aef4acb661
A BlockDriverState should not issue requests on itself through the public block layer interface. Nested, or reentrant, requests are problematic because they do I/O throttling and request tracking twice. Features like block layer copy-on-read use request tracking to avoid race conditions between concurrent requests. The reentrant request will have to "wait" for its parent request to complete. But the parent is waiting for the reentrant request to make progress so we have reached deadlock. The solution is for block drivers to avoid the public block layer interfaces for reentrant requests. Instead they should call their own internal functions if they wish to perform reentrant requests. This is also a good opportunity to make copy_sectors() a true coroutine_fn. That means calling bdrv_co_writev() instead of bdrv_write(). Behavior is unchanged but we're being explicit that this executes in coroutine context. Signed-off-by: Stefan Hajnoczi <stefanha@linux.vnet.ibm.com> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
956 lines
27 KiB
C
956 lines
27 KiB
C
/*
|
|
* Block driver for the QCOW version 2 format
|
|
*
|
|
* Copyright (c) 2004-2006 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include <zlib.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "block_int.h"
|
|
#include "block/qcow2.h"
|
|
|
|
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size, bool exact_size)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int new_l1_size, new_l1_size2, ret, i;
|
|
uint64_t *new_l1_table;
|
|
int64_t new_l1_table_offset;
|
|
uint8_t data[12];
|
|
|
|
if (min_size <= s->l1_size)
|
|
return 0;
|
|
|
|
if (exact_size) {
|
|
new_l1_size = min_size;
|
|
} else {
|
|
/* Bump size up to reduce the number of times we have to grow */
|
|
new_l1_size = s->l1_size;
|
|
if (new_l1_size == 0) {
|
|
new_l1_size = 1;
|
|
}
|
|
while (min_size > new_l1_size) {
|
|
new_l1_size = (new_l1_size * 3 + 1) / 2;
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG_ALLOC2
|
|
fprintf(stderr, "grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
|
|
#endif
|
|
|
|
new_l1_size2 = sizeof(uint64_t) * new_l1_size;
|
|
new_l1_table = g_malloc0(align_offset(new_l1_size2, 512));
|
|
memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
|
|
|
|
/* write new table (align to cluster) */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ALLOC_TABLE);
|
|
new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
|
|
if (new_l1_table_offset < 0) {
|
|
g_free(new_l1_table);
|
|
return new_l1_table_offset;
|
|
}
|
|
|
|
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_WRITE_TABLE);
|
|
for(i = 0; i < s->l1_size; i++)
|
|
new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
|
|
ret = bdrv_pwrite_sync(bs->file, new_l1_table_offset, new_l1_table, new_l1_size2);
|
|
if (ret < 0)
|
|
goto fail;
|
|
for(i = 0; i < s->l1_size; i++)
|
|
new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
|
|
|
|
/* set new table */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_GROW_ACTIVATE_TABLE);
|
|
cpu_to_be32w((uint32_t*)data, new_l1_size);
|
|
cpu_to_be64wu((uint64_t*)(data + 4), new_l1_table_offset);
|
|
ret = bdrv_pwrite_sync(bs->file, offsetof(QCowHeader, l1_size), data,sizeof(data));
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
g_free(s->l1_table);
|
|
qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
|
|
s->l1_table_offset = new_l1_table_offset;
|
|
s->l1_table = new_l1_table;
|
|
s->l1_size = new_l1_size;
|
|
return 0;
|
|
fail:
|
|
g_free(new_l1_table);
|
|
qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* l2_load
|
|
*
|
|
* Loads a L2 table into memory. If the table is in the cache, the cache
|
|
* is used; otherwise the L2 table is loaded from the image file.
|
|
*
|
|
* Returns a pointer to the L2 table on success, or NULL if the read from
|
|
* the image file failed.
