qemu-e2k/vl.c
bellard 1d96905d76 fixed stdio write
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1072 c046a42c-6fe2-441c-8c8c-71466251a162
2004-09-18 19:34:39 +00:00

3366 lines
87 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#ifndef _WIN32
#include <sys/times.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/poll.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <dirent.h>
#ifdef _BSD
#include <sys/stat.h>
#ifndef __APPLE__
#include <libutil.h>
#endif
#else
#include <linux/if.h>
#include <linux/if_tun.h>
#include <pty.h>
#include <malloc.h>
#include <linux/rtc.h>
#endif
#endif
#if defined(CONFIG_SLIRP)
#include "libslirp.h"
#endif
#ifdef _WIN32
#include <malloc.h>
#include <sys/timeb.h>
#include <windows.h>
#define getopt_long_only getopt_long
#define memalign(align, size) malloc(size)
#endif
#ifdef CONFIG_SDL
#ifdef __APPLE__
#include <SDL/SDL.h>
#endif
#endif /* CONFIG_SDL */
#include "disas.h"
#include "exec-all.h"
//#define DO_TB_FLUSH
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
//#define DEBUG_UNUSED_IOPORT
//#define DEBUG_IOPORT
#if !defined(CONFIG_SOFTMMU)
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
#else
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
#endif
#ifdef TARGET_PPC
#define DEFAULT_RAM_SIZE 144
#else
#define DEFAULT_RAM_SIZE 128
#endif
/* in ms */
#define GUI_REFRESH_INTERVAL 30
/* XXX: use a two level table to limit memory usage */
#define MAX_IOPORTS 65536
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
char phys_ram_file[1024];
CPUState *global_env;
CPUState *cpu_single_env;
void *ioport_opaque[MAX_IOPORTS];
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
BlockDriverState *bs_table[MAX_DISKS], *fd_table[MAX_FD];
int vga_ram_size;
int bios_size;
static DisplayState display_state;
int nographic;
int64_t ticks_per_sec;
int boot_device = 'c';
int ram_size;
static char network_script[1024];
int pit_min_timer_count = 0;
int nb_nics;
NetDriverState nd_table[MAX_NICS];
QEMUTimer *gui_timer;
int vm_running;
int audio_enabled = 0;
int pci_enabled = 1;
int prep_enabled = 0;
int rtc_utc = 1;
int cirrus_vga_enabled = 1;
int graphic_width = 800;
int graphic_height = 600;
int graphic_depth = 15;
TextConsole *vga_console;
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
/***********************************************************/
/* x86 ISA bus support */
target_phys_addr_t isa_mem_base = 0;
uint32_t default_ioport_readb(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "inb: port=0x%04x\n", address);
#endif
return 0xff;
}
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
#endif
}
/* default is to make two byte accesses */
uint32_t default_ioport_readw(void *opaque, uint32_t address)
{
uint32_t data;
data = ioport_read_table[0][address](ioport_opaque[address], address);
address = (address + 1) & (MAX_IOPORTS - 1);
data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
return data;
}
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
{
ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
address = (address + 1) & (MAX_IOPORTS - 1);
ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
}
uint32_t default_ioport_readl(void *opaque, uint32_t address)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "inl: port=0x%04x\n", address);
#endif
return 0xffffffff;
}
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
{
#ifdef DEBUG_UNUSED_IOPORT
fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
#endif
}
void init_ioports(void)
{
int i;
for(i = 0; i < MAX_IOPORTS; i++) {
ioport_read_table[0][i] = default_ioport_readb;
ioport_write_table[0][i] = default_ioport_writeb;
ioport_read_table[1][i] = default_ioport_readw;
ioport_write_table[1][i] = default_ioport_writew;
ioport_read_table[2][i] = default_ioport_readl;
ioport_write_table[2][i] = default_ioport_writel;
}
}
/* size is the word size in byte */
int register_ioport_read(int start, int length, int size,
IOPortReadFunc *func, void *opaque)
{
int i, bsize;
if (size == 1) {
bsize = 0;
} else if (size == 2) {
bsize = 1;
} else if (size == 4) {
bsize = 2;
} else {
hw_error("register_ioport_read: invalid size");
return -1;
}
for(i = start; i < start + length; i += size) {
ioport_read_table[bsize][i] = func;
if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
hw_error("register_ioport_read: invalid opaque");
ioport_opaque[i] = opaque;
}
return 0;
}
/* size is the word size in byte */
int register_ioport_write(int start, int length, int size,
IOPortWriteFunc *func, void *opaque)
{
int i, bsize;
if (size == 1) {
bsize = 0;
} else if (size == 2) {
bsize = 1;
} else if (size == 4) {
bsize = 2;
} else {
hw_error("register_ioport_write: invalid size");
return -1;
}
for(i = start; i < start + length; i += size) {
ioport_write_table[bsize][i] = func;
if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
hw_error("register_ioport_read: invalid opaque");
ioport_opaque[i] = opaque;
}
return 0;
}
void isa_unassign_ioport(int start, int length)
{
int i;
for(i = start; i < start + length; i++) {
ioport_read_table[0][i] = default_ioport_readb;
ioport_read_table[1][i] = default_ioport_readw;
ioport_read_table[2][i] = default_ioport_readl;
ioport_write_table[0][i] = default_ioport_writeb;
ioport_write_table[1][i] = default_ioport_writew;
ioport_write_table[2][i] = default_ioport_writel;
}
}
void pstrcpy(char *buf, int buf_size, const char *str)
{
int c;
char *q = buf;
if (buf_size <= 0)
return;
for(;;) {
c = *str++;
if (c == 0 || q >= buf + buf_size - 1)
break;
*q++ = c;
}
*q = '\0';
}
/* strcat and truncate. */
char *pstrcat(char *buf, int buf_size, const char *s)
{
int len;
len = strlen(buf);
if (len < buf_size)
pstrcpy(buf + len, buf_size - len, s);
return buf;
}
int strstart(const char *str, const char *val, const char **ptr)
{
const char *p, *q;
p = str;
q = val;
while (*q != '\0') {
if (*p != *q)
return 0;
p++;
q++;
}
if (ptr)
*ptr = p;
return 1;
}
/* return the size or -1 if error */
int get_image_size(const char *filename)
{
int fd, size;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = lseek(fd, 0, SEEK_END);
close(fd);
return size;
}
/* return the size or -1 if error */
int load_image(const char *filename, uint8_t *addr)
{
int fd, size;
fd = open(filename, O_RDONLY | O_BINARY);
if (fd < 0)
return -1;
size = lseek(fd, 0, SEEK_END);
lseek(fd, 0, SEEK_SET);
if (read(fd, addr, size) != size) {
close(fd);
return -1;
}
close(fd);
return size;
}
void cpu_outb(CPUState *env, int addr, int val)
{
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "outb: %04x %02x\n", addr, val);
#endif
ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
}
void cpu_outw(CPUState *env, int addr, int val)
{
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "outw: %04x %04x\n", addr, val);
#endif
ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
}
void cpu_outl(CPUState *env, int addr, int val)
{
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "outl: %04x %08x\n", addr, val);
#endif
ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
}
int cpu_inb(CPUState *env, int addr)
{
int val;
val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "inb : %04x %02x\n", addr, val);
#endif
return val;
}
int cpu_inw(CPUState *env, int addr)
{
int val;
val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "inw : %04x %04x\n", addr, val);
#endif
return val;
}
int cpu_inl(CPUState *env, int addr)
{
int val;
val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
#ifdef DEBUG_IOPORT
if (loglevel & CPU_LOG_IOPORT)
fprintf(logfile, "inl : %04x %08x\n", addr, val);
#endif
return val;
}
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
#ifdef TARGET_I386
cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
cpu_dump_state(global_env, stderr, 0);
#endif
va_end(ap);
abort();
}
/***********************************************************/
/* keyboard/mouse */
static QEMUPutKBDEvent *qemu_put_kbd_event;
static void *qemu_put_kbd_event_opaque;
static QEMUPutMouseEvent *qemu_put_mouse_event;
static void *qemu_put_mouse_event_opaque;
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
{
qemu_put_kbd_event_opaque = opaque;
qemu_put_kbd_event = func;
}
void qemu_add_mouse_event_handler(QEMUPutMouseEvent *func, void *opaque)
{
