care of keeping things consistent with that backing
* file is the user's responsibility.
*/
if (new_bytes && backing) {
int64_t backing_len;
backing_len = bdrv_co_getlength(backing->bs);
if (backing_len < 0) {
ret = backing_len;
error_setg_errno(errp, -ret, "Could not get backing file size");
goto out;
}
if (backing_len > old_size) {
flags |= BDRV_REQ_ZERO_WRITE;
}
}
if (drv->bdrv_co_truncate) {
if (flags & ~bs->supported_truncate_flags) {
error_setg(errp, "Block driver does not support requested flags");
ret = -ENOTSUP;
goto out;
}
ret = drv->bdrv_co_truncate(bs, offset, exact, prealloc, flags, errp);
} else if (filtered) {
ret = bdrv_co_truncate(filtered, offset, exact, prealloc, flags, errp);
} else {
error_setg(errp, "Image format driver does not support resize");
ret = -ENOTSUP;
goto out;
}
if (ret < 0) {
goto out;
}
ret = bdrv_co_refresh_total_sectors(bs, offset >> BDRV_SECTOR_BITS);
if (ret < 0) {
error_setg_errno(errp, -ret, "Could not refresh total sector count");
} else {
offset = bs->total_sectors * BDRV_SECTOR_SIZE;
}
/*
* It's possible that truncation succeeded but bdrv_refresh_total_sectors
* failed, but the latter doesn't affect how we should finish the request.
* Pass 0 as the last parameter so that dirty bitmaps etc. are handled.
*/
bdrv_co_write_req_finish(child, offset - new_bytes, new_bytes, &req, 0);
out:
tracked_request_end(&req);
bdrv_dec_in_flight(bs);
return ret;
}
void bdrv_cancel_in_flight(BlockDriverState *bs)
{
GLOBAL_STATE_CODE();
if (!bs || !bs->drv) {
return;
}
if (bs->drv->bdrv_cancel_in_flight) {
bs->drv->bdrv_cancel_in_flight(bs);
}
}
int coroutine_fn
bdrv_co_preadv_snapshot(BdrvChild *child, int64_t offset, int64_t bytes,
QEMUIOVector *qiov, size_t qiov_offset)
{
BlockDriverState *bs = child->bs;
BlockDriver *drv = bs->drv;
int ret;
IO_CODE();
assert_bdrv_graph_readable();
if (!drv) {
return -ENOMEDIUM;
}
if (!drv->bdrv_co_preadv_snapshot) {
return -ENOTSUP;
}
bdrv_inc_in_flight(bs);
ret = drv->bdrv_co_preadv_snapshot(bs, offset, bytes, qiov, qiov_offset);
bdrv_dec_in_flight(bs);
return ret;
}
int coroutine_fn
bdrv_co_snapshot_block_status(BlockDriverState *bs,
bool want_zero, int64_t offset, int64_t bytes,
int64_t *pnum, int64_t *map,
BlockDriverState **file)
{
BlockDriver *drv = bs->drv;
int ret;
IO_CODE();
assert_bdrv_graph_readable();
if (!drv) {
return -ENOMEDIUM;
}
if (!drv->bdrv_co_snapshot_block_status) {
return -ENOTSUP;
}
bdrv_inc_in_flight(bs);
ret = drv->bdrv_co_snapshot_block_status(bs, want_zero, offset, bytes,
pnum, map, file);
bdrv_dec_in_flight(bs);
return ret;
}
int coroutine_fn
bdrv_co_pdiscard_snapshot(BlockDriverState *bs, int64_t offset, int64_t bytes)
{
BlockDriver *drv = bs->drv;
int ret;
IO_CODE();
assert_bdrv_graph_readable();
if (!drv) {
return -ENOMEDIUM;
}
if (!drv->bdrv_co_pdiscard_snapshot) {
return -ENOTSUP;
}
bdrv_inc_in_flight(bs);
ret = drv->bdrv_co_pdiscard_snapshot(bs, offset, bytes);
bdrv_dec_in_flight(bs);
return ret;
}