|
|
*/
|
|
|
|
static int l2_load(BlockDriverState *bs, uint64_t l2_offset,
|
|
uint64_t **l2_table)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int ret;
|
|
|
|
ret = qcow2_cache_get(bs, s->l2_table_cache, l2_offset, (void**) l2_table);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Writes one sector of the L1 table to the disk (can't update single entries
|
|
* and we really don't want bdrv_pread to perform a read-modify-write)
|
|
*/
|
|
#define L1_ENTRIES_PER_SECTOR (512 / 8)
|
|
static int write_l1_entry(BlockDriverState *bs, int l1_index)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
uint64_t buf[L1_ENTRIES_PER_SECTOR];
|
|
int l1_start_index;
|
|
int i, ret;
|
|
|
|
l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
|
|
for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
|
|
buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
|
|
}
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L1_UPDATE);
|
|
ret = bdrv_pwrite_sync(bs->file, s->l1_table_offset + 8 * l1_start_index,
|
|
buf, sizeof(buf));
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* l2_allocate
|
|
*
|
|
* Allocate a new l2 entry in the file. If l1_index points to an already
|
|
* used entry in the L2 table (i.e. we are doing a copy on write for the L2
|
|
* table) copy the contents of the old L2 table into the newly allocated one.
|
|
* Otherwise the new table is initialized with zeros.
|
|
*
|
|
*/
|
|
|
|
static int l2_allocate(BlockDriverState *bs, int l1_index, uint64_t **table)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
uint64_t old_l2_offset;
|
|
uint64_t *l2_table;
|
|
int64_t l2_offset;
|
|
int ret;
|
|
|
|
old_l2_offset = s->l1_table[l1_index];
|
|
|
|
/* allocate a new l2 entry */
|
|
|
|
l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
|
|
if (l2_offset < 0) {
|
|
return l2_offset;
|
|
}
|
|
|
|
ret = qcow2_cache_flush(bs, s->refcount_block_cache);
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
/* allocate a new entry in the l2 cache */
|
|
|
|
ret = qcow2_cache_get_empty(bs, s->l2_table_cache, l2_offset, (void**) table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
l2_table = *table;
|
|
|
|
if (old_l2_offset == 0) {
|
|
/* if there was no old l2 table, clear the new table */
|
|
memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
|
|
} else {
|
|
uint64_t* old_table;
|
|
|
|
/* if there was an old l2 table, read it from the disk */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_COW_READ);
|
|
ret = qcow2_cache_get(bs, s->l2_table_cache, old_l2_offset,
|
|
(void**) &old_table);
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
memcpy(l2_table, old_table, s->cluster_size);
|
|
|
|
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &old_table);
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
/* write the l2 table to the file */
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_ALLOC_WRITE);
|
|
|
|
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
|
|
ret = qcow2_cache_flush(bs, s->l2_table_cache);
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
/* update the L1 entry */
|
|
s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
|
|
ret = write_l1_entry(bs, l1_index);
|
|
if (ret < 0) {
|
|
goto fail;
|
|
}
|
|
|
|
*table = l2_table;
|
|
return 0;
|
|
|
|
fail:
|
|
qcow2_cache_put(bs, s->l2_table_cache, (void**) table);
|
|
s->l1_table[l1_index] = old_l2_offset;
|
|
return ret;
|
|
}
|
|
|
|
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
|
|
uint64_t *l2_table, uint64_t start, uint64_t mask)
|
|
{
|
|
int i;
|
|
uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
|
|
|
|
if (!offset)
|
|
return 0;
|
|
|
|
for (i = start; i < start + nb_clusters; i++)
|
|
if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
|
|
break;
|
|
|
|
return (i - start);
|
|
}
|
|
|
|
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
|
|
{
|
|
int i = 0;
|
|
|
|
while(nb_clusters-- && l2_table[i] == 0)
|
|
i++;
|
|
|
|
return i;
|
|
}
|
|
|
|
/* The crypt function is compatible with the linux cryptoloop
|
|
algorithm for < 4 GB images. NOTE: out_buf == in_buf is
|
|
supported */
|
|
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
|
|
uint8_t *out_buf, const uint8_t *in_buf,
|
|
int nb_sectors, int enc,
|
|
const AES_KEY *key)
|
|
{
|
|
union {
|
|
uint64_t ll[2];
|
|
uint8_t b[16];
|
|
} ivec;
|
|
int i;
|
|
|
|
for(i = 0; i < nb_sectors; i++) {
|
|
ivec.ll[0] = cpu_to_le64(sector_num);
|
|
ivec.ll[1] = 0;
|
|
AES_cbc_encrypt(in_buf, out_buf, 512, key,
|
|
ivec.b, enc);
|
|
sector_num++;
|
|
in_buf += 512;
|
|
out_buf += 512;
|
|
}
|
|
}
|
|
|
|
static int coroutine_fn copy_sectors(BlockDriverState *bs,
|
|
uint64_t start_sect,
|
|
uint64_t cluster_offset,
|
|
int n_start, int n_end)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
QEMUIOVector qiov;
|
|
struct iovec iov;
|
|
int n, ret;
|
|
|
|
/*
|
|
* If this is the last cluster and it is only partially used, we must only
|
|
* copy until the end of the image, or bdrv_check_request will fail for the
|
|
* bdrv_read/write calls below.