qemu_put_mouse_event_opaque = opaque;
qemu_put_mouse_event = func;
}
void kbd_put_keycode(int keycode)
{
if (qemu_put_kbd_event) {
qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
}
}
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
{
if (qemu_put_mouse_event) {
qemu_put_mouse_event(qemu_put_mouse_event_opaque,
dx, dy, dz, buttons_state);
}
}
/***********************************************************/
/* timers */
#if defined(__powerpc__)
static inline uint32_t get_tbl(void)
{
uint32_t tbl;
asm volatile("mftb %0" : "=r" (tbl));
return tbl;
}
static inline uint32_t get_tbu(void)
{
uint32_t tbl;
asm volatile("mftbu %0" : "=r" (tbl));
return tbl;
}
int64_t cpu_get_real_ticks(void)
{
uint32_t l, h, h1;
/* NOTE: we test if wrapping has occurred */
do {
h = get_tbu();
l = get_tbl();
h1 = get_tbu();
} while (h != h1);
return ((int64_t)h << 32) | l;
}
#elif defined(__i386__)
int64_t cpu_get_real_ticks(void)
{
int64_t val;
asm volatile ("rdtsc" : "=A" (val));
return val;
}
#elif defined(__x86_64__)
int64_t cpu_get_real_ticks(void)
{
uint32_t low,high;
int64_t val;
asm volatile("rdtsc" : "=a" (low), "=d" (high));
val = high;
val <<= 32;
val |= low;
return val;
}
#else
#error unsupported CPU
#endif
static int64_t cpu_ticks_offset;
static int cpu_ticks_enabled;
static inline int64_t cpu_get_ticks(void)
{
if (!cpu_ticks_enabled) {
return cpu_ticks_offset;
} else {
return cpu_get_real_ticks() + cpu_ticks_offset;
}
}
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
if (!cpu_ticks_enabled) {
cpu_ticks_offset -= cpu_get_real_ticks();
cpu_ticks_enabled = 1;
}
}
/* disable cpu_get_ticks() : the clock is stopped. You must not call
cpu_get_ticks() after that. */
void cpu_disable_ticks(void)
{
if (cpu_ticks_enabled) {
cpu_ticks_offset = cpu_get_ticks();
cpu_ticks_enabled = 0;
}
}
static int64_t get_clock(void)
{
#ifdef _WIN32
struct _timeb tb;
_ftime(&tb);
return ((int64_t)tb.time * 1000 + (int64_t)tb.millitm) * 1000;
#else
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000LL + tv.tv_usec;
#endif
}
void cpu_calibrate_ticks(void)
{
int64_t usec, ticks;
usec = get_clock();
ticks = cpu_get_real_ticks();
#ifdef _WIN32
Sleep(50);
#else
usleep(50 * 1000);
#endif
usec = get_clock() - usec;
ticks = cpu_get_real_ticks() - ticks;
ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
}
/* compute with 96 bit intermediate result: (a*b)/c */
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
#ifdef WORDS_BIGENDIAN
uint32_t high, low;
#else
uint32_t low, high;
#endif
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
#define QEMU_TIMER_REALTIME 0
#define QEMU_TIMER_VIRTUAL 1
struct QEMUClock {
int type;
/* XXX: add frequency */
};
struct QEMUTimer {
QEMUClock *clock;
int64_t expire_time;
QEMUTimerCB *cb;
void *opaque;
struct QEMUTimer *next;
};
QEMUClock *rt_clock;
QEMUClock *vm_clock;
static QEMUTimer *active_timers[2];
#ifdef _WIN32
static MMRESULT timerID;
#else
/* frequency of the times() clock tick */
static int timer_freq;
#endif
QEMUClock *qemu_new_clock(int type)
{
QEMUClock *clock;
clock = qemu_mallocz(sizeof(QEMUClock));
if (!clock)
return NULL;
clock->type = type;
return clock;
}
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
{
QEMUTimer *ts;
ts = qemu_mallocz(sizeof(QEMUTimer));
ts->clock = clock;
ts->cb = cb;
ts->opaque = opaque;
return ts;
}
void qemu_free_timer(QEMUTimer *ts)
{
qemu_free(ts);
}
/* stop a timer, but do not dealloc it */
void qemu_del_timer(QEMUTimer *ts)
{
QEMUTimer **pt, *t;
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t == ts) {
*pt = t->next;
break;
}
pt = &t->next;
}
}
/* modify the current timer so that it will be fired when current_time
>= expire_time. The corresponding callback will be called. */
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
{
QEMUTimer **pt, *t;
qemu_del_timer(ts);
/* add the timer in the sorted list */
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t->expire_time > expire_time)
break;
pt = &t->next;
}
ts->expire_time = expire_time;
ts->next = *pt;
*pt = ts;
}
int qemu_timer_pending(QEMUTimer *ts)
{
QEMUTimer *t;
for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
if (t == ts)
return 1;
}
return 0;
}
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
{
if (!timer_head)
return 0;
return (timer_head->expire_time <= current_time);
}
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
{
QEMUTimer *ts;
for(;;) {
ts = *ptimer_head;
if (ts->expire_time > current_time)
break;
/* remove timer from the list before calling the callback */
*ptimer_head = ts->next;
ts->next = NULL;
/* run the callback (the timer list can be modified) */
ts->cb(ts->opaque);
}
}
int64_t qemu_get_clock(QEMUClock *clock)
{
switch(clock->type) {
case QEMU_TIMER_REALTIME:
#ifdef _WIN32
return GetTickCount();
#else
{
struct tms tp;
/* Note that using gettimeofday() is not a good solution
for timers because its value change when the date is
modified. */
if (timer_freq == 100) {
return times(&tp) * 10;
} else {
return ((int64_t)times(&tp) * 1000) / timer_freq;
}
}
#endif
default:
case QEMU_TIMER_VIRTUAL:
return cpu_get_ticks();
}
}
/* save a timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
if (qemu_timer_pending(ts)) {
expire_time = ts->expire_time;
} else {
expire_time = -1;
}
qemu_put_be64(f, expire_time);
}
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
expire_time = qemu_get_be64(f);
if (expire_time != -1) {
qemu_mod_timer(ts, expire_time);
} else {
qemu_del_timer(ts);
}
}
static void timer_save(QEMUFile *f, void *opaque)
{
if (cpu_ticks_enabled) {
hw_error("cannot save state if virtual timers are running");
}
qemu_put_be64s(f, &cpu_ticks_offset);
qemu_put_be64s(f, &ticks_per_sec);
}
static int timer_load(QEMUFile *f, void *opaque, int version_id)
{
if (version_id != 1)
return -EINVAL;
if (cpu_ticks_enabled) {
return -EINVAL;
}
qemu_get_be64s(f, &cpu_ticks_offset);
qemu_get_be64s(f, &ticks_per_sec);
return 0;
}
#ifdef _WIN32
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
#else
static void host_alarm_handler(int host_signum)
#endif
{
#if 0
#define DISP_FREQ 1000
{
static int64_t delta_min = INT64_MAX;
static int64_t delta_max, delta_cum, last_clock, delta, ti;
static int count;
ti = qemu_get_clock(vm_clock);
if (last_clock != 0) {
delta = ti - last_clock;
if (delta < delta_min)
delta_min = delta;
if (delta > delta_max)
delta_max = delta;
delta_cum += delta;
if (++count == DISP_FREQ) {
printf("timer: min=%lld us max=%lld us avg=%lld us avg_freq=%0.3f Hz\n",
muldiv64(delta_min, 1000000, ticks_per_sec),
muldiv64(delta_max, 1000000, ticks_per_sec),
muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
(double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
count = 0;
delta_min = INT64_MAX;
delta_max = 0;
delta_cum = 0;
}
}
last_clock = ti;
}
#endif
if (qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
qemu_get_clock(vm_clock)) ||
qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
qemu_get_clock(rt_clock))) {
/* stop the cpu because a timer occured */
cpu_interrupt(global_env, CPU_INTERRUPT_EXIT);
}
}
#ifndef _WIN32
#if defined(__linux__)
#define RTC_FREQ 1024
static int rtc_fd;
static int start_rtc_timer(void)
{
rtc_fd = open("/dev/rtc", O_RDONLY);
if (rtc_fd < 0)
return -1;
if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
"error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
"type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
goto fail;
}
if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
fail:
close(rtc_fd);
return -1;
}
pit_min_timer_count = PIT_FREQ / RTC_FREQ;
return 0;
}
#else
static int start_rtc_timer(void)
{
return -1;
}
#endif /* !defined(__linux__) */
#endif /* !defined(_WIN32) */
static void init_timers(void)
{
rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
#ifdef _WIN32
{
int count=0;
timerID = timeSetEvent(10, // interval (ms)
0, // resolution
host_alarm_handler, // function
(DWORD)&count, // user parameter
TIME_PERIODIC | TIME_CALLBACK_FUNCTION);
if( !timerID ) {
perror("failed timer alarm");
exit(1);
}
}
pit_min_timer_count = ((uint64_t)10000 * PIT_FREQ) / 1000000;
#else
{
struct sigaction act;
struct itimerval itv;
/* get times() syscall frequency */
timer_freq = sysconf(_SC_CLK_TCK);
/* timer signal */
