qemu-e2k/hw/ppc/pnv_psi.c
Frederic Barrat 4a1e9449e8 pnv/psi: Initialize the PSIHB interrupts to match hardware
On the powernv9 and powernv10 machines, the PSIHB interrupts are
currently initialized with a PQ state of 0b01, i.e. interrupts are
disabled. However real hardware initializes them to 0b00 for the
PSIHB. This patch updates it, in case an hypervisor is in the mood of
checking it.

Signed-off-by: Frederic Barrat <fbarrat@linux.ibm.com>
Reviewed-by: Cédric Le Goater <clg@kaod.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-ID: <20230703081215.55252-3-fbarrat@linux.ibm.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
2023-07-07 04:46:12 -03:00

990 lines
31 KiB
C

/*
* QEMU PowerPC PowerNV Processor Service Interface (PSI) model
*
* Copyright (c) 2015-2017, IBM Corporation.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "exec/address-spaces.h"
#include "hw/irq.h"
#include "target/ppc/cpu.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "sysemu/reset.h"
#include "qapi/error.h"
#include "monitor/monitor.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/pnv.h"
#include "hw/ppc/pnv_xscom.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/pnv_psi.h"
#include <libfdt.h>
#define PSIHB_XSCOM_FIR_RW 0x00
#define PSIHB_XSCOM_FIR_AND 0x01
#define PSIHB_XSCOM_FIR_OR 0x02
#define PSIHB_XSCOM_FIRMASK_RW 0x03
#define PSIHB_XSCOM_FIRMASK_AND 0x04
#define PSIHB_XSCOM_FIRMASK_OR 0x05
#define PSIHB_XSCOM_FIRACT0 0x06
#define PSIHB_XSCOM_FIRACT1 0x07
/* Host Bridge Base Address Register */
#define PSIHB_XSCOM_BAR 0x0a
#define PSIHB_BAR_EN 0x0000000000000001ull
/* FSP Base Address Register */
#define PSIHB_XSCOM_FSPBAR 0x0b
/* PSI Host Bridge Control/Status Register */
#define PSIHB_XSCOM_CR 0x0e
#define PSIHB_CR_FSP_CMD_ENABLE 0x8000000000000000ull
#define PSIHB_CR_FSP_MMIO_ENABLE 0x4000000000000000ull
#define PSIHB_CR_FSP_IRQ_ENABLE 0x1000000000000000ull
#define PSIHB_CR_FSP_ERR_RSP_ENABLE 0x0800000000000000ull
#define PSIHB_CR_PSI_LINK_ENABLE 0x0400000000000000ull
#define PSIHB_CR_FSP_RESET 0x0200000000000000ull
#define PSIHB_CR_PSIHB_RESET 0x0100000000000000ull
#define PSIHB_CR_PSI_IRQ 0x0000800000000000ull
#define PSIHB_CR_FSP_IRQ 0x0000400000000000ull
#define PSIHB_CR_FSP_LINK_ACTIVE 0x0000200000000000ull
#define PSIHB_CR_IRQ_CMD_EXPECT 0x0000010000000000ull
/* and more ... */
/* PSIHB Status / Error Mask Register */
#define PSIHB_XSCOM_SEMR 0x0f
/* XIVR, to signal interrupts to the CEC firmware. more XIVR below. */
#define PSIHB_XSCOM_XIVR_FSP 0x10
#define PSIHB_XIVR_SERVER_SH 40
#define PSIHB_XIVR_SERVER_MSK (0xffffull << PSIHB_XIVR_SERVER_SH)
#define PSIHB_XIVR_PRIO_SH 32
#define PSIHB_XIVR_PRIO_MSK (0xffull << PSIHB_XIVR_PRIO_SH)
#define PSIHB_XIVR_SRC_SH 29
#define PSIHB_XIVR_SRC_MSK (0x7ull << PSIHB_XIVR_SRC_SH)
#define PSIHB_XIVR_PENDING 0x01000000ull
/* PSI Host Bridge Set Control/ Status Register */
#define PSIHB_XSCOM_SCR 0x12
/* PSI Host Bridge Clear Control/ Status Register */
#define PSIHB_XSCOM_CCR 0x13
/* DMA Upper Address Register */
#define PSIHB_XSCOM_DMA_UPADD 0x14