|
|
*/
|
|
if (start_sect + n_end > bs->total_sectors) {
|
|
n_end = bs->total_sectors - start_sect;
|
|
}
|
|
|
|
n = n_end - n_start;
|
|
if (n <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
iov.iov_len = n * BDRV_SECTOR_SIZE;
|
|
iov.iov_base = qemu_blockalign(bs, iov.iov_len);
|
|
|
|
qemu_iovec_init_external(&qiov, &iov, 1);
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_COW_READ);
|
|
|
|
/* Call .bdrv_co_readv() directly instead of using the public block-layer
|
|
* interface. This avoids double I/O throttling and request tracking,
|
|
* which can lead to deadlock when block layer copy-on-read is enabled.
|
|
*/
|
|
ret = bs->drv->bdrv_co_readv(bs, start_sect + n_start, n, &qiov);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
|
|
if (s->crypt_method) {
|
|
qcow2_encrypt_sectors(s, start_sect + n_start,
|
|
iov.iov_base, iov.iov_base, n, 1,
|
|
&s->aes_encrypt_key);
|
|
}
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_COW_WRITE);
|
|
ret = bdrv_co_writev(bs->file, (cluster_offset >> 9) + n_start, n, &qiov);
|
|
if (ret < 0) {
|
|
goto out;
|
|
}
|
|
|
|
ret = 0;
|
|
out:
|
|
qemu_vfree(iov.iov_base);
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* get_cluster_offset
|
|
*
|
|
* For a given offset of the disk image, find the cluster offset in
|
|
* qcow2 file. The offset is stored in *cluster_offset.
|
|
*
|
|
* on entry, *num is the number of contiguous sectors we'd like to
|
|
* access following offset.
|
|
*
|
|
* on exit, *num is the number of contiguous sectors we can read.
|
|
*
|
|
* Return 0, if the offset is found
|
|
* Return -errno, otherwise.
|
|
*
|
|
*/
|
|
|
|
int qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
|
|
int *num, uint64_t *cluster_offset)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
unsigned int l1_index, l2_index;
|
|
uint64_t l2_offset, *l2_table;
|
|
int l1_bits, c;
|
|
unsigned int index_in_cluster, nb_clusters;
|
|
uint64_t nb_available, nb_needed;
|
|
int ret;
|
|
|
|
index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
|
|
nb_needed = *num + index_in_cluster;
|
|
|
|
l1_bits = s->l2_bits + s->cluster_bits;
|
|
|
|
/* compute how many bytes there are between the offset and
|
|
* the end of the l1 entry
|
|
*/
|
|
|
|
nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
|
|
|
|
/* compute the number of available sectors */
|
|
|
|
nb_available = (nb_available >> 9) + index_in_cluster;
|
|
|
|
if (nb_needed > nb_available) {
|
|
nb_needed = nb_available;
|
|
}
|
|
|
|
*cluster_offset = 0;
|
|
|
|
/* seek the the l2 offset in the l1 table */
|
|
|
|
l1_index = offset >> l1_bits;
|
|
if (l1_index >= s->l1_size)
|
|
goto out;
|
|
|
|
l2_offset = s->l1_table[l1_index];
|
|
|
|
/* seek the l2 table of the given l2 offset */
|
|
|
|
if (!l2_offset)
|
|
goto out;
|
|
|
|
/* load the l2 table in memory */
|
|
|
|
l2_offset &= ~QCOW_OFLAG_COPIED;
|
|
ret = l2_load(bs, l2_offset, &l2_table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* find the cluster offset for the given disk offset */
|
|
|
|
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
|
|
*cluster_offset = be64_to_cpu(l2_table[l2_index]);
|
|
nb_clusters = size_to_clusters(s, nb_needed << 9);
|
|
|
|
if (!*cluster_offset) {
|
|
/* how many empty clusters ? */
|
|
c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
|
|
} else {
|
|
/* how many allocated clusters ? */
|
|
c = count_contiguous_clusters(nb_clusters, s->cluster_size,
|
|
&l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
|
|
}
|
|
|
|
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
|
|
nb_available = (c * s->cluster_sectors);
|
|
out:
|
|
if (nb_available > nb_needed)
|
|
nb_available = nb_needed;
|
|
|
|
*num = nb_available - index_in_cluster;
|
|
|
|
*cluster_offset &=~QCOW_OFLAG_COPIED;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* get_cluster_table
|
|
*
|
|
* for a given disk offset, load (and allocate if needed)
|
|
* the l2 table.