sigfillset(&act.sa_mask);
act.sa_flags = 0;
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
act.sa_flags |= SA_ONSTACK;
#endif
act.sa_handler = host_alarm_handler;
sigaction(SIGALRM, &act, NULL);
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 1000;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 10 * 1000;
setitimer(ITIMER_REAL, &itv, NULL);
/* we probe the tick duration of the kernel to inform the user if
the emulated kernel requested a too high timer frequency */
getitimer(ITIMER_REAL, &itv);
#if defined(__linux__)
if (itv.it_interval.tv_usec > 1000) {
/* try to use /dev/rtc to have a faster timer */
if (start_rtc_timer() < 0)
goto use_itimer;
/* disable itimer */
itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 0;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 0;
setitimer(ITIMER_REAL, &itv, NULL);
/* use the RTC */
sigaction(SIGIO, &act, NULL);
fcntl(rtc_fd, F_SETFL, O_ASYNC);
fcntl(rtc_fd, F_SETOWN, getpid());
} else
#endif /* defined(__linux__) */
{
use_itimer:
pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec *
PIT_FREQ) / 1000000;
}
}
#endif
}
void quit_timers(void)
{
#ifdef _WIN32
timeKillEvent(timerID);
#endif
}
/***********************************************************/
/* character device */
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
{
return s->chr_write(s, buf, len);
}
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
{
char buf[4096];
va_list ap;
va_start(ap, fmt);
vsnprintf(buf, sizeof(buf), fmt, ap);
qemu_chr_write(s, buf, strlen(buf));
va_end(ap);
}
void qemu_chr_send_event(CharDriverState *s, int event)
{
if (s->chr_send_event)
s->chr_send_event(s, event);
}
void qemu_chr_add_read_handler(CharDriverState *s,
IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
s->chr_add_read_handler(s, fd_can_read, fd_read, opaque);
}
void qemu_chr_add_event_handler(CharDriverState *s, IOEventHandler *chr_event)
{
s->chr_event = chr_event;
}
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
return len;
}
static void null_chr_add_read_handler(CharDriverState *chr,
IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
}
CharDriverState *qemu_chr_open_null(void)
{
CharDriverState *chr;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
chr->chr_write = null_chr_write;
chr->chr_add_read_handler = null_chr_add_read_handler;
return chr;
}
#ifndef _WIN32
typedef struct {
int fd_in, fd_out;
/* for nographic stdio only */
IOCanRWHandler *fd_can_read;
IOReadHandler *fd_read;
void *fd_opaque;
} FDCharDriver;
#define STDIO_MAX_CLIENTS 2
static int stdio_nb_clients;
static CharDriverState *stdio_clients[STDIO_MAX_CLIENTS];
static int unix_write(int fd, const uint8_t *buf, int len1)
{
int ret, len;
len = len1;
while (len > 0) {
ret = write(fd, buf, len);
if (ret < 0) {
if (errno != EINTR && errno != EAGAIN)
return -1;
} else if (ret == 0) {
break;
} else {
buf += ret;
len -= ret;
}
}
return len1 - len;
}
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
{
FDCharDriver *s = chr->opaque;
return unix_write(s->fd_out, buf, len);
}
static void fd_chr_add_read_handler(CharDriverState *chr,
IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
FDCharDriver *s = chr->opaque;
if (nographic && s->fd_in == 0) {
s->fd_can_read = fd_can_read;
s->fd_read = fd_read;
s->fd_opaque = opaque;
} else {
qemu_add_fd_read_handler(s->fd_in, fd_can_read, fd_read, opaque);
}
}
/* open a character device to a unix fd */
CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
{
CharDriverState *chr;
FDCharDriver *s;
chr = qemu_mallocz(sizeof(CharDriverState));
if (!chr)
return NULL;
s = qemu_mallocz(sizeof(FDCharDriver));
if (!s) {
free(chr);
return NULL;
}
s->fd_in = fd_in;
s->fd_out = fd_out;
chr->opaque = s;
chr->chr_write = fd_chr_write;
chr->chr_add_read_handler = fd_chr_add_read_handler;
return chr;
}
/* for STDIO, we handle the case where several clients use it
(nographic mode) */
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
static int term_got_escape, client_index;
void term_print_help(void)
{
printf("\n"
"C-a h print this help\n"
"C-a x exit emulator\n"
"C-a s save disk data back to file (if -snapshot)\n"
"C-a b send break (magic sysrq)\n"
"C-a c switch between console and monitor\n"
"C-a C-a send C-a\n"
);
}
/* called when a char is received */
static void stdio_received_byte(int ch)
{
if (term_got_escape) {
term_got_escape = 0;
switch(ch) {
case 'h':
term_print_help();
break;
case 'x':
exit(0);
break;
case 's':
{
int i;
for (i = 0; i < MAX_DISKS; i++) {
if (bs_table[i])
bdrv_commit(bs_table[i]);
}
}
break;
case 'b':
if (client_index < stdio_nb_clients) {
CharDriverState *chr;
FDCharDriver *s;
chr = stdio_clients[client_index];
s = chr->opaque;
chr->chr_event(s->fd_opaque, CHR_EVENT_BREAK);
}
break;
case 'c':
client_index++;
if (client_index >= stdio_nb_clients)
client_index = 0;
if (client_index == 0) {
/* send a new line in the monitor to get the prompt */
ch = '\r';
goto send_char;
}
break;
case TERM_ESCAPE:
goto send_char;
}
} else if (ch == TERM_ESCAPE) {
term_got_escape = 1;
} else {
send_char:
if (client_index < stdio_nb_clients) {
uint8_t buf[1];
CharDriverState *chr;
FDCharDriver *s;
chr = stdio_clients[client_index];
s = chr->opaque;
buf[0] = ch;
/* XXX: should queue the char if the device is not
ready */
if (s->fd_can_read(s->fd_opaque) > 0)
s->fd_read(s->fd_opaque, buf, 1);
}
}
}
static int stdio_can_read(void *opaque)
{
/* XXX: not strictly correct */
return 1;
}
static void stdio_read(void *opaque, const uint8_t *buf, int size)
{
int i;
for(i = 0; i < size; i++)
stdio_received_byte(buf[i]);
}
/* init terminal so that we can grab keys */
static struct termios oldtty;
static int old_fd0_flags;
static void term_exit(void)
{
tcsetattr (0, TCSANOW, &oldtty);
fcntl(0, F_SETFL, old_fd0_flags);
}
static void term_init(void)
{
struct termios tty;
tcgetattr (0, &tty);
oldtty = tty;
old_fd0_flags = fcntl(0, F_GETFL);
tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
|INLCR|IGNCR|ICRNL|IXON);
tty.c_oflag |= OPOST;
tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
/* if graphical mode, we allow Ctrl-C handling */
if (nographic)
tty.c_lflag &= ~ISIG;
tty.c_cflag &= ~(CSIZE|PARENB);
tty.c_cflag |= CS8;
tty.c_cc[VMIN] = 1;
tty.c_cc[VTIME] = 0;
tcsetattr (0, TCSANOW, &tty);
atexit(term_exit);
fcntl(0, F_SETFL, O_NONBLOCK);
}
CharDriverState *qemu_chr_open_stdio(void)
{
CharDriverState *chr;
if (nographic) {
if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
return NULL;
chr = qemu_chr_open_fd(0, 1);
if (stdio_nb_clients == 0)
qemu_add_fd_read_handler(0, stdio_can_read, stdio_read, NULL);
client_index = stdio_nb_clients;
} else {
if (stdio_nb_clients != 0)
return NULL;
chr = qemu_chr_open_fd(0, 1);
}
stdio_clients[stdio_nb_clients++] = chr;
if (stdio_nb_clients == 1) {
/* set the terminal in raw mode */
term_init();
}
return chr;
}
#if defined(__linux__)
CharDriverState *qemu_chr_open_pty(void)
{
char slave_name[1024];
int master_fd, slave_fd;
/* Not satisfying */
if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
return NULL;
}
fprintf(stderr, "char device redirected to %s\n", slave_name);
return qemu_chr_open_fd(master_fd, master_fd);
}
#else
CharDriverState *qemu_chr_open_pty(void)
{
return NULL;
}
#endif
#endif /* !defined(_WIN32) */
CharDriverState *qemu_chr_open(const char *filename)
{
if (!strcmp(filename, "vc")) {
return text_console_init(&display_state);
} else if (!strcmp(filename, "null")) {
return qemu_chr_open_null();
} else
#ifndef _WIN32
if (!strcmp(filename, "pty")) {
return qemu_chr_open_pty();
} else if (!strcmp(filename, "stdio")) {
return qemu_chr_open_stdio();
} else
#endif
{
return NULL;
}
}
/***********************************************************/
/* Linux network device redirectors */
void hex_dump(FILE *f, const uint8_t *buf, int size)
{
int len, i, j, c;
for(i=0;i<size;i+=16) {
len = size - i;
if (len > 16)
len = 16;
fprintf(f, "%08x ", i);
for(j=0;j<16;j++) {
if (j < len)
fprintf(f, " %02x", buf[i+j]);
else
fprintf(f, " ");
}
fprintf(f, " ");
for(j=0;j<len;j++) {
c = buf[i+j];
if (c < ' ' || c > '~')
c = '.';
fprintf(f, "%c", c);
}
fprintf(f, "\n");
}
}
void qemu_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
{
