qemu-e2k/target/mips/helper.c
Richard Henderson c319dc1357 tcg: Use CPUClass::tlb_fill in cputlb.c
We can now use the CPUClass hook instead of a named function.

Create a static tlb_fill function to avoid other changes within
cputlb.c.  This also isolates the asserts within.  Remove the
named tlb_fill function from all of the targets.

Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2019-05-10 11:12:50 -07:00

1497 lines
48 KiB
C

/*
* MIPS emulation helpers for qemu.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internal.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/log.h"
#include "hw/mips/cpudevs.h"
#include "qapi/qapi-commands-target.h"
enum {
TLBRET_XI = -6,
TLBRET_RI = -5,
TLBRET_DIRTY = -4,
TLBRET_INVALID = -3,
TLBRET_NOMATCH = -2,
TLBRET_BADADDR = -1,
TLBRET_MATCH = 0
};
#if !defined(CONFIG_USER_ONLY)
/* no MMU emulation */
int no_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, int rw, int access_type)
{
*physical = address;
*prot = PAGE_READ | PAGE_WRITE;
return TLBRET_MATCH;
}
/* fixed mapping MMU emulation */
int fixed_mmu_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, int rw, int access_type)
{
if (address <= (int32_t)0x7FFFFFFFUL) {
if (!(env->CP0_Status & (1 << CP0St_ERL)))
*physical = address + 0x40000000UL;
else
*physical = address;
} else if (address <= (int32_t)0xBFFFFFFFUL)
*physical = address & 0x1FFFFFFF;
else
*physical = address;
*prot = PAGE_READ | PAGE_WRITE;
return TLBRET_MATCH;
}
/* MIPS32/MIPS64 R4000-style MMU emulation */
int r4k_map_address (CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, int rw, int access_type)
{
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
int i;
for (i = 0; i < env->tlb->tlb_in_use; i++) {
r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
target_ulong tag = address & ~mask;
target_ulong VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
/* Check ASID, virtual page number & size */
if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag && !tlb->EHINV) {
/* TLB match */
int n = !!(address & mask & ~(mask >> 1));
/* Check access rights */
if (!(n ? tlb->V1 : tlb->V0)) {
return TLBRET_INVALID;
}
if (rw == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
return TLBRET_XI;
}
if (rw == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
return TLBRET_RI;
}
if (rw != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
*physical = tlb->PFN[n] | (address & (mask >> 1));
*prot = PAGE_READ;
if (n ? tlb->D1 : tlb->D0)
*prot |= PAGE_WRITE;
return TLBRET_MATCH;
}
return TLBRET_DIRTY;
}
}
return TLBRET_NOMATCH;
}
static int is_seg_am_mapped(unsigned int am, bool eu, int mmu_idx)
{
/*
* Interpret access control mode and mmu_idx.
* AdE? TLB?
* AM K S U E K S U E
* UK 0 0 1 1 0 0 - - 0
* MK 1 0 1 1 0 1 - - !eu
* MSK 2 0 0 1 0 1 1 - !eu
* MUSK 3 0 0 0 0 1 1 1 !eu
* MUSUK 4 0 0 0 0 0 1 1 0
* USK 5 0 0 1 0 0 0 - 0
* - 6 - - - - - - - -
* UUSK 7 0 0 0 0 0 0 0 0
*/
int32_t adetlb_mask;
switch (mmu_idx) {
case 3 /* ERL */:
/* If EU is set, always unmapped */
if (eu) {
return 0;
}
/* fall through */
case MIPS_HFLAG_KM:
/* Never AdE, TLB mapped if AM={1,2,3} */
adetlb_mask = 0x70000000;
goto check_tlb;
case MIPS_HFLAG_SM:
/* AdE if AM={0,1}, TLB mapped if AM={2,3,4} */
adetlb_mask = 0xc0380000;
goto check_ade;
case MIPS_HFLAG_UM:
/* AdE if AM={0,1,2,5}, TLB mapped if AM={3,4} */
adetlb_mask = 0xe4180000;
/* fall through */
check_ade:
/* does this AM cause AdE in current execution mode */
if ((adetlb_mask << am) < 0) {
return TLBRET_BADADDR;
}
adetlb_mask <<= 8;
/* fall through */
check_tlb:
/* is this AM mapped in current execution mode */
return ((adetlb_mask << am) < 0);
default:
assert(0);
return TLBRET_BADADDR;
};
}
static int get_seg_physical_address(CPUMIPSState *env, hwaddr *physical,
int *prot, target_ulong real_address,
int rw, int access_type, int mmu_idx,
unsigned int am, bool eu,
target_ulong segmask,
hwaddr physical_base)
{
int mapped = is_seg_am_mapped(am, eu, mmu_idx);
if (mapped < 0) {
/* is_seg_am_mapped can report TLBRET_BADADDR */
return mapped;
} else if (mapped) {
/* The segment is TLB mapped */
return env->tlb->map_address(env, physical, prot, real_address, rw,
access_type);
} else {
/* The segment is unmapped */
*physical = physical_base | (real_address & segmask);
*prot = PAGE_READ | PAGE_WRITE;
return TLBRET_MATCH;
}
}
static int get_segctl_physical_address(CPUMIPSState *env, hwaddr *physical,
int *prot, target_ulong real_address,
int rw, int access_type, int mmu_idx,
uint16_t segctl, target_ulong segmask)
{
unsigned int am = (segctl & CP0SC_AM_MASK) >> CP0SC_AM;
bool eu = (segctl >> CP0SC_EU) & 1;
hwaddr pa = ((hwaddr)segctl & CP0SC_PA_MASK) << 20;
return get_seg_physical_address(env, physical, prot, real_address, rw,
access_type, mmu_idx, am, eu, segmask,
pa & ~(hwaddr)segmask);
}
static int get_physical_address (CPUMIPSState *env, hwaddr *physical,
int *prot, target_ulong real_address,
int rw, int access_type, int mmu_idx)
{
/* User mode can only access useg/xuseg */
#if defined(TARGET_MIPS64)
int user_mode = mmu_idx == MIPS_HFLAG_UM;
int supervisor_mode = mmu_idx == MIPS_HFLAG_SM;
int kernel_mode = !user_mode && !supervisor_mode;
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
int SX = (env->CP0_Status & (1 << CP0St_SX)) != 0;
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
#endif
int ret = TLBRET_MATCH;
/* effective address (modified for KVM T&E kernel segments) */
target_ulong address = real_address;
#define USEG_LIMIT ((target_ulong)(int32_t)0x7FFFFFFFUL)
#define KSEG0_BASE ((target_ulong)(int32_t)0x80000000UL)
#define KSEG1_BASE ((target_ulong)(int32_t)0xA0000000UL)
#define KSEG2_BASE ((target_ulong)(int32_t)0xC0000000UL)
#define KSEG3_BASE ((target_ulong)(int32_t)0xE0000000UL)
#define KVM_KSEG0_BASE ((target_ulong)(int32_t)0x40000000UL)
#define KVM_KSEG2_BASE ((target_ulong)(int32_t)0x60000000UL)
if (mips_um_ksegs_enabled()) {
/* KVM T&E adds guest kernel segments in useg */
if (real_address >= KVM_KSEG0_BASE) {
if (real_address < KVM_KSEG2_BASE) {
/* kseg0 */
address += KSEG0_BASE - KVM_KSEG0_BASE;
} else if (real_address <= USEG_LIMIT) {
/* kseg2/3 */
address += KSEG2_BASE - KVM_KSEG2_BASE;
}
}
}
if (address <= USEG_LIMIT) {
/* useg */
uint16_t segctl;
if (address >= 0x40000000UL) {
segctl = env->CP0_SegCtl2;
} else {
segctl = env->CP0_SegCtl2 >> 16;
}
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
access_type, mmu_idx, segctl,
0x3FFFFFFF);
#if defined(TARGET_MIPS64)
} else if (address < 0x4000000000000000ULL) {
/* xuseg */
if (UX && address <= (0x3FFFFFFFFFFFFFFFULL & env->SEGMask)) {
ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else {
ret = TLBRET_BADADDR;
}
} else if (address < 0x8000000000000000ULL) {
/* xsseg */
if ((supervisor_mode || kernel_mode) &&
SX && address <= (0x7FFFFFFFFFFFFFFFULL & env->SEGMask)) {
ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else {
ret = TLBRET_BADADDR;
}
} else if (address < 0xC000000000000000ULL) {
/* xkphys */
if ((address & 0x07FFFFFFFFFFFFFFULL) <= env->PAMask) {
/* KX/SX/UX bit to check for each xkphys EVA access mode */
static const uint8_t am_ksux[8] = {
[CP0SC_AM_UK] = (1u << CP0St_KX),
[CP0SC_AM_MK] = (1u << CP0St_KX),
[CP0SC_AM_MSK] = (1u << CP0St_SX),
[CP0SC_AM_MUSK] = (1u << CP0St_UX),
[CP0SC_AM_MUSUK] = (1u << CP0St_UX),
[CP0SC_AM_USK] = (1u << CP0St_SX),
[6] = (1u << CP0St_KX),
[CP0SC_AM_UUSK] = (1u << CP0St_UX),
};
unsigned int am = CP0SC_AM_UK;
unsigned int xr = (env->CP0_SegCtl2 & CP0SC2_XR_MASK) >> CP0SC2_XR;
if (xr & (1 << ((address >> 59) & 0x7))) {
am = (env->CP0_SegCtl1 & CP0SC1_XAM_MASK) >> CP0SC1_XAM;
}
/* Does CP0_Status.KX/SX/UX permit the access mode (am) */
if (env->CP0_Status & am_ksux[am]) {
ret = get_seg_physical_address(env, physical, prot,
real_address, rw, access_type,
mmu_idx, am, false, env->PAMask,
0);
} else {
ret = TLBRET_BADADDR;
}
} else {
ret = TLBRET_BADADDR;
}
} else if (address < 0xFFFFFFFF80000000ULL) {
/* xkseg */
if (kernel_mode && KX &&
address <= (0xFFFFFFFF7FFFFFFFULL & env->SEGMask)) {
ret = env->tlb->map_address(env, physical, prot, real_address, rw, access_type);
} else {
ret = TLBRET_BADADDR;
}
#endif
} else if (address < KSEG1_BASE) {
/* kseg0 */
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
access_type, mmu_idx,
env->CP0_SegCtl1 >> 16, 0x1FFFFFFF);
} else if (address < KSEG2_BASE) {
/* kseg1 */
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
access_type, mmu_idx,
env->CP0_SegCtl1, 0x1FFFFFFF);
} else if (address < KSEG3_BASE) {
/* sseg (kseg2) */
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
access_type, mmu_idx,
env->CP0_SegCtl0 >> 16, 0x1FFFFFFF);
} else {
/* kseg3 */
/* XXX: debug segment is not emulated */
ret = get_segctl_physical_address(env, physical, prot, real_address, rw,
access_type, mmu_idx,
env->CP0_SegCtl0, 0x1FFFFFFF);
}
return ret;
}
void cpu_mips_tlb_flush(CPUMIPSState *env)
{
MIPSCPU *cpu = mips_env_get_cpu(env);
/* Flush qemu's TLB and discard all shadowed entries. */
tlb_flush(CPU(cpu));
env->tlb->tlb_in_use = env->tlb->nb_tlb;
}
/* Called for updates to CP0_Status. */
void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
{
int32_t tcstatus, *tcst;
uint32_t v = cpu->CP0_Status;
uint32_t cu, mx, asid, ksu;
uint32_t mask = ((1 << CP0TCSt_TCU3)
| (1 << CP0TCSt_TCU2)
| (1 << CP0TCSt_TCU1)
| (1 << CP0TCSt_TCU0)
| (1 << CP0TCSt_TMX)
| (3 << CP0TCSt_TKSU)
| (0xff << CP0TCSt_TASID));
cu = (v >> CP0St_CU0) & 0xf;
mx = (v >> CP0St_MX) & 0x1;
ksu = (v >> CP0St_KSU) & 0x3;
asid = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
tcstatus = cu << CP0TCSt_TCU0;
tcstatus |= mx << CP0TCSt_TMX;
tcstatus |= ksu << CP0TCSt_TKSU;
tcstatus |= asid;
if (tc == cpu->current_tc) {
tcst = &cpu->active_tc.CP0_TCStatus;
} else {
tcst = &cpu->tcs[tc].CP0_TCStatus;
}
*tcst &= ~mask;
*tcst |= tcstatus;
compute_hflags(cpu);
}
void cpu_mips_store_status(CPUMIPSState *env, target_ulong val)
{
uint32_t mask = env->CP0_Status_rw_bitmask;
target_ulong old = env->CP0_Status;
if (env->insn_flags & ISA_MIPS32R6) {
bool has_supervisor = extract32(mask, CP0St_KSU, 2) == 0x3;
#if defined(TARGET_MIPS64)
uint32_t ksux = (1 << CP0St_KX) & val;
ksux |= (ksux >> 1) & val; /* KX = 0 forces SX to be 0 */
ksux |= (ksux >> 1) & val; /* SX