|
|
*
|
|
* the l2 table offset in the qcow2 file and the cluster index
|
|
* in the l2 table are given to the caller.
|
|
*
|
|
* Returns 0 on success, -errno in failure case
|
|
*/
|
|
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
|
|
uint64_t **new_l2_table,
|
|
uint64_t *new_l2_offset,
|
|
int *new_l2_index)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
unsigned int l1_index, l2_index;
|
|
uint64_t l2_offset;
|
|
uint64_t *l2_table = NULL;
|
|
int ret;
|
|
|
|
/* seek the the l2 offset in the l1 table */
|
|
|
|
l1_index = offset >> (s->l2_bits + s->cluster_bits);
|
|
if (l1_index >= s->l1_size) {
|
|
ret = qcow2_grow_l1_table(bs, l1_index + 1, false);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
}
|
|
l2_offset = s->l1_table[l1_index];
|
|
|
|
/* seek the l2 table of the given l2 offset */
|
|
|
|
if (l2_offset & QCOW_OFLAG_COPIED) {
|
|
/* load the l2 table in memory */
|
|
l2_offset &= ~QCOW_OFLAG_COPIED;
|
|
ret = l2_load(bs, l2_offset, &l2_table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
} else {
|
|
/* First allocate a new L2 table (and do COW if needed) */
|
|
ret = l2_allocate(bs, l1_index, &l2_table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Then decrease the refcount of the old table */
|
|
if (l2_offset) {
|
|
qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
|
|
}
|
|
l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
|
|
}
|
|
|
|
/* find the cluster offset for the given disk offset */
|
|
|
|
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
|
|
|
|
*new_l2_table = l2_table;
|
|
*new_l2_offset = l2_offset;
|
|
*new_l2_index = l2_index;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* alloc_compressed_cluster_offset
|
|
*
|
|
* For a given offset of the disk image, return cluster offset in
|
|
* qcow2 file.
|
|
*
|
|
* If the offset is not found, allocate a new compressed cluster.
|
|
*
|
|
* Return the cluster offset if successful,
|
|
* Return 0, otherwise.