nd->send_packet(nd, buf, size);
}
void qemu_add_read_packet(NetDriverState *nd, IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
nd->add_read_packet(nd, fd_can_read, fd_read, opaque);
}
/* dummy network adapter */
static void dummy_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
{
}
static void dummy_add_read_packet(NetDriverState *nd,
IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
}
static int net_dummy_init(NetDriverState *nd)
{
nd->send_packet = dummy_send_packet;
nd->add_read_packet = dummy_add_read_packet;
pstrcpy(nd->ifname, sizeof(nd->ifname), "dummy");
return 0;
}
#if defined(CONFIG_SLIRP)
/* slirp network adapter */
static void *slirp_fd_opaque;
static IOCanRWHandler *slirp_fd_can_read;
static IOReadHandler *slirp_fd_read;
static int slirp_inited;
int slirp_can_output(void)
{
return slirp_fd_can_read(slirp_fd_opaque);
}
void slirp_output(const uint8_t *pkt, int pkt_len)
{
#if 0
printf("output:\n");
hex_dump(stdout, pkt, pkt_len);
#endif
slirp_fd_read(slirp_fd_opaque, pkt, pkt_len);
}
static void slirp_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
{
#if 0
printf("input:\n");
hex_dump(stdout, buf, size);
#endif
slirp_input(buf, size);
}
static void slirp_add_read_packet(NetDriverState *nd,
IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
slirp_fd_opaque = opaque;
slirp_fd_can_read = fd_can_read;
slirp_fd_read = fd_read;
}
static int net_slirp_init(NetDriverState *nd)
{
if (!slirp_inited) {
slirp_inited = 1;
slirp_init();
}
nd->send_packet = slirp_send_packet;
nd->add_read_packet = slirp_add_read_packet;
pstrcpy(nd->ifname, sizeof(nd->ifname), "slirp");
return 0;
}
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
{
const char *p, *p1;
int len;
p = *pp;
p1 = strchr(p, sep);
if (!p1)
return -1;
len = p1 - p;
p1++;
if (buf_size > 0) {
if (len > buf_size - 1)
len = buf_size - 1;
memcpy(buf, p, len);
buf[len] = '\0';
}
*pp = p1;
return 0;
}
static void net_slirp_redir(const char *redir_str)
{
int is_udp;
char buf[256], *r;
const char *p;
struct in_addr guest_addr;
int host_port, guest_port;
if (!slirp_inited) {
slirp_inited = 1;
slirp_init();
}
p = redir_str;
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
goto fail;
if (!strcmp(buf, "tcp")) {
is_udp = 0;
} else if (!strcmp(buf, "udp")) {
is_udp = 1;
} else {
goto fail;
}
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
goto fail;
host_port = strtol(buf, &r, 0);
if (r == buf)
goto fail;
if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
goto fail;
if (buf[0] == '\0') {
pstrcpy(buf, sizeof(buf), "10.0.2.15");
}
if (!inet_aton(buf, &guest_addr))
goto fail;
guest_port = strtol(p, &r, 0);
if (r == p)
goto fail;
if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
fprintf(stderr, "qemu: could not set up redirection\n");
exit(1);
}
return;
fail:
fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
exit(1);
}
#ifndef _WIN32
char smb_dir[1024];
static void smb_exit(void)
{
DIR *d;
struct dirent *de;
char filename[1024];
/* erase all the files in the directory */
d = opendir(smb_dir);
for(;;) {
de = readdir(d);
if (!de)
break;
if (strcmp(de->d_name, ".") != 0 &&
strcmp(de->d_name, "..") != 0) {
snprintf(filename, sizeof(filename), "%s/%s",
smb_dir, de->d_name);
unlink(filename);
}
}
closedir(d);
rmdir(smb_dir);
}
/* automatic user mode samba server configuration */
void net_slirp_smb(const char *exported_dir)
{
char smb_conf[1024];
char smb_cmdline[1024];
FILE *f;
if (!slirp_inited) {
slirp_inited = 1;
slirp_init();
}
/* XXX: better tmp dir construction */
snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
if (mkdir(smb_dir, 0700) < 0) {
fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
exit(1);
}
snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
f = fopen(smb_conf, "w");
if (!f) {
fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
exit(1);
}
fprintf(f,
"[global]\n"
"pid directory=%s\n"
"lock directory=%s\n"
"log file=%s/log.smbd\n"
"smb passwd file=%s/smbpasswd\n"
"security = share\n"
"[qemu]\n"
"path=%s\n"
"read only=no\n"
"guest ok=yes\n",
smb_dir,
smb_dir,
smb_dir,
smb_dir,
exported_dir
);
fclose(f);
atexit(smb_exit);
snprintf(smb_cmdline, sizeof(smb_cmdline), "/usr/sbin/smbd -s %s",
smb_conf);
slirp_add_exec(0, smb_cmdline, 4, 139);
}
#endif /* !defined(_WIN32) */
#endif /* CONFIG_SLIRP */
#if !defined(_WIN32)
#ifdef _BSD
static int tun_open(char *ifname, int ifname_size)
{
int fd;
char *dev;
struct stat s;
fd = open("/dev/tap", O_RDWR);
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
return -1;
}
fstat(fd, &s);
dev = devname(s.st_rdev, S_IFCHR);
pstrcpy(ifname, ifname_size, dev);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#else
static int tun_open(char *ifname, int ifname_size)
{
struct ifreq ifr;
int fd, ret;
fd = open("/dev/net/tun", O_RDWR);
if (fd < 0) {
fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
return -1;
}
memset(&ifr, 0, sizeof(ifr));
ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
if (ret != 0) {
fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
close(fd);
return -1;
}
printf("Connected to host network interface: %s\n", ifr.ifr_name);
pstrcpy(ifname, ifname_size, ifr.ifr_name);
fcntl(fd, F_SETFL, O_NONBLOCK);
return fd;
}
#endif
static void tun_send_packet(NetDriverState *nd, const uint8_t *buf, int size)
{
write(nd->fd, buf, size);
}
static void tun_add_read_packet(NetDriverState *nd,
IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
qemu_add_fd_read_handler(nd->fd, fd_can_read, fd_read, opaque);
}
static int net_tun_init(NetDriverState *nd)
{
int pid, status;
char *args[3];
char **parg;
nd->fd = tun_open(nd->ifname, sizeof(nd->ifname));
if (nd->fd < 0)
return -1;
/* try to launch network init script */
pid = fork();
if (pid >= 0) {
if (pid == 0) {
parg = args;
*parg++ = network_script;
*parg++ = nd->ifname;
*parg++ = NULL;
execv(network_script, args);
exit(1);
}
while (waitpid(pid, &status, 0) != pid);
if (!WIFEXITED(status) ||
WEXITSTATUS(status) != 0) {
fprintf(stderr, "%s: could not launch network script\n",
network_script);
}
}
nd->send_packet = tun_send_packet;
nd->add_read_packet = tun_add_read_packet;
return 0;
}
static int net_fd_init(NetDriverState *nd, int fd)
{
nd->fd = fd;
nd->send_packet = tun_send_packet;
nd->add_read_packet = tun_add_read_packet;
pstrcpy(nd->ifname, sizeof(nd->ifname), "tunfd");
return 0;
}
#endif /* !_WIN32 */
/***********************************************************/
/* dumb display */
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
{
}
static void dumb_resize(DisplayState *ds, int w, int h)
{
}
static void dumb_refresh(DisplayState *ds)
{
vga_update_display();
}
void dumb_display_init(DisplayState *ds)
{
ds->data = NULL;
ds->linesize = 0;
ds->depth = 0;
ds->dpy_update = dumb_update;
ds->dpy_resize = dumb_resize;
ds->dpy_refresh = dumb_refresh;
}
#if !defined(CONFIG_SOFTMMU)
/***********************************************************/
/* cpu signal handler */
static void host_segv_handler(int host_signum, siginfo_t *info,
void *puc)
{
if (cpu_signal_handler(host_signum, info, puc))
return;
if (stdio_nb_clients > 0)
term_exit();
abort();
}
#endif
/***********************************************************/
/* I/O handling */
#define MAX_IO_HANDLERS 64
typedef struct IOHandlerRecord {
int fd;
IOCanRWHandler *fd_can_read;
IOReadHandler *fd_read;
void *opaque;
/* temporary data */
struct pollfd *ufd;
int max_size;
struct IOHandlerRecord *next;
} IOHandlerRecord;
static IOHandlerRecord *first_io_handler;
int qemu_add_fd_read_handler(int fd, IOCanRWHandler *fd_can_read,
IOReadHandler *fd_read, void *opaque)
{
IOHandlerRecord *ioh;
ioh = qemu_mallocz(sizeof(IOHandlerRecord));
if (!ioh)
return -1;
ioh->fd = fd;
ioh->fd_can_read = fd_can_read;
ioh->fd_read = fd_read;
ioh->opaque = opaque;
ioh->next = first_io_handler;
first_io_handler = ioh;
return 0;
}
void qemu_del_fd_read_handler(int fd)
{
IOHandlerRecord **pioh, *ioh;
pioh = &first_io_handler;
for(;;) {
ioh = *pioh;
if (ioh == NULL)
break;
if (ioh->fd == fd) {
*pioh = ioh->next;
break;
}
pioh = &ioh->next;
}
}
/***********************************************************/
/* savevm/loadvm support */
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
{