/* Interrupt Status */
#define PSIHB_XSCOM_IRQ_STAT 0x15
#define PSIHB_IRQ_STAT_OCC 0x0000001000000000ull
#define PSIHB_IRQ_STAT_FSI 0x0000000800000000ull
#define PSIHB_IRQ_STAT_LPCI2C 0x0000000400000000ull
#define PSIHB_IRQ_STAT_LOCERR 0x0000000200000000ull
#define PSIHB_IRQ_STAT_EXT 0x0000000100000000ull
/* remaining XIVR */
#define PSIHB_XSCOM_XIVR_OCC 0x16
#define PSIHB_XSCOM_XIVR_FSI 0x17
#define PSIHB_XSCOM_XIVR_LPCI2C 0x18
#define PSIHB_XSCOM_XIVR_LOCERR 0x19
#define PSIHB_XSCOM_XIVR_EXT 0x1a
/* Interrupt Requester Source Compare Register */
#define PSIHB_XSCOM_IRSN 0x1b
#define PSIHB_IRSN_COMP_SH 45
#define PSIHB_IRSN_COMP_MSK (0x7ffffull << PSIHB_IRSN_COMP_SH)
#define PSIHB_IRSN_IRQ_MUX 0x0000000800000000ull
#define PSIHB_IRSN_IRQ_RESET 0x0000000400000000ull
#define PSIHB_IRSN_DOWNSTREAM_EN 0x0000000200000000ull
#define PSIHB_IRSN_UPSTREAM_EN 0x0000000100000000ull
#define PSIHB_IRSN_COMPMASK_SH 13
#define PSIHB_IRSN_COMPMASK_MSK (0x7ffffull << PSIHB_IRSN_COMPMASK_SH)
#define PSIHB_BAR_MASK 0x0003fffffff00000ull
#define PSIHB_FSPBAR_MASK 0x0003ffff00000000ull
#define PSIHB9_BAR_MASK 0x00fffffffff00000ull
#define PSIHB9_FSPBAR_MASK 0x00ffffff00000000ull
/* mmio address to xscom address */
#define PSIHB_REG(addr) (((addr) >> 3) + PSIHB_XSCOM_BAR)
/* xscom address to mmio address */
#define PSIHB_MMIO(reg) ((reg - PSIHB_XSCOM_BAR) << 3)
static void pnv_psi_set_bar(PnvPsi *psi, uint64_t bar)
{
PnvPsiClass *ppc = PNV_PSI_GET_CLASS(psi);
MemoryRegion *sysmem = get_system_memory();
uint64_t old = psi->regs[PSIHB_XSCOM_BAR];
psi->regs[PSIHB_XSCOM_BAR] = bar & (ppc->bar_mask | PSIHB_BAR_EN);
/* Update MR, always remove it first */
if (old & PSIHB_BAR_EN) {
memory_region_del_subregion(sysmem, &psi->regs_mr);
}
/* Then add it back if needed */
if (bar & PSIHB_BAR_EN) {
uint64_t addr = bar & ppc->bar_mask;
memory_region_add_subregion(sysmem, addr, &psi->regs_mr);
}
}
static void pnv_psi_update_fsp_mr(PnvPsi *psi)
{
/* TODO: Update FSP MR if/when we support FSP BAR */
}
static void pnv_psi_set_cr(PnvPsi *psi, uint64_t cr)
{
uint64_t old = psi->regs[PSIHB_XSCOM_CR];
psi->regs[PSIHB_XSCOM_CR] = cr;
/* Check some bit changes */
if ((old ^ psi->regs[PSIHB_XSCOM_CR]) & PSIHB_CR_FSP_MMIO_ENABLE) {
pnv_psi_update_fsp_mr(psi);
}
}
static void pnv_psi_set_irsn(PnvPsi *psi, uint64_t val)
{
ICSState *ics = &PNV8_PSI(psi)->ics;
/* In this model we ignore the up/down enable bits for now
* as SW doesn't use them (other than setting them at boot).
* We ignore IRQ_MUX, its meaning isn't clear and we don't use
* it and finally we ignore reset (XXX fix that ?)
*/
psi->regs[PSIHB_XSCOM_IRSN] = val & (PSIHB_IRSN_COMP_MSK |
PSIHB_IRSN_IRQ_MUX |
PSIHB_IRSN_IRQ_RESET |
PSIHB_IRSN_DOWNSTREAM_EN |
PSIHB_IRSN_UPSTREAM_EN);
/* We ignore the compare mask as well, our ICS emulation is too
* simplistic to make any use if it, and we extract the offset
* from the compare value
*/
ics->offset = (val & PSIHB_IRSN_COMP_MSK) >> PSIHB_IRSN_COMP_SH;
}
/*
* FSP and PSI interrupts are muxed under the same number.