|
|
*
|
|
*/
|
|
|
|
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
|
|
uint64_t offset,
|
|
int compressed_size)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int l2_index, ret;
|
|
uint64_t l2_offset, *l2_table;
|
|
int64_t cluster_offset;
|
|
int nb_csectors;
|
|
|
|
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
|
|
if (ret < 0) {
|
|
return 0;
|
|
}
|
|
|
|
cluster_offset = be64_to_cpu(l2_table[l2_index]);
|
|
if (cluster_offset & QCOW_OFLAG_COPIED) {
|
|
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
return 0;
|
|
}
|
|
|
|
if (cluster_offset)
|
|
qcow2_free_any_clusters(bs, cluster_offset, 1);
|
|
|
|
cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
|
|
if (cluster_offset < 0) {
|
|
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
return 0;
|
|
}
|
|
|
|
nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
|
|
(cluster_offset >> 9);
|
|
|
|
cluster_offset |= QCOW_OFLAG_COMPRESSED |
|
|
((uint64_t)nb_csectors << s->csize_shift);
|
|
|
|
/* update L2 table */
|
|
|
|
/* compressed clusters never have the copied flag */
|
|
|
|
BLKDBG_EVENT(bs->file, BLKDBG_L2_UPDATE_COMPRESSED);
|
|
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
|
|
l2_table[l2_index] = cpu_to_be64(cluster_offset);
|
|
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
if (ret < 0) {
|
|
return 0;
|
|
}
|
|
|
|
return cluster_offset;
|
|
}
|
|
|
|
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int i, j = 0, l2_index, ret;
|
|
uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
|
|
uint64_t cluster_offset = m->cluster_offset;
|
|
bool cow = false;
|
|
|
|
if (m->nb_clusters == 0)
|
|
return 0;
|
|
|
|
old_cluster = g_malloc(m->nb_clusters * sizeof(uint64_t));
|
|
|
|
/* copy content of unmodified sectors */
|
|
start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
|
|
if (m->n_start) {
|
|
cow = true;
|
|
qemu_co_mutex_unlock(&s->lock);
|
|
ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
|
|
qemu_co_mutex_lock(&s->lock);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
if (m->nb_available & (s->cluster_sectors - 1)) {
|
|
uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
|
|
cow = true;
|
|
qemu_co_mutex_unlock(&s->lock);
|
|
ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
|
|
m->nb_available - end, s->cluster_sectors);
|
|
qemu_co_mutex_lock(&s->lock);
|
|
if (ret < 0)
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Update L2 table.
|
|
*
|
|
* Before we update the L2 table to actually point to the new cluster, we
|
|
* need to be sure that the refcounts have been increased and COW was
|
|
* handled.
|
|
*/
|
|
if (cow) {
|
|
qcow2_cache_depends_on_flush(s->l2_table_cache);
|
|
}
|
|
|
|
qcow2_cache_set_dependency(bs, s->l2_table_cache, s->refcount_block_cache);
|
|
ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
|
|
|
|
for (i = 0; i < m->nb_clusters; i++) {
|
|
/* if two concurrent writes happen to the same unallocated cluster
|
|
* each write allocates separate cluster and writes data concurrently.
|
|
* The first one to complete updates l2 table with pointer to its
|
|
* cluster the second one has to do RMW (which is done above by
|
|
* copy_sectors()), update l2 table with its cluster pointer and free
|
|
* old cluster. This is what this loop does */
|
|
if(l2_table[l2_index + i] != 0)
|
|
old_cluster[j++] = l2_table[l2_index + i];
|
|
|
|
l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
|
|
(i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
|
|
}
|
|
|
|
|
|
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
if (ret < 0) {
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* If this was a COW, we need to decrease the refcount of the old cluster.
|
|
* Also flush bs->file to get the right order for L2 and refcount update.
|
|
*/
|
|
if (j != 0) {
|
|
for (i = 0; i < j; i++) {
|
|
qcow2_free_any_clusters(bs,
|
|
be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
err:
|
|
g_free(old_cluster);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* alloc_cluster_offset
|
|
*
|
|
* For a given offset of the disk image, return cluster offset in qcow2 file.
|
|
* If the offset is not found, allocate a new cluster.
|
|
*
|
|
* If the cluster was already allocated, m->nb_clusters is set to 0,
|
|
* other fields in m are meaningless.
|
|
*
|
|
* If the cluster is newly allocated, m->nb_clusters is set to the number of
|
|
* contiguous clusters that have been allocated. In this case, the other
|
|
* fields of m are valid and contain information about the first allocated
|
|
* cluster.
|
|
*
|
|
* If the request conflicts with another write request in flight, the coroutine
|
|
* is queued and will be reentered when the dependency has completed.