fwrite(buf, 1, size, f);
}
void qemu_put_byte(QEMUFile *f, int v)
{
fputc(v, f);
}
void qemu_put_be16(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be32(QEMUFile *f, unsigned int v)
{
qemu_put_byte(f, v >> 24);
qemu_put_byte(f, v >> 16);
qemu_put_byte(f, v >> 8);
qemu_put_byte(f, v);
}
void qemu_put_be64(QEMUFile *f, uint64_t v)
{
qemu_put_be32(f, v >> 32);
qemu_put_be32(f, v);
}
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size)
{
return fread(buf, 1, size, f);
}
int qemu_get_byte(QEMUFile *f)
{
int v;
v = fgetc(f);
if (v == EOF)
return 0;
else
return v;
}
unsigned int qemu_get_be16(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
unsigned int qemu_get_be32(QEMUFile *f)
{
unsigned int v;
v = qemu_get_byte(f) << 24;
v |= qemu_get_byte(f) << 16;
v |= qemu_get_byte(f) << 8;
v |= qemu_get_byte(f);
return v;
}
uint64_t qemu_get_be64(QEMUFile *f)
{
uint64_t v;
v = (uint64_t)qemu_get_be32(f) << 32;
v |= qemu_get_be32(f);
return v;
}
int64_t qemu_ftell(QEMUFile *f)
{
return ftell(f);
}
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
{
if (fseek(f, pos, whence) < 0)
return -1;
return ftell(f);
}
typedef struct SaveStateEntry {
char idstr[256];
int instance_id;
int version_id;
SaveStateHandler *save_state;
LoadStateHandler *load_state;
void *opaque;
struct SaveStateEntry *next;
} SaveStateEntry;
static SaveStateEntry *first_se;
int register_savevm(const char *idstr,
int instance_id,
int version_id,
SaveStateHandler *save_state,
LoadStateHandler *load_state,
void *opaque)
{
SaveStateEntry *se, **pse;
se = qemu_malloc(sizeof(SaveStateEntry));
if (!se)
return -1;
pstrcpy(se->idstr, sizeof(se->idstr), idstr);
se->instance_id = instance_id;
se->version_id = version_id;
se->save_state = save_state;
se->load_state = load_state;
se->opaque = opaque;
se->next = NULL;
/* add at the end of list */
pse = &first_se;
while (*pse != NULL)
pse = &(*pse)->next;
*pse = se;
return 0;
}
#define QEMU_VM_FILE_MAGIC 0x5145564d
#define QEMU_VM_FILE_VERSION 0x00000001
int qemu_savevm(const char *filename)
{
SaveStateEntry *se;
QEMUFile *f;
int len, len_pos, cur_pos, saved_vm_running, ret;
saved_vm_running = vm_running;
vm_stop(0);
f = fopen(filename, "wb");
if (!f) {
ret = -1;
goto the_end;
}
qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
qemu_put_be32(f, QEMU_VM_FILE_VERSION);
for(se = first_se; se != NULL; se = se->next) {
/* ID string */
len = strlen(se->idstr);
qemu_put_byte(f, len);
qemu_put_buffer(f, se->idstr, len);
qemu_put_be32(f, se->instance_id);
qemu_put_be32(f, se->version_id);
/* record size: filled later */
len_pos = ftell(f);
qemu_put_be32(f, 0);
se->save_state(f, se->opaque);
/* fill record size */
cur_pos = ftell(f);
len = ftell(f) - len_pos - 4;
fseek(f, len_pos, SEEK_SET);
qemu_put_be32(f, len);
fseek(f, cur_pos, SEEK_SET);
}
fclose(f);
ret = 0;
the_end:
if (saved_vm_running)
vm_start();
return ret;
}
static SaveStateEntry *find_se(const char *idstr, int instance_id)
{
SaveStateEntry *se;
for(se = first_se; se != NULL; se = se->next) {
if (!strcmp(se->idstr, idstr) &&
instance_id == se->instance_id)
return se;
}
return NULL;
}
int qemu_loadvm(const char *filename)
{
SaveStateEntry *se;
QEMUFile *f;
int len, cur_pos, ret, instance_id, record_len, version_id;
int saved_vm_running;
unsigned int v;
char idstr[256];
saved_vm_running = vm_running;
vm_stop(0);
f = fopen(filename, "rb");
if (!f) {
ret = -1;
goto the_end;
}
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_MAGIC)
goto fail;
v = qemu_get_be32(f);
if (v != QEMU_VM_FILE_VERSION) {
fail:
fclose(f);
ret = -1;
goto the_end;
}
for(;;) {
#if defined (DO_TB_FLUSH)
tb_flush(global_env);
#endif
len = qemu_get_byte(f);
if (feof(f))
break;
qemu_get_buffer(f, idstr, len);
idstr[len] = '\0';
instance_id = qemu_get_be32(f);
version_id = qemu_get_be32(f);
record_len = qemu_get_be32(f);
#if 0
printf("idstr=%s instance=0x%x version=%d len=%d\n",
idstr, instance_id, version_id, record_len);
#endif
cur_pos = ftell(f);
se = find_se(idstr, instance_id);
if (!se) {
fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
instance_id, idstr);
} else {
ret = se->load_state(f, se->opaque, version_id);
if (ret < 0) {
fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
instance_id, idstr);
}
}
/* always seek to exact end of record */
qemu_fseek(f, cur_pos + record_len, SEEK_SET);
}
fclose(f);
ret = 0;
the_end:
if (saved_vm_running)
vm_start();
return ret;
}
/***********************************************************/
/* cpu save/restore */
#if defined(TARGET_I386)
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
{
qemu_put_be32(f, dt->selector);
qemu_put_be32(f, (uint32_t)dt->base);
qemu_put_be32(f, dt->limit);
qemu_put_be32(f, dt->flags);
}
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
{
dt->selector = qemu_get_be32(f);
dt->base = (uint8_t *)qemu_get_be32(f);
dt->limit = qemu_get_be32(f);
dt->flags = qemu_get_be32(f);
}
void cpu_save(QEMUFile *f, void *opaque)
{
CPUState *env = opaque;
uint16_t fptag, fpus, fpuc;
uint32_t hflags;
int i;
for(i = 0; i < 8; i++)
qemu_put_be32s(f, &env->regs[i]);
qemu_put_be32s(f, &env->eip);
qemu_put_be32s(f, &env->eflags);
qemu_put_be32s(f, &env->eflags);
hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
qemu_put_be32s(f, &hflags);
/* FPU */
fpuc = env->fpuc;
fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i=7; i>=0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
}
}
qemu_put_be16s(f, &fpuc);
qemu_put_be16s(f, &fpus);
qemu_put_be16s(f, &fptag);
for(i = 0; i < 8; i++) {
uint64_t mant;
uint16_t exp;
cpu_get_fp80(&mant, &exp, env->fpregs[i]);
qemu_put_be64(f, mant);
qemu_put_be16(f, exp);
}
for(i = 0; i < 6; i++)
cpu_put_seg(f, &env->segs[i]);
cpu_put_seg(f, &env->ldt);
cpu_put_seg(f, &env->tr);
cpu_put_seg(f, &env->gdt);
cpu_put_seg(f, &env->idt);
qemu_put_be32s(f, &env->sysenter_cs);
qemu_put_be32s(f, &env->sysenter_esp);
qemu_put_be32s(f, &env->sysenter_eip);
qemu_put_be32s(f, &env->cr[0]);
qemu_put_be32s(f, &env->cr[2]);
qemu_put_be32s(f, &env->cr[3]);
qemu_put_be32s(f, &env->cr[4]);
for(i = 0; i < 8; i++)
qemu_put_be32s(f, &env->dr[i]);
/* MMU */
qemu_put_be32s(f, &env->a20_mask);
}
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
CPUState *env = opaque;
int i;
uint32_t hflags;
uint16_t fpus, fpuc, fptag;
if (version_id != 2)
return -EINVAL;
for(i = 0; i < 8; i++)
qemu_get_be32s(f, &env->regs[i]);
qemu_get_be32s(f, &env->eip);
qemu_get_be32s(f, &env->eflags);
qemu_get_be32s(f, &env->eflags);
qemu_get_be32s(f, &hflags);
qemu_get_be16s(f, &fpuc);
qemu_get_be16s(f, &fpus);
qemu_get_be16s(f, &fptag);
for(i = 0; i < 8; i++) {
uint64_t mant;
uint16_t exp;
mant = qemu_get_be64(f);
exp = qemu_get_be16(f);
env->fpregs[i] = cpu_set_fp80(mant, exp);
}
env->fpuc = fpuc;
env->fpstt = (fpus >> 11) & 7;
env->fpus = fpus & ~0x3800;
for(i = 0; i < 8; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
for(i = 0; i < 6; i++)
cpu_get_seg(f, &env->segs[i]);
cpu_get_seg(f, &env->ldt);
cpu_get_seg(f, &env->tr);
cpu_get_seg(f, &env->gdt);
cpu_get_seg(f, &env->idt);
qemu_get_be32s(f, &env->sysenter_cs);
qemu_get_be32s(f, &env->sysenter_esp);
qemu_get_be32s(f, &env->sysenter_eip);
qemu_get_be32s(f, &env->cr[0]);
qemu_get_be32s(f, &env->cr[2]);
qemu_get_be32s(f, &env->cr[3]);
qemu_get_be32s(f, &env->cr[4]);
for(i = 0; i < 8; i++)
qemu_get_be32s(f, &env->dr[i]);
/* MMU */
qemu_get_be32s(f, &env->a20_mask);
/* XXX: compute hflags from scratch, except for CPL and IIF */
env->hflags = hflags;
tlb_flush(env, 1);
return 0;
}
#elif defined(TARGET_PPC)
void cpu_save(QEMUFile *f, void *opaque)
{
}
int cpu_load(QEMUFile *f, void *opaque, int version_id)
{
return 0;
}
#else
#warning No CPU save/restore functions
#endif
/***********************************************************/
/* ram save/restore */
/* we just avoid storing empty pages */
static void ram_put_page(QEMUFile *f, const uint8_t *buf, int len)
{
int i, v;
v = buf[0];
for(i = 1; i < len; i++) {
if (buf[i] != v)
goto normal_save;
}
qemu_put_byte(f, 1);
qemu_put_byte(f, v);
return;
normal_save:
qemu_put_byte(f, 0);
qemu_put_buffer(f, buf, len);
}
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
{
int v;
v = qemu_get_byte(f);
switch(v) {
case 0:
if (qemu_get_buffer(f, buf, len) != len)