*/
static const uint32_t xivr_regs[PSI_NUM_INTERRUPTS] = {
[PSIHB_IRQ_FSP] = PSIHB_XSCOM_XIVR_FSP,
[PSIHB_IRQ_OCC] = PSIHB_XSCOM_XIVR_OCC,
[PSIHB_IRQ_FSI] = PSIHB_XSCOM_XIVR_FSI,
[PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_XIVR_LPCI2C,
[PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_XIVR_LOCERR,
[PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_XIVR_EXT,
};
static const uint32_t stat_regs[PSI_NUM_INTERRUPTS] = {
[PSIHB_IRQ_FSP] = PSIHB_XSCOM_CR,
[PSIHB_IRQ_OCC] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_FSI] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_LPC_I2C] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_LOCAL_ERR] = PSIHB_XSCOM_IRQ_STAT,
[PSIHB_IRQ_EXTERNAL] = PSIHB_XSCOM_IRQ_STAT,
};
static const uint64_t stat_bits[PSI_NUM_INTERRUPTS] = {
[PSIHB_IRQ_FSP] = PSIHB_CR_FSP_IRQ,
[PSIHB_IRQ_OCC] = PSIHB_IRQ_STAT_OCC,
[PSIHB_IRQ_FSI] = PSIHB_IRQ_STAT_FSI,
[PSIHB_IRQ_LPC_I2C] = PSIHB_IRQ_STAT_LPCI2C,
[PSIHB_IRQ_LOCAL_ERR] = PSIHB_IRQ_STAT_LOCERR,
[PSIHB_IRQ_EXTERNAL] = PSIHB_IRQ_STAT_EXT,
};
static void pnv_psi_power8_set_irq(void *opaque, int irq, int state)
{
PnvPsi *psi = opaque;
uint32_t xivr_reg;
uint32_t stat_reg;
uint32_t src;
bool masked;
xivr_reg = xivr_regs[irq];
stat_reg = stat_regs[irq];
src = (psi->regs[xivr_reg] & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
if (state) {
psi->regs[stat_reg] |= stat_bits[irq];
/* TODO: optimization, check mask here. That means
* re-evaluating when unmasking
*/
qemu_irq_raise(psi->qirqs[src]);
} else {
psi->regs[stat_reg] &= ~stat_bits[irq];
/* FSP and PSI are muxed so don't lower if either is still set */
if (stat_reg != PSIHB_XSCOM_CR ||
!(psi->regs[stat_reg] & (PSIHB_CR_PSI_IRQ | PSIHB_CR_FSP_IRQ))) {
qemu_irq_lower(psi->qirqs[src]);
} else {
state = true;
}
}
/* Note about the emulation of the pending bit: This isn't
* entirely correct. The pending bit should be cleared when the
* EOI has been received. However, we don't have callbacks on EOI
* (especially not under KVM) so no way to emulate that properly,
* so instead we just set that bit as the logical "output" of the
* XIVR (ie pending & !masked)
*
* CLG: We could define a new ICS object with a custom eoi()
* handler to clear the pending bit. But I am not sure this would
* be useful for the software anyhow.
*/
masked = (psi->regs[xivr_reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK;
if (state && !masked) {
psi->regs[xivr_reg] |= PSIHB_XIVR_PENDING;
} else {
psi->regs[xivr_reg] &= ~PSIHB_XIVR_PENDING;
}
}
static void pnv_psi_set_xivr(PnvPsi *psi, uint32_t reg, uint64_t val)
{
ICSState *ics = &PNV8_PSI(psi)->ics;
uint16_t server;
uint8_t prio;
uint8_t src;
psi->regs[reg] = (psi->regs[reg] & PSIHB_XIVR_PENDING) |
(val & (PSIHB_XIVR_SERVER_MSK |
PSIHB_XIVR_PRIO_MSK |
PSIHB_XIVR_SRC_MSK));
val = psi->regs[reg];
server = (val & PSIHB_XIVR_SERVER_MSK) >> PSIHB_XIVR_SERVER_SH;
prio = (val & PSIHB_XIVR_PRIO_MSK) >> PSIHB_XIVR_PRIO_SH;
src = (val & PSIHB_XIVR_SRC_MSK) >> PSIHB_XIVR_SRC_SH;
if (src >= PSI_NUM_INTERRUPTS) {
qemu_log_mask(LOG_GUEST_ERROR, "PSI: Unsupported irq %d\n", src);
return;
}
/* Remove pending bit if the IRQ is masked */
if ((psi->regs[reg] & PSIHB_XIVR_PRIO_MSK) == PSIHB_XIVR_PRIO_MSK) {
psi->regs[reg] &= ~PSIHB_XIVR_PENDING;
}
/* The low order 2 bits are the link pointer (Type II interrupts).
* Shift back to get a valid IRQ server.
*/
server >>= 2;
/* Now because of source remapping, weird things can happen
* if you change the source number dynamically, our simple ICS
* doesn't deal with remapping. So we just poke a different
* ICS entry based on what source number was written. This will
* do for now but a more accurate implementation would instead
* use a fixed server/prio and a remapper of the generated irq.