|
|
*
|
|
* Return 0 on success and -errno in error cases
|
|
*/
|
|
int qcow2_alloc_cluster_offset(BlockDriverState *bs, uint64_t offset,
|
|
int n_start, int n_end, int *num, QCowL2Meta *m)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int l2_index, ret;
|
|
uint64_t l2_offset, *l2_table;
|
|
int64_t cluster_offset;
|
|
unsigned int nb_clusters, i = 0;
|
|
QCowL2Meta *old_alloc;
|
|
|
|
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
again:
|
|
nb_clusters = size_to_clusters(s, n_end << 9);
|
|
|
|
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
|
|
|
|
cluster_offset = be64_to_cpu(l2_table[l2_index]);
|
|
|
|
/* We keep all QCOW_OFLAG_COPIED clusters */
|
|
|
|
if (cluster_offset & QCOW_OFLAG_COPIED) {
|
|
nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
|
|
&l2_table[l2_index], 0, 0);
|
|
|
|
cluster_offset &= ~QCOW_OFLAG_COPIED;
|
|
m->nb_clusters = 0;
|
|
|
|
goto out;
|
|
}
|
|
|
|
/* for the moment, multiple compressed clusters are not managed */
|
|
|
|
if (cluster_offset & QCOW_OFLAG_COMPRESSED)
|
|
nb_clusters = 1;
|
|
|
|
/* how many available clusters ? */
|
|
|
|
while (i < nb_clusters) {
|
|
i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
|
|
&l2_table[l2_index], i, 0);
|
|
if ((i >= nb_clusters) || be64_to_cpu(l2_table[l2_index + i])) {
|
|
break;
|
|
}
|
|
|
|
i += count_contiguous_free_clusters(nb_clusters - i,
|
|
&l2_table[l2_index + i]);
|
|
if (i >= nb_clusters) {
|
|
break;
|
|
}
|
|
|
|
cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
|
|
|
|
if ((cluster_offset & QCOW_OFLAG_COPIED) ||
|
|
(cluster_offset & QCOW_OFLAG_COMPRESSED))
|
|
break;
|
|
}
|
|
assert(i <= nb_clusters);
|
|
nb_clusters = i;
|
|
|
|
/*
|
|
* Check if there already is an AIO write request in flight which allocates
|
|
* the same cluster. In this case we need to wait until the previous
|
|
* request has completed and updated the L2 table accordingly.
|
|
*/
|
|
QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
|
|
|
|
uint64_t start = offset >> s->cluster_bits;
|
|
uint64_t end = start + nb_clusters;
|
|
uint64_t old_start = old_alloc->offset >> s->cluster_bits;
|
|
uint64_t old_end = old_start + old_alloc->nb_clusters;
|
|
|
|
if (end < old_start || start > old_end) {
|
|
/* No intersection */
|
|
} else {
|
|
if (start < old_start) {
|
|
/* Stop at the start of a running allocation */
|
|
nb_clusters = old_start - start;
|
|
} else {
|
|
nb_clusters = 0;
|
|
}
|
|
|
|
if (nb_clusters == 0) {
|
|
/* Wait for the dependency to complete. We need to recheck
|
|
* the free/allocated clusters when we continue. */
|
|
qemu_co_mutex_unlock(&s->lock);
|
|
qemu_co_queue_wait(&old_alloc->dependent_requests);
|
|
qemu_co_mutex_lock(&s->lock);
|
|
goto again;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!nb_clusters) {
|
|
abort();
|
|
}
|
|
|
|
/* save info needed for meta data update */
|
|
m->offset = offset;
|
|
m->n_start = n_start;
|
|
m->nb_clusters = nb_clusters;
|
|
|
|
QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
|
|
|
|
/* allocate a new cluster */
|
|
|
|
cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
|
|
if (cluster_offset < 0) {
|
|
ret = cluster_offset;
|
|
goto fail;
|
|
}
|
|
|
|
out:
|
|
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
if (ret < 0) {
|
|
goto fail_put;
|
|
}
|
|
|
|
m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
|
|
m->cluster_offset = cluster_offset;
|
|
|
|
*num = m->nb_available - n_start;
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
fail_put:
|
|