return -EIO;
break;
case 1:
v = qemu_get_byte(f);
memset(buf, v, len);
break;
default:
return -EINVAL;
}
return 0;
}
static void ram_save(QEMUFile *f, void *opaque)
{
int i;
qemu_put_be32(f, phys_ram_size);
for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
ram_put_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
}
}
static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
int i, ret;
if (version_id != 1)
return -EINVAL;
if (qemu_get_be32(f) != phys_ram_size)
return -EINVAL;
for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
if (ret)
return ret;
}
return 0;
}
/***********************************************************/
/* main execution loop */
void gui_update(void *opaque)
{
display_state.dpy_refresh(&display_state);
qemu_mod_timer(gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
}
/* XXX: support several handlers */
VMStopHandler *vm_stop_cb;
VMStopHandler *vm_stop_opaque;
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
vm_stop_cb = cb;
vm_stop_opaque = opaque;
return 0;
}
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
{
vm_stop_cb = NULL;
}
void vm_start(void)
{
if (!vm_running) {
cpu_enable_ticks();
vm_running = 1;
}
}
void vm_stop(int reason)
{
if (vm_running) {
cpu_disable_ticks();
vm_running = 0;
if (reason != 0) {
if (vm_stop_cb) {
vm_stop_cb(vm_stop_opaque, reason);
}
}
}
}
/* reset/shutdown handler */
typedef struct QEMUResetEntry {
QEMUResetHandler *func;
void *opaque;
struct QEMUResetEntry *next;
} QEMUResetEntry;
static QEMUResetEntry *first_reset_entry;
static int reset_requested;
static int shutdown_requested;
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry **pre, *re;
pre = &first_reset_entry;
while (*pre != NULL)
pre = &(*pre)->next;
re = qemu_mallocz(sizeof(QEMUResetEntry));
re->func = func;
re->opaque = opaque;
re->next = NULL;
*pre = re;
}
void qemu_system_reset(void)
{
QEMUResetEntry *re;
/* reset all devices */
for(re = first_reset_entry; re != NULL; re = re->next) {
re->func(re->opaque);
}
}
void qemu_system_reset_request(void)
{
reset_requested = 1;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
}
void qemu_system_shutdown_request(void)
{
shutdown_requested = 1;
cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
}
static void main_cpu_reset(void *opaque)
{
#ifdef TARGET_I386
CPUState *env = opaque;
cpu_reset(env);
#endif
}
void main_loop_wait(int timeout)
{
#ifndef _WIN32
struct pollfd ufds[MAX_IO_HANDLERS + 1], *pf;
IOHandlerRecord *ioh, *ioh_next;
uint8_t buf[4096];
int n, max_size;
#endif
int ret;
#ifdef _WIN32
if (timeout > 0)
Sleep(timeout);
#else
/* poll any events */
/* XXX: separate device handlers from system ones */
pf = ufds;
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (!ioh->fd_can_read) {
max_size = 0;
pf->fd = ioh->fd;
pf->events = POLLIN;
ioh->ufd = pf;
pf++;
} else {
max_size = ioh->fd_can_read(ioh->opaque);
if (max_size > 0) {
if (max_size > sizeof(buf))
max_size = sizeof(buf);
pf->fd = ioh->fd;
pf->events = POLLIN;
ioh->ufd = pf;
pf++;
} else {
ioh->ufd = NULL;
}
}
ioh->max_size = max_size;
}
ret = poll(ufds, pf - ufds, timeout);
if (ret > 0) {
/* XXX: better handling of removal */
for(ioh = first_io_handler; ioh != NULL; ioh = ioh_next) {
ioh_next = ioh->next;
pf = ioh->ufd;
if (pf) {
if (pf->revents & POLLIN) {
if (ioh->max_size == 0) {
/* just a read event */
ioh->fd_read(ioh->opaque, NULL, 0);
} else {
n = read(ioh->fd, buf, ioh->max_size);
if (n >= 0) {
ioh->fd_read(ioh->opaque, buf, n);
} else if (errno != EAGAIN) {
ioh->fd_read(ioh->opaque, NULL, -errno);
}
}
}
}
}
}
#endif /* !defined(_WIN32) */
#if defined(CONFIG_SLIRP)
/* XXX: merge with poll() */
if (slirp_inited) {
fd_set rfds, wfds, xfds;
int nfds;
struct timeval tv;
nfds = -1;
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
tv.tv_sec = 0;
tv.tv_usec = 0;
ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
if (ret >= 0) {
slirp_select_poll(&rfds, &wfds, &xfds);
}
}
#endif
if (vm_running) {
qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
qemu_get_clock(vm_clock));
if (audio_enabled) {
/* XXX: add explicit timer */
SB16_run();
}
/* run dma transfers, if any */
DMA_run();
}
/* real time timers */
qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
qemu_get_clock(rt_clock));
}
int main_loop(void)
{
int ret, timeout;
CPUState *env = global_env;
for(;;) {
if (vm_running) {
ret = cpu_exec(env);
if (shutdown_requested) {
ret = EXCP_INTERRUPT;
break;
}
if (reset_requested) {
reset_requested = 0;
qemu_system_reset();
ret = EXCP_INTERRUPT;
}
if (ret == EXCP_DEBUG) {
vm_stop(EXCP_DEBUG);
}
/* if hlt instruction, we wait until the next IRQ */
/* XXX: use timeout computed from timers */
if (ret == EXCP_HLT)
timeout = 10;
else
timeout = 0;
} else {
timeout = 10;
}
main_loop_wait(timeout);
}
cpu_disable_ticks();
return ret;
}
void help(void)
{
printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2004 Fabrice Bellard\n"
"usage: %s [options] [disk_image]\n"
"\n"
"'disk_image' is a raw hard image image for IDE hard disk 0\n"
"\n"
"Standard options:\n"
"-fda/-fdb file use 'file' as floppy disk 0/1 image\n"
"-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n"
"-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n"
"-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
"-boot [a|b|c|d] boot on floppy (a, b), hard disk (c) or CD-ROM (d)\n"
"-snapshot write to temporary files instead of disk image files\n"
"-m megs set virtual RAM size to megs MB [default=%d]\n"
"-nographic disable graphical output and redirect serial I/Os to console\n"
"-enable-audio enable audio support\n"
"-localtime set the real time clock to local time [default=utc]\n"
#ifdef TARGET_PPC
"-prep Simulate a PREP system (default is PowerMAC)\n"
"-g WxH[xDEPTH] Set the initial VGA graphic mode\n"
#endif
"\n"
"Network options:\n"
"-nics n simulate 'n' network cards [default=1]\n"
"-macaddr addr set the mac address of the first interface\n"
"-n script set tap/tun network init script [default=%s]\n"
"-tun-fd fd use this fd as already opened tap/tun interface\n"
#ifdef CONFIG_SLIRP
"-user-net use user mode network stack [default if no tap/tun script]\n"
"-tftp prefix allow tftp access to files starting with prefix [-user-net]\n"
#ifndef _WIN32
"-smb dir allow SMB access to files in 'dir' [-user-net]\n"
#endif
"-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
" redirect TCP or UDP connections from host to guest [-user-net]\n"
#endif
"-dummy-net use dummy network stack\n"
"\n"
"Linux boot specific:\n"
"-kernel bzImage use 'bzImage' as kernel image\n"
"-append cmdline use 'cmdline' as kernel command line\n"
"-initrd file use 'file' as initial ram disk\n"
"\n"
"Debug/Expert options:\n"
"-monitor dev redirect the monitor to char device 'dev'\n"
"-serial dev redirect the serial port to char device 'dev'\n"
"-S freeze CPU at startup (use 'c' to start execution)\n"
"-s wait gdb connection to port %d\n"
"-p port change gdb connection port\n"
"-d item1,... output log to %s (use -d ? for a list of log items)\n"
"-hdachs c,h,s force hard disk 0 geometry (usually qemu can guess it)\n"
"-L path set the directory for the BIOS and VGA BIOS\n"
#ifdef USE_CODE_COPY
"-no-code-copy disable code copy acceleration\n"
#endif
#ifdef TARGET_I386
"-isa simulate an ISA-only system (default is PCI system)\n"
"-std-vga simulate a standard VGA card with VESA Bochs Extensions\n"
" (default is CL-GD5446 PCI VGA)\n"
#endif
"\n"
"During emulation, the following keys are useful:\n"
"ctrl-shift-f toggle full screen\n"
"ctrl-shift-Fn switch to virtual console 'n'\n"
"ctrl-shift toggle mouse and keyboard grab\n"
"\n"
"When using -nographic, press 'ctrl-a h' to get some help.\n"
,
#ifdef CONFIG_SOFTMMU
"qemu",
#else
"qemu-fast",
#endif
DEFAULT_RAM_SIZE,
DEFAULT_NETWORK_SCRIPT,
DEFAULT_GDBSTUB_PORT,
"/tmp/qemu.log");
#ifndef CONFIG_SOFTMMU
printf("\n"
"NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
"work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
"PC emulation.\n");
#endif
exit(1);
}
#define HAS_ARG 0x0001
enum {
QEMU_OPTION_h,
QEMU_OPTION_fda,
QEMU_OPTION_fdb,
QEMU_OPTION_hda,
QEMU_OPTION_hdb,
QEMU_OPTION_hdc,
QEMU_OPTION_hdd,
QEMU_OPTION_cdrom,
QEMU_OPTION_boot,
QEMU_OPTION_snapshot,
QEMU_OPTION_m,