*/
ics_write_xive(ics, src, server, prio, prio);
}
static uint64_t pnv_psi_reg_read(PnvPsi *psi, uint32_t offset, bool mmio)
{
uint64_t val = 0xffffffffffffffffull;
switch (offset) {
case PSIHB_XSCOM_FIR_RW:
case PSIHB_XSCOM_FIRACT0:
case PSIHB_XSCOM_FIRACT1:
case PSIHB_XSCOM_BAR:
case PSIHB_XSCOM_FSPBAR:
case PSIHB_XSCOM_CR:
case PSIHB_XSCOM_XIVR_FSP:
case PSIHB_XSCOM_XIVR_OCC:
case PSIHB_XSCOM_XIVR_FSI:
case PSIHB_XSCOM_XIVR_LPCI2C:
case PSIHB_XSCOM_XIVR_LOCERR:
case PSIHB_XSCOM_XIVR_EXT:
case PSIHB_XSCOM_IRQ_STAT:
case PSIHB_XSCOM_SEMR:
case PSIHB_XSCOM_DMA_UPADD:
case PSIHB_XSCOM_IRSN:
val = psi->regs[offset];
break;
default:
qemu_log_mask(LOG_UNIMP, "PSI: read at 0x%" PRIx32 "\n", offset);
}
return val;
}
static void pnv_psi_reg_write(PnvPsi *psi, uint32_t offset, uint64_t val,
bool mmio)
{
switch (offset) {
case PSIHB_XSCOM_FIR_RW:
case PSIHB_XSCOM_FIRACT0:
case PSIHB_XSCOM_FIRACT1:
case PSIHB_XSCOM_SEMR:
case PSIHB_XSCOM_DMA_UPADD:
psi->regs[offset] = val;
break;
case PSIHB_XSCOM_FIR_OR:
psi->regs[PSIHB_XSCOM_FIR_RW] |= val;
break;
case PSIHB_XSCOM_FIR_AND:
psi->regs[PSIHB_XSCOM_FIR_RW] &= val;
break;
case PSIHB_XSCOM_BAR:
/* Only XSCOM can write this one */
if (!mmio) {
pnv_psi_set_bar(psi, val);
} else {
qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of BAR\n");
}
break;
case PSIHB_XSCOM_FSPBAR:
psi->regs[PSIHB_XSCOM_FSPBAR] = val & PSIHB_FSPBAR_MASK;
pnv_psi_update_fsp_mr(psi);
break;
case PSIHB_XSCOM_CR:
pnv_psi_set_cr(psi, val);
break;
case PSIHB_XSCOM_SCR:
pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] | val);
break;
case PSIHB_XSCOM_CCR:
pnv_psi_set_cr(psi, psi->regs[PSIHB_XSCOM_CR] & ~val);
break;
case PSIHB_XSCOM_XIVR_FSP:
case PSIHB_XSCOM_XIVR_OCC:
case PSIHB_XSCOM_XIVR_FSI:
case PSIHB_XSCOM_XIVR_LPCI2C:
case PSIHB_XSCOM_XIVR_LOCERR:
case PSIHB_XSCOM_XIVR_EXT:
pnv_psi_set_xivr(psi, offset, val);
break;
case PSIHB_XSCOM_IRQ_STAT:
/* Read only */
qemu_log_mask(LOG_GUEST_ERROR, "PSI: invalid write of IRQ_STAT\n");
break;
case PSIHB_XSCOM_IRSN:
pnv_psi_set_irsn(psi, val);
break;
default:
qemu_log_mask(LOG_UNIMP, "PSI: write at 0x%" PRIx32 "\n", offset);
}
}
/*
* The values of the registers when accessed through the MMIO region
* follow the relation : xscom = (mmio + 0x50) >> 3
*/
static uint64_t pnv_psi_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
return pnv_psi_reg_read(opaque, PSIHB_REG(addr), true);
}
static void pnv_psi_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
pnv_psi_reg_write(opaque, PSIHB_REG(addr), val, true);
}
static const MemoryRegionOps psi_mmio_ops = {
.read = pnv_psi_mmio_read,
.write = pnv_psi_mmio_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint64_t pnv_psi_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
return pnv_psi_reg_read(opaque, addr >> 3, false);
}
static void pnv_psi_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
pnv_psi_reg_write(opaque, addr >> 3, val, false);
}
static const MemoryRegionOps pnv_psi_xscom_ops = {
.read = pnv_psi_xscom_read,
.write = pnv_psi_xscom_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
}
};
static void pnv_psi_reset(DeviceState *dev)
{
PnvPsi *psi = PNV_PSI(dev);
memset(psi->regs, 0x0, sizeof(psi->regs));
psi->regs[PSIHB_XSCOM_BAR] = psi->bar | PSIHB_BAR_EN;
}
static void pnv_psi_reset_handler(void *dev)
{
device_cold_reset(DEVICE(dev));
}
static void pnv_psi_realize(DeviceState *dev, Error **errp)
{
PnvPsi *psi = PNV_PSI(dev);
/* Default BAR for MMIO region */
pnv_psi_set_bar(psi, psi->bar | PSIHB_BAR_EN);
qemu_register_reset(pnv_psi_reset_handler, dev);
}
static void pnv_psi_power8_instance_init(Object *obj)
{
Pnv8Psi *psi8 = PNV8_PSI(obj);
object_initialize_child(obj, "ics-psi", &psi8->ics, TYPE_ICS);
object_property_add_alias(obj, ICS_PROP_XICS, OBJECT(&psi8->ics),
ICS_PROP_XICS);
}
static const uint8_t irq_to_xivr[] = {
PSIHB_XSCOM_XIVR_FSP,
PSIHB_XSCOM_XIVR_OCC,
PSIHB_XSCOM_XIVR_FSI,
PSIHB_XSCOM_XIVR_LPCI2C,
PSIHB_XSCOM_XIVR_LOCERR,
PSIHB_XSCOM_XIVR_EXT,
};
static void pnv_psi_power8_realize(DeviceState *dev, Error **errp)
{
PnvPsi *psi = PNV_PSI(dev);
ICSState *ics = &PNV8_PSI(psi)->ics;
unsigned int i;
/* Create PSI interrupt control source */
if (!object_property_set_int(OBJECT(ics), "nr-irqs", PSI_NUM_INTERRUPTS,
errp)) {
return;
}
if (!qdev_realize(DEVICE(ics), NULL, errp)) {
return;
}
for (i = 0; i < ics->nr_irqs; i++) {
ics_set_irq_type(ics, i, true);
}
qdev_init_gpio_in(dev, pnv_psi_power8_set_irq, ics->nr_irqs);
psi->qirqs = qemu_allocate_irqs(ics_set_irq, ics, ics->nr_irqs);
/* XSCOM region for PSI registers */
pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_xscom_ops,
psi, "xscom-psi", PNV_XSCOM_PSIHB_SIZE);
/* Initialize MMIO region */
memory_region_init_io(&psi->regs_mr, OBJECT(dev), &psi_mmio_ops, psi,
"psihb", PNV_PSIHB_SIZE);
/* Default sources in XIVR */
for (i = 0; i < PSI_NUM_INTERRUPTS; i++) {
uint8_t xivr = irq_to_xivr[i];
psi->regs[xivr] = PSIHB_XIVR_PRIO_MSK |
((uint64_t) i << PSIHB_XIVR_SRC_SH);
}
pnv_psi_realize(dev, errp);
}
static int pnv_psi_dt_xscom(PnvXScomInterface *dev, void *fdt, int xscom_offset)
{
PnvPsiClass *ppc = PNV_PSI_GET_CLASS(dev);
char *name;
int offset;
uint32_t reg[] = {
cpu_to_be32(ppc->xscom_pcba),
cpu_to_be32(ppc->xscom_size)
};
name = g_strdup_printf("psihb@%x", ppc->xscom_pcba);
offset = fdt_add_subnode(fdt, xscom_offset, name);
_FDT(offset);
g_free(name);
_FDT(fdt_setprop(fdt, offset, "reg", reg, sizeof(reg)));
_FDT(fdt_setprop_cell(fdt, offset, "#address-cells", 2));
_FDT(fdt_setprop_cell(fdt, offset, "#size-cells", 1));
_FDT(fdt_setprop(fdt, offset, "compatible", ppc->compat,
ppc->compat_size));
return 0;
}
static Property pnv_psi_properties[] = {
DEFINE_PROP_UINT64("bar", PnvPsi, bar, 0),
DEFINE_PROP_UINT64("fsp-bar", PnvPsi, fsp_bar, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void pnv_psi_power8_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
static const char compat[] = "ibm,power8-psihb-x\0ibm,psihb-x";
dc->desc = "PowerNV PSI Controller POWER8";
dc->realize = pnv_psi_power8_realize;
ppc->xscom_pcba = PNV_XSCOM_PSIHB_BASE;
ppc->xscom_size = PNV_XSCOM_PSIHB_SIZE;
ppc->bar_mask = PSIHB_BAR_MASK;
ppc->compat = compat;
ppc->compat_size = sizeof(compat);
}
static const TypeInfo pnv_psi_power8_info = {
.name = TYPE_PNV8_PSI,
.parent = TYPE_PNV_PSI,
.instance_size = sizeof(Pnv8Psi),
.instance_init = pnv_psi_power8_instance_init,
.class_init = pnv_psi_power8_class_init,
};
/* Common registers */
#define PSIHB9_CR 0x20
#define PSIHB9_SEMR 0x28
/* P9 registers */
#define PSIHB9_INTERRUPT_CONTROL 0x58
#define PSIHB9_IRQ_METHOD PPC_BIT(0)
#define PSIHB9_IRQ_RESET PPC_BIT(1)
#define PSIHB9_ESB_CI_BASE 0x60
#define PSIHB9_ESB_CI_ADDR_MASK PPC_BITMASK(8, 47)
#define PSIHB9_ESB_CI_VALID PPC_BIT(63)
#define PSIHB9_ESB_NOTIF_ADDR 0x68
#define PSIHB9_ESB_NOTIF_ADDR_MASK PPC_BITMASK(8, 60)
#define PSIHB9_ESB_NOTIF_VALID PPC_BIT(63)
#define PSIHB9_IVT_OFFSET 0x70
#define PSIHB9_IVT_OFF_SHIFT 32
#define PSIHB9_IRQ_LEVEL 0x78 /* assertion */
#define PSIHB9_IRQ_LEVEL_PSI PPC_BIT(0)
#define PSIHB9_IRQ_LEVEL_OCC PPC_BIT(1)
#define PSIHB9_IRQ_LEVEL_FSI PPC_BIT(2)
#define PSIHB9_IRQ_LEVEL_LPCHC PPC_BIT(3)
#define PSIHB9_IRQ_LEVEL_LOCAL_ERR PPC_BIT(4)
#define PSIHB9_IRQ_LEVEL_GLOBAL_ERR PPC_BIT(5)
#define PSIHB9_IRQ_LEVEL_TPM PPC_BIT(6)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ1 PPC_BIT(7)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ2 PPC_BIT(8)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ3 PPC_BIT(9)
#define PSIHB9_IRQ_LEVEL_LPC_SIRQ4 PPC_BIT(10)
#define PSIHB9_IRQ_LEVEL_SBE_I2C PPC_BIT(11)
#define PSIHB9_IRQ_LEVEL_DIO PPC_BIT(12)
#define PSIHB9_IRQ_LEVEL_PSU PPC_BIT(13)
#define PSIHB9_IRQ_LEVEL_I2C_C PPC_BIT(14)
#define PSIHB9_IRQ_LEVEL_I2C_D PPC_BIT(15)
#define PSIHB9_IRQ_LEVEL_I2C_E PPC_BIT(16)
#define PSIHB9_IRQ_LEVEL_SBE PPC_BIT(19)
#define PSIHB9_IRQ_STAT 0x80 /* P bit */
#define PSIHB9_IRQ_STAT_PSI PPC_BIT(0)
#define PSIHB9_IRQ_STAT_OCC PPC_BIT(1)
#define PSIHB9_IRQ_STAT_FSI PPC_BIT(2)
#define PSIHB9_IRQ_STAT_LPCHC PPC_BIT(3)
#define PSIHB9_IRQ_STAT_LOCAL_ERR PPC_BIT(4)
#define PSIHB9_IRQ_STAT_GLOBAL_ERR PPC_BIT(5)
#define PSIHB9_IRQ_STAT_TPM PPC_BIT(6)
#define PSIHB9_IRQ_STAT_LPC_SIRQ1 PPC_BIT(7)
#define PSIHB9_IRQ_STAT_LPC_SIRQ2 PPC_BIT(8)
#define PSIHB9_IRQ_STAT_LPC_SIRQ3 PPC_BIT(9)
#define PSIHB9_IRQ_STAT_LPC_SIRQ4 PPC_BIT(10)
#define PSIHB9_IRQ_STAT_SBE_I2C PPC_BIT(11)
#define PSIHB9_IRQ_STAT_DIO PPC_BIT(12)
#define PSIHB9_IRQ_STAT_PSU PPC_BIT(13)
/* P10 register extensions */
#define PSIHB10_CR PSIHB9_CR
#define PSIHB10_CR_STORE_EOI PPC_BIT(12)
#define PSIHB10_ESB_CI_BASE PSIHB9_ESB_CI_BASE
#define PSIHB10_ESB_CI_64K PPC_BIT(1)
static void pnv_psi_notify(XiveNotifier *xf, uint32_t srcno, bool pq_checked)
{
PnvPsi *psi = PNV_PSI(xf);
uint64_t notif_port = psi->regs[PSIHB_REG(PSIHB9_ESB_NOTIF_ADDR)];
bool valid = notif_port & PSIHB9_ESB_NOTIF_VALID;
uint64_t notify_addr = notif_port & ~PSIHB9_ESB_NOTIF_VALID;
uint32_t offset =
(psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
uint64_t data = offset | srcno;
MemTxResult result;
if (pq_checked) {
data |= XIVE_TRIGGER_PQ;
}
if (!valid) {
return;
}
address_space_stq_be(&address_space_memory, notify_addr, data,
MEMTXATTRS_UNSPECIFIED, &result);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: trigger failed @%"
HWADDR_PRIx "\n", __func__, notif_port);
return;
}
}
static uint64_t pnv_psi_p9_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
PnvPsi *psi = PNV_PSI(opaque);
uint32_t reg = PSIHB_REG(addr);
uint64_t val = -1;
switch (addr) {
case PSIHB9_CR:
case PSIHB9_SEMR:
/* FSP stuff */
case PSIHB9_INTERRUPT_CONTROL:
case PSIHB9_ESB_CI_BASE:
case PSIHB9_ESB_NOTIF_ADDR:
case PSIHB9_IVT_OFFSET:
val = psi->regs[reg];
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "PSI: read at 0x%" PRIx64 "\n", addr);
}
return val;
}
static void pnv_psi_p9_mmio_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvPsi *psi = PNV_PSI(opaque);
Pnv9Psi *psi9 = PNV9_PSI(psi);
uint32_t reg = PSIHB_REG(addr);
MemoryRegion *sysmem = get_system_memory();
switch (addr) {
case PSIHB9_CR:
if (val & PSIHB10_CR_STORE_EOI) {
psi9->source.esb_flags |= XIVE_SRC_STORE_EOI;
} else {
psi9->source.esb_flags &= ~XIVE_SRC_STORE_EOI;
}
break;
case PSIHB9_SEMR:
/* FSP stuff */
break;
case PSIHB9_INTERRUPT_CONTROL:
if (val & PSIHB9_IRQ_RESET) {
device_cold_reset(DEVICE(&psi9->source));
}
psi->regs[reg] = val;
break;
case PSIHB9_ESB_CI_BASE:
if (val & PSIHB10_ESB_CI_64K) {
psi9->source.esb_shift = XIVE_ESB_64K;
} else {
psi9->source.esb_shift = XIVE_ESB_4K;
}
if (!(val & PSIHB9_ESB_CI_VALID)) {
if (psi->regs[reg] & PSIHB9_ESB_CI_VALID) {
memory_region_del_subregion(sysmem, &psi9->source.esb_mmio);
}
} else {
if (!(psi->regs[reg] & PSIHB9_ESB_CI_VALID)) {
hwaddr addr = val & ~(PSIHB9_ESB_CI_VALID | PSIHB10_ESB_CI_64K);
memory_region_add_subregion(sysmem, addr,
&psi9->source.esb_mmio);
}
}
psi->regs[reg] = val;
break;
case PSIHB9_ESB_NOTIF_ADDR:
psi->regs[reg] = val;
break;
case PSIHB9_IVT_OFFSET:
psi->regs[reg] = val;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR, "PSI: write at 0x%" PRIx64 "\n", addr);
}
}
static const MemoryRegionOps pnv_psi_p9_mmio_ops = {
.read = pnv_psi_p9_mmio_read,
.write = pnv_psi_p9_mmio_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
},
};
static uint64_t pnv_psi_p9_xscom_read(void *opaque, hwaddr addr, unsigned size)
{
uint32_t reg = addr >> 3;
uint64_t val = -1;
if (reg < PSIHB_XSCOM_BAR) {
/* FIR, not modeled */
qemu_log_mask(LOG_UNIMP, "PSI: xscom read at 0x%08x\n", reg);
} else {
val = pnv_psi_p9_mmio_read(opaque, PSIHB_MMIO(reg), size);
}
return val;
}
static void pnv_psi_p9_xscom_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
PnvPsi *psi = PNV_PSI(opaque);
uint32_t reg = addr >> 3;
if (reg < PSIHB_XSCOM_BAR) {
/* FIR, not modeled */
qemu_log_mask(LOG_UNIMP, "PSI: xscom write at 0x%08x\n", reg);
} else if (reg == PSIHB_XSCOM_BAR) {
pnv_psi_set_bar(psi, val);
} else {
pnv_psi_p9_mmio_write(opaque, PSIHB_MMIO(reg), val, size);
}
}
static const MemoryRegionOps pnv_psi_p9_xscom_ops = {
.read = pnv_psi_p9_xscom_read,
.write = pnv_psi_p9_xscom_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 8,
.max_access_size = 8,
},
.impl = {
.min_access_size = 8,
.max_access_size = 8,
}
};
static void pnv_psi_power9_set_irq(void *opaque, int irq, int state)
{
PnvPsi *psi = opaque;
uint64_t irq_method = psi->regs[PSIHB_REG(PSIHB9_INTERRUPT_CONTROL)];
if (irq_method & PSIHB9_IRQ_METHOD) {
qemu_log_mask(LOG_GUEST_ERROR, "PSI: LSI IRQ method no supported\n");
return;
}
/* Update LSI levels */
if (state) {
psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] |= PPC_BIT(irq);
} else {
psi->regs[PSIHB_REG(PSIHB9_IRQ_LEVEL)] &= ~PPC_BIT(irq);
}
qemu_set_irq(psi->qirqs[irq], state);
}
static void pnv_psi_power9_reset(DeviceState *dev)
{
Pnv9Psi *psi = PNV9_PSI(dev);
pnv_psi_reset(dev);
if (memory_region_is_mapped(&psi->source.esb_mmio)) {
memory_region_del_subregion(get_system_memory(), &psi->source.esb_mmio);
}
}
static void pnv_psi_power9_instance_init(Object *obj)
{
Pnv9Psi *psi = PNV9_PSI(obj);
object_initialize_child(obj, "source", &psi->source, TYPE_XIVE_SOURCE);
object_property_add_alias(obj, "shift", OBJECT(&psi->source), "shift");
}
static void pnv_psi_power9_realize(DeviceState *dev, Error **errp)
{
PnvPsi *psi = PNV_PSI(dev);
XiveSource *xsrc = &PNV9_PSI(psi)->source;
int i;
object_property_set_int(OBJECT(xsrc), "nr-irqs", PSIHB9_NUM_IRQS,
&error_fatal);
object_property_set_link(OBJECT(xsrc), "xive", OBJECT(psi), &error_abort);
object_property_set_int(OBJECT(xsrc), "reset-pq", XIVE_ESB_RESET,
&error_abort);
if (!qdev_realize(DEVICE(xsrc), NULL, errp)) {
return;
}
for (i = 0; i < xsrc->nr_irqs; i++) {
xive_source_irq_set_lsi(xsrc, i);
}
psi->qirqs = qemu_allocate_irqs(xive_source_set_irq, xsrc, xsrc->nr_irqs);
qdev_init_gpio_in(dev, pnv_psi_power9_set_irq, xsrc->nr_irqs);
/* XSCOM region for PSI registers */
pnv_xscom_region_init(&psi->xscom_regs, OBJECT(dev), &pnv_psi_p9_xscom_ops,
psi, "xscom-psi", PNV9_XSCOM_PSIHB_SIZE);
/* MMIO region for PSI registers */
memory_region_init_io(&psi->regs_mr, OBJECT(dev), &pnv_psi_p9_mmio_ops, psi,
"psihb", PNV9_PSIHB_SIZE);
pnv_psi_realize(dev, errp);
}
static void pnv_psi_power9_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
XiveNotifierClass *xfc = XIVE_NOTIFIER_CLASS(klass);
static const char compat[] = "ibm,power9-psihb-x\0ibm,psihb-x";
dc->desc = "PowerNV PSI Controller POWER9";
dc->realize = pnv_psi_power9_realize;
dc->reset = pnv_psi_power9_reset;
ppc->xscom_pcba = PNV9_XSCOM_PSIHB_BASE;
ppc->xscom_size = PNV9_XSCOM_PSIHB_SIZE;
ppc->bar_mask = PSIHB9_BAR_MASK;
ppc->compat = compat;
ppc->compat_size = sizeof(compat);
xfc->notify = pnv_psi_notify;
}
static const TypeInfo pnv_psi_power9_info = {
.name = TYPE_PNV9_PSI,
.parent = TYPE_PNV_PSI,
.instance_size = sizeof(Pnv9Psi),
.instance_init = pnv_psi_power9_instance_init,
.class_init = pnv_psi_power9_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_XIVE_NOTIFIER },
{ },
},
};
static void pnv_psi_power10_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvPsiClass *ppc = PNV_PSI_CLASS(klass);
static const char compat[] = "ibm,power10-psihb-x\0ibm,psihb-x";
dc->desc = "PowerNV PSI Controller POWER10";
ppc->xscom_pcba = PNV10_XSCOM_PSIHB_BASE;
ppc->xscom_size = PNV10_XSCOM_PSIHB_SIZE;
ppc->compat = compat;
ppc->compat_size = sizeof(compat);
}
static const TypeInfo pnv_psi_power10_info = {
.name = TYPE_PNV10_PSI,
.parent = TYPE_PNV9_PSI,
.class_init = pnv_psi_power10_class_init,
};
static void pnv_psi_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PnvXScomInterfaceClass *xdc = PNV_XSCOM_INTERFACE_CLASS(klass);
xdc->dt_xscom = pnv_psi_dt_xscom;
dc->desc = "PowerNV PSI Controller";
device_class_set_props(dc, pnv_psi_properties);
dc->reset = pnv_psi_reset;
dc->user_creatable = false;
}
static const TypeInfo pnv_psi_info = {
.name = TYPE_PNV_PSI,
.parent = TYPE_DEVICE,
.instance_size = sizeof(PnvPsi),
.class_init = pnv_psi_class_init,
.class_size = sizeof(PnvPsiClass),
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ TYPE_PNV_XSCOM_INTERFACE },
{ }
}
};
static void pnv_psi_register_types(void)
{
type_register_static(&pnv_psi_info);
type_register_static(&pnv_psi_power8_info);
type_register_static(&pnv_psi_power9_info);
type_register_static(&pnv_psi_power10_info);
}
type_init(pnv_psi_register_types);
void pnv_psi_pic_print_info(Pnv9Psi *psi9, Monitor *mon)
{
PnvPsi *psi = PNV_PSI(psi9);
uint32_t offset =
(psi->regs[PSIHB_REG(PSIHB9_IVT_OFFSET)] >> PSIHB9_IVT_OFF_SHIFT);
monitor_printf(mon, "PSIHB Source %08x .. %08x\n",
offset, offset + psi9->source.nr_irqs - 1);
xive_source_pic_print_info(&psi9->source, offset, mon);
}