QLIST_REMOVE(m, next_in_flight);
|
|
return ret;
|
|
}
|
|
|
|
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
|
|
const uint8_t *buf, int buf_size)
|
|
{
|
|
z_stream strm1, *strm = &strm1;
|
|
int ret, out_len;
|
|
|
|
memset(strm, 0, sizeof(*strm));
|
|
|
|
strm->next_in = (uint8_t *)buf;
|
|
strm->avail_in = buf_size;
|
|
strm->next_out = out_buf;
|
|
strm->avail_out = out_buf_size;
|
|
|
|
ret = inflateInit2(strm, -12);
|
|
if (ret != Z_OK)
|
|
return -1;
|
|
ret = inflate(strm, Z_FINISH);
|
|
out_len = strm->next_out - out_buf;
|
|
if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
|
|
out_len != out_buf_size) {
|
|
inflateEnd(strm);
|
|
return -1;
|
|
}
|
|
inflateEnd(strm);
|
|
return 0;
|
|
}
|
|
|
|
int qcow2_decompress_cluster(BlockDriverState *bs, uint64_t cluster_offset)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
int ret, csize, nb_csectors, sector_offset;
|
|
uint64_t coffset;
|
|
|
|
coffset = cluster_offset & s->cluster_offset_mask;
|
|
if (s->cluster_cache_offset != coffset) {
|
|
nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
|
|
sector_offset = coffset & 511;
|
|
csize = nb_csectors * 512 - sector_offset;
|
|
BLKDBG_EVENT(bs->file, BLKDBG_READ_COMPRESSED);
|
|
ret = bdrv_read(bs->file, coffset >> 9, s->cluster_data, nb_csectors);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
if (decompress_buffer(s->cluster_cache, s->cluster_size,
|
|
s->cluster_data + sector_offset, csize) < 0) {
|
|
return -EIO;
|
|
}
|
|
s->cluster_cache_offset = coffset;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This discards as many clusters of nb_clusters as possible at once (i.e.
|
|
* all clusters in the same L2 table) and returns the number of discarded
|
|
* clusters.
|
|
*/
|
|
static int discard_single_l2(BlockDriverState *bs, uint64_t offset,
|
|
unsigned int nb_clusters)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
uint64_t l2_offset, *l2_table;
|
|
int l2_index;
|
|
int ret;
|
|
int i;
|
|
|
|
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
/* Limit nb_clusters to one L2 table */
|
|
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
|
|
|
|
for (i = 0; i < nb_clusters; i++) {
|
|
uint64_t old_offset;
|
|
|
|
old_offset = be64_to_cpu(l2_table[l2_index + i]);
|
|
old_offset &= ~QCOW_OFLAG_COPIED;
|
|
|
|
if (old_offset == 0) {
|
|
continue;
|
|
}
|
|
|
|
/* First remove L2 entries */
|
|
qcow2_cache_entry_mark_dirty(s->l2_table_cache, l2_table);
|
|
l2_table[l2_index + i] = cpu_to_be64(0);
|
|
|
|
/* Then decrease the refcount */
|
|
qcow2_free_any_clusters(bs, old_offset, 1);
|
|
}
|
|
|
|
ret = qcow2_cache_put(bs, s->l2_table_cache, (void**) &l2_table);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
return nb_clusters;
|
|
}
|
|
|
|
int qcow2_discard_clusters(BlockDriverState *bs, uint64_t offset,
|
|
int nb_sectors)
|
|
{
|
|
BDRVQcowState *s = bs->opaque;
|
|
uint64_t end_offset;
|
|
unsigned int nb_clusters;
|
|
int ret;
|
|
|
|
end_offset = offset + (nb_sectors << BDRV_SECTOR_BITS);
|
|
|
|
/* Round start up and end down */
|
|
offset = align_offset(offset, s->cluster_size);
|
|
end_offset &= ~(s->cluster_size - 1);
|
|
|
|
if (offset > end_offset) {
|
|
return 0;
|
|
}
|
|
|
|
nb_clusters = size_to_clusters(s, end_offset - offset);
|
|
|
|
/* Each L2 table is handled by its own loop iteration */
|
|
while (nb_clusters > 0) {
|
|
ret = discard_single_l2(bs, offset, nb_clusters);
|
|
if (ret < 0) {
|
|
return ret;
|
|
}
|
|
|
|
nb_clusters -= ret;
|
|
offset += (ret * s->cluster_size);
|
|
}
|
|
|
|
return 0;
|
|
}
|