QEMU_OPTION_nographic,
QEMU_OPTION_enable_audio,
QEMU_OPTION_nics,
QEMU_OPTION_macaddr,
QEMU_OPTION_n,
QEMU_OPTION_tun_fd,
QEMU_OPTION_user_net,
QEMU_OPTION_tftp,
QEMU_OPTION_smb,
QEMU_OPTION_redir,
QEMU_OPTION_dummy_net,
QEMU_OPTION_kernel,
QEMU_OPTION_append,
QEMU_OPTION_initrd,
QEMU_OPTION_S,
QEMU_OPTION_s,
QEMU_OPTION_p,
QEMU_OPTION_d,
QEMU_OPTION_hdachs,
QEMU_OPTION_L,
QEMU_OPTION_no_code_copy,
QEMU_OPTION_pci,
QEMU_OPTION_isa,
QEMU_OPTION_prep,
QEMU_OPTION_localtime,
QEMU_OPTION_cirrusvga,
QEMU_OPTION_g,
QEMU_OPTION_std_vga,
QEMU_OPTION_monitor,
QEMU_OPTION_serial,
};
typedef struct QEMUOption {
const char *name;
int flags;
int index;
} QEMUOption;
const QEMUOption qemu_options[] = {
{ "h", 0, QEMU_OPTION_h },
{ "fda", HAS_ARG, QEMU_OPTION_fda },
{ "fdb", HAS_ARG, QEMU_OPTION_fdb },
{ "hda", HAS_ARG, QEMU_OPTION_hda },
{ "hdb", HAS_ARG, QEMU_OPTION_hdb },
{ "hdc", HAS_ARG, QEMU_OPTION_hdc },
{ "hdd", HAS_ARG, QEMU_OPTION_hdd },
{ "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
{ "boot", HAS_ARG, QEMU_OPTION_boot },
{ "snapshot", 0, QEMU_OPTION_snapshot },
{ "m", HAS_ARG, QEMU_OPTION_m },
{ "nographic", 0, QEMU_OPTION_nographic },
{ "enable-audio", 0, QEMU_OPTION_enable_audio },
{ "nics", HAS_ARG, QEMU_OPTION_nics},
{ "macaddr", HAS_ARG, QEMU_OPTION_macaddr},
{ "n", HAS_ARG, QEMU_OPTION_n },
{ "tun-fd", HAS_ARG, QEMU_OPTION_tun_fd },
#ifdef CONFIG_SLIRP
{ "user-net", 0, QEMU_OPTION_user_net },
{ "tftp", HAS_ARG, QEMU_OPTION_tftp },
#ifndef _WIN32
{ "smb", HAS_ARG, QEMU_OPTION_smb },
#endif
{ "redir", HAS_ARG, QEMU_OPTION_redir },
#endif
{ "dummy-net", 0, QEMU_OPTION_dummy_net },
{ "kernel", HAS_ARG, QEMU_OPTION_kernel },
{ "append", HAS_ARG, QEMU_OPTION_append },
{ "initrd", HAS_ARG, QEMU_OPTION_initrd },
{ "S", 0, QEMU_OPTION_S },
{ "s", 0, QEMU_OPTION_s },
{ "p", HAS_ARG, QEMU_OPTION_p },
{ "d", HAS_ARG, QEMU_OPTION_d },
{ "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
{ "L", HAS_ARG, QEMU_OPTION_L },
{ "no-code-copy", 0, QEMU_OPTION_no_code_copy },
#ifdef TARGET_PPC
{ "prep", 0, QEMU_OPTION_prep },
{ "g", 1, QEMU_OPTION_g },
#endif
{ "localtime", 0, QEMU_OPTION_localtime },
{ "isa", 0, QEMU_OPTION_isa },
{ "std-vga", 0, QEMU_OPTION_std_vga },
{ "monitor", 1, QEMU_OPTION_monitor },
{ "serial", 1, QEMU_OPTION_serial },
/* temporary options */
{ "pci", 0, QEMU_OPTION_pci },
{ "cirrusvga", 0, QEMU_OPTION_cirrusvga },
{ NULL },
};
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
/* this stack is only used during signal handling */
#define SIGNAL_STACK_SIZE 32768
static uint8_t *signal_stack;
#endif
/* password input */
static BlockDriverState *get_bdrv(int index)
{
BlockDriverState *bs;
if (index < 4) {
bs = bs_table[index];
} else if (index < 6) {
bs = fd_table[index - 4];
} else {
bs = NULL;
}
return bs;
}
static void read_passwords(void)
{
BlockDriverState *bs;
int i, j;
char password[256];
for(i = 0; i < 6; i++) {
bs = get_bdrv(i);
if (bs && bdrv_is_encrypted(bs)) {
term_printf("%s is encrypted.\n", bdrv_get_device_name(bs));
for(j = 0; j < 3; j++) {
monitor_readline("Password: ",
1, password, sizeof(password));
if (bdrv_set_key(bs, password) == 0)
break;
term_printf("invalid password\n");
}
}
}
}
#define NET_IF_TUN 0
#define NET_IF_USER 1
#define NET_IF_DUMMY 2
int main(int argc, char **argv)
{
#ifdef CONFIG_GDBSTUB
int use_gdbstub, gdbstub_port;
#endif
int i, has_cdrom;
int snapshot, linux_boot;
CPUState *env;
const char *initrd_filename;
const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
const char *kernel_filename, *kernel_cmdline;
DisplayState *ds = &display_state;
int cyls, heads, secs;
int start_emulation = 1;
uint8_t macaddr[6];
int net_if_type, nb_tun_fds, tun_fds[MAX_NICS];
int optind;
const char *r, *optarg;
CharDriverState *monitor_hd;
char monitor_device[128];
char serial_devices[MAX_SERIAL_PORTS][128];
int serial_device_index;
#if !defined(CONFIG_SOFTMMU)
/* we never want that malloc() uses mmap() */
mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
#endif
initrd_filename = NULL;
for(i = 0; i < MAX_FD; i++)
fd_filename[i] = NULL;
for(i = 0; i < MAX_DISKS; i++)
hd_filename[i] = NULL;
ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
vga_ram_size = VGA_RAM_SIZE;
bios_size = BIOS_SIZE;
pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
#ifdef CONFIG_GDBSTUB
use_gdbstub = 0;
gdbstub_port = DEFAULT_GDBSTUB_PORT;
#endif
snapshot = 0;
nographic = 0;
kernel_filename = NULL;
kernel_cmdline = "";
has_cdrom = 1;
cyls = heads = secs = 0;
pstrcpy(monitor_device, sizeof(monitor_device), "vc");
pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
for(i = 1; i < MAX_SERIAL_PORTS; i++)
serial_devices[i][0] = '\0';
serial_device_index = 0;
nb_tun_fds = 0;
net_if_type = -1;
nb_nics = 1;
/* default mac address of the first network interface */
macaddr[0] = 0x52;
macaddr[1] = 0x54;
macaddr[2] = 0x00;
macaddr[3] = 0x12;
macaddr[4] = 0x34;
macaddr[5] = 0x56;
optind = 1;
for(;;) {
if (optind >= argc)
break;
r = argv[optind];
if (r[0] != '-') {
hd_filename[0] = argv[optind++];
} else {
const QEMUOption *popt;
optind++;
popt = qemu_options;
for(;;) {
if (!popt->name) {
fprintf(stderr, "%s: invalid option -- '%s'\n",
argv[0], r);
exit(1);
}
if (!strcmp(popt->name, r + 1))
break;
popt++;
}
if (popt->flags & HAS_ARG) {
if (optind >= argc) {
fprintf(stderr, "%s: option '%s' requires an argument\n",
argv[0], r);
exit(1);
}
optarg = argv[optind++];
} else {
optarg = NULL;
}
switch(popt->index) {
case QEMU_OPTION_initrd:
initrd_filename = optarg;
break;
case QEMU_OPTION_hda:
hd_filename[0] = optarg;
break;
case QEMU_OPTION_hdb:
hd_filename[1] = optarg;
break;
case QEMU_OPTION_snapshot:
snapshot = 1;
break;
case QEMU_OPTION_hdachs:
{
const char *p;
p = optarg;
cyls = strtol(p, (char **)&p, 0);
if (*p != ',')
goto chs_fail;
p++;
heads = strtol(p, (char **)&p, 0);
if (*p != ',')
goto chs_fail;
p++;
secs = strtol(p, (char **)&p, 0);
if (*p != '\0') {
chs_fail:
cyls = 0;
}
}
break;
case QEMU_OPTION_nographic:
pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
nographic = 1;
break;
case QEMU_OPTION_kernel:
kernel_filename = optarg;
break;
case QEMU_OPTION_append:
kernel_cmdline = optarg;
break;
case QEMU_OPTION_tun_fd:
{
const char *p;
int fd;
net_if_type = NET_IF_TUN;
if (nb_tun_fds < MAX_NICS) {
fd = strtol(optarg, (char **)&p, 0);
if (*p != '\0') {
fprintf(stderr, "qemu: invalid fd for network interface %d\n", nb_tun_fds);
exit(1);
}
tun_fds[nb_tun_fds++] = fd;
}
}
break;
case QEMU_OPTION_hdc:
hd_filename[2] = optarg;
has_cdrom = 0;
break;
case QEMU_OPTION_hdd:
hd_filename[3] = optarg;
break;
case QEMU_OPTION_cdrom:
hd_filename[2] = optarg;
has_cdrom = 1;
break;
case QEMU_OPTION_boot:
boot_device = optarg[0];
if (boot_device != 'a' && boot_device != 'b' &&
boot_device != 'c' && boot_device != 'd') {
fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
exit(1);
}
break;
case QEMU_OPTION_fda:
fd_filename[0] = optarg;
break;
case QEMU_OPTION_fdb:
fd_filename[1] = optarg;
break;
case QEMU_OPTION_no_code_copy:
code_copy_enabled = 0;
break;
case QEMU_OPTION_nics:
nb_nics = atoi(optarg);
if (nb_nics < 0 || nb_nics > MAX_NICS) {
fprintf(stderr, "qemu: invalid number of network interfaces\n");
exit(1);
}
break;
case QEMU_OPTION_macaddr:
{
const char *p;
int i;
p = optarg;
for(i = 0; i < 6; i++) {
macaddr[i] = strtol(p, (char **)&p, 16);
if (i == 5) {
if (*p != '\0')
goto macaddr_error;
} else {
if (*p != ':') {
macaddr_error:
fprintf(stderr, "qemu: invalid syntax for ethernet address\n");
exit(1);
}
p++;
}
}
}
break;
#ifdef CONFIG_SLIRP
case QEMU_OPTION_tftp:
tftp_prefix = optarg;
break;
#ifndef _WIN32
case QEMU_OPTION_smb:
net_slirp_smb(optarg);
break;
#endif
case QEMU_OPTION_user_net:
net_if_type = NET_IF_USER;
break;
case QEMU_OPTION_redir:
net_slirp_redir(optarg);
break;
#endif
case QEMU_OPTION_dummy_net:
net_if_type = NET_IF_DUMMY;
break;
case QEMU_OPTION_enable_audio:
audio_enabled = 1;
break;
case QEMU_OPTION_h:
help();
break;
case QEMU_OPTION_m:
ram_size = atoi(optarg) * 1024 * 1024;
if (ram_size <= 0)
help();
if (ram_size > PHYS_RAM_MAX_SIZE) {
fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
PHYS_RAM_MAX_SIZE / (1024 * 1024));
exit(1);
}
break;
case QEMU_OPTION_d:
{
int mask;
CPULogItem *item;
mask = cpu_str_to_log_mask(optarg);
if (!mask) {
printf("Log items (comma separated):\n");
for(item = cpu_log_items; item->mask != 0; item++) {
printf("%-10s %s\n", item->name, item->help);
}
exit(1);
}
cpu_set_log(mask);
}
break;
case QEMU_OPTION_n:
pstrcpy(network_script, sizeof(network_script), optarg);
break;
#ifdef CONFIG_GDBSTUB
case QEMU_OPTION_s:
use_gdbstub = 1;
break;
case QEMU_OPTION_p:
gdbstub_port = atoi(optarg);
break;
#endif
case QEMU_OPTION_L:
bios_dir = optarg;
break;
case QEMU_OPTION_S:
start_emulation = 0;
break;
case QEMU_OPTION_pci:
pci_enabled = 1;
break;
case QEMU_OPTION_isa:
pci_enabled = 0;
break;
case QEMU_OPTION_prep:
prep_enabled = 1;
break;
case QEMU_OPTION_localtime:
rtc_utc = 0;
break;
case QEMU_OPTION_cirrusvga:
cirrus_vga_enabled = 1;
break;
case QEMU_OPTION_std_vga:
cirrus_vga_enabled = 0;
break;
case QEMU_OPTION_g:
{
const char *p;
int w, h, depth;
p = optarg;
w = strtol(p, (char **)&p, 10);
if (w <= 0) {
graphic_error:
fprintf(stderr, "qemu: invalid resolution or depth\n");
exit(1);
}
if (*p != 'x')
goto graphic_error;
p++;
h = strtol(p, (char **)&p, 10);
if (h <= 0)
goto graphic_error;
if (*p == 'x') {
p++;
depth = strtol(p, (char **)&p, 10);
if (depth != 8 && depth != 15 && depth != 16 &&
depth != 24 && depth != 32)
goto graphic_error;
} else if (*p == '\0') {
depth = graphic_depth;
} else {
goto graphic_error;
}
graphic_width = w;
graphic_height = h;
graphic_depth = depth;
}
break;
case QEMU_OPTION_monitor:
pstrcpy(monitor_device, sizeof(monitor_device), optarg);
break;
case QEMU_OPTION_serial:
if (serial_device_index >= MAX_SERIAL_PORTS) {
fprintf(stderr, "qemu: too many serial ports\n");
exit(1);
}
pstrcpy(serial_devices[serial_device_index],
sizeof(serial_devices[0]), optarg);
serial_device_index++;
break;
}
}
}
linux_boot = (kernel_filename != NULL);
if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0' &&
fd_filename[0] == '\0')
help();
/* boot to cd by default if no hard disk */
if (hd_filename[0] == '\0' && boot_device == 'c') {
if (fd_filename[0] != '\0')
boot_device = 'a';
else
boot_device = 'd';
}
#if !defined(CONFIG_SOFTMMU)
/* must avoid mmap() usage of glibc by setting a buffer "by hand" */
{
static uint8_t stdout_buf[4096];
setvbuf(stdout, stdout_buf, _IOLBF, sizeof(stdout_buf));
}
#else
setvbuf(stdout, NULL, _IOLBF, 0);
#endif
/* init host network redirectors */
if (net_if_type == -1) {
net_if_type = NET_IF_TUN;
#if defined(CONFIG_SLIRP)
if (access(network_script, R_OK) < 0) {
net_if_type = NET_IF_USER;
}
#endif
}
for(i = 0; i < nb_nics; i++) {
NetDriverState *nd = &nd_table[i];
nd->index = i;
/* init virtual mac address */
nd->macaddr[0] = macaddr[0];
nd->macaddr[1] = macaddr[1];
nd->macaddr[2] = macaddr[2];
nd->macaddr[3] = macaddr[3];
nd->macaddr[4] = macaddr[4];
nd->macaddr[5] = macaddr[5] + i;
switch(net_if_type) {
#if defined(CONFIG_SLIRP)
case NET_IF_USER:
net_slirp_init(nd);
break;
#endif
#if !defined(_WIN32)
case NET_IF_TUN:
if (i < nb_tun_fds) {
net_fd_init(nd, tun_fds[i]);
} else {
if (net_tun_init(nd) < 0)
net_dummy_init(nd);
}
break;
#endif
case NET_IF_DUMMY:
default:
net_dummy_init(nd);
break;
}
}
/* init the memory */
phys_ram_size = ram_size + vga_ram_size + bios_size;
#ifdef CONFIG_SOFTMMU
#ifdef _BSD
/* mallocs are always aligned on BSD. valloc is better for correctness */
phys_ram_base = valloc(phys_ram_size);
#else
phys_ram_base = memalign(TARGET_PAGE_SIZE, phys_ram_size);
#endif
if (!phys_ram_base) {
fprintf(stderr, "Could not allocate physical memory\n");
exit(1);
}
#else
/* as we must map the same page at several addresses, we must use
a fd */
{
const char *tmpdir;
tmpdir = getenv("QEMU_TMPDIR");
if (!tmpdir)
tmpdir = "/tmp";
snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
if (mkstemp(phys_ram_file) < 0) {
fprintf(stderr, "Could not create temporary memory file '%s'\n",
phys_ram_file);
exit(1);
}
phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
if (phys_ram_fd < 0) {
fprintf(stderr, "Could not open temporary memory file '%s'\n",
phys_ram_file);
exit(1);
}
ftruncate(phys_ram_fd, phys_ram_size);
unlink(phys_ram_file);
phys_ram_base = mmap(get_mmap_addr(phys_ram_size),
phys_ram_size,
PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED,
phys_ram_fd, 0);
if (phys_ram_base == MAP_FAILED) {
fprintf(stderr, "Could not map physical memory\n");
exit(1);
}
}
#endif
/* we always create the cdrom drive, even if no disk is there */
bdrv_init();
if (has_cdrom) {
bs_table[2] = bdrv_new("cdrom");
bdrv_set_type_hint(bs_table[2], BDRV_TYPE_CDROM);
}
/* open the virtual block devices */
for(i = 0; i < MAX_DISKS; i++) {
if (hd_filename[i]) {
if (!bs_table[i]) {
char buf[64];
snprintf(buf, sizeof(buf), "hd%c", i + 'a');
bs_table[i] = bdrv_new(buf);
}
if (bdrv_open(bs_table[i], hd_filename[i], snapshot) < 0) {
fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
hd_filename[i]);
exit(1);
}
if (i == 0 && cyls != 0)
bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
}
}
/* we always create at least one floppy disk */
fd_table[0] = bdrv_new("fda");
bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
for(i = 0; i < MAX_FD; i++) {
if (fd_filename[i]) {
if (!fd_table[i]) {
char buf[64];
snprintf(buf, sizeof(buf), "fd%c", i + 'a');
fd_table[i] = bdrv_new(buf);
bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
}
if (fd_filename[i] != '\0') {
if (bdrv_open(fd_table[i], fd_filename[i], snapshot) < 0) {
fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
fd_filename[i]);
exit(1);
}
}
}
}
/* init CPU state */
env = cpu_init();
global_env = env;
cpu_single_env = env;
register_savevm("timer", 0, 1, timer_save, timer_load, env);
register_savevm("cpu", 0, 2, cpu_save, cpu_load, env);
register_savevm("ram", 0, 1, ram_save, ram_load, NULL);
qemu_register_reset(main_cpu_reset, global_env);
init_ioports();
cpu_calibrate_ticks();
/* terminal init */
if (nographic) {
dumb_display_init(ds);
} else {
#ifdef CONFIG_SDL
sdl_display_init(ds);
#else
dumb_display_init(ds);
#endif
}
vga_console = graphic_console_init(ds);
monitor_hd = qemu_chr_open(monitor_device);
if (!monitor_hd) {
fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
exit(1);
}
monitor_init(monitor_hd, !nographic);
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
if (serial_devices[i][0] != '\0') {
serial_hds[i] = qemu_chr_open(serial_devices[i]);
if (!serial_hds[i]) {
fprintf(stderr, "qemu: could not open serial device '%s'\n",
serial_devices[i]);
exit(1);
}
if (!strcmp(serial_devices[i], "vc"))
qemu_chr_printf(serial_hds[i], "serial%d console\n", i);
}
}
/* setup cpu signal handlers for MMU / self modifying code handling */
#if !defined(CONFIG_SOFTMMU)
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
{
stack_t stk;
signal_stack = memalign(16, SIGNAL_STACK_SIZE);
stk.ss_sp = signal_stack;
stk.ss_size = SIGNAL_STACK_SIZE;
stk.ss_flags = 0;
if (sigaltstack(&stk, NULL) < 0) {
perror("sigaltstack");
exit(1);
}
}
#endif
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_flags = SA_SIGINFO;
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
act.sa_flags |= SA_ONSTACK;
#endif
act.sa_sigaction = host_segv_handler;
sigaction(SIGSEGV, &act, NULL);
sigaction(SIGBUS, &act, NULL);
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
sigaction(SIGFPE, &act, NULL);
#endif
}
#endif
#ifndef _WIN32
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_IGN;
sigaction(SIGPIPE, &act, NULL);
}
#endif
init_timers();
#if defined(TARGET_I386)
pc_init(ram_size, vga_ram_size, boot_device,
ds, fd_filename, snapshot,
kernel_filename, kernel_cmdline, initrd_filename);
#elif defined(TARGET_PPC)
ppc_init(ram_size, vga_ram_size, boot_device,
ds, fd_filename, snapshot,
kernel_filename, kernel_cmdline, initrd_filename);
#endif
gui_timer = qemu_new_timer(rt_clock, gui_update, NULL);
qemu_mod_timer(gui_timer, qemu_get_clock(rt_clock));
#ifdef CONFIG_GDBSTUB
if (use_gdbstub) {
if (gdbserver_start(gdbstub_port) < 0) {
fprintf(stderr, "Could not open gdbserver socket on port %d\n",
gdbstub_port);
exit(1);
} else {
printf("Waiting gdb connection on port %d\n", gdbstub_port);
}
} else
#endif
{
/* XXX: simplify init */
read_passwords();
if (start_emulation) {
vm_start();
}
}
main_loop();
quit_timers();
return 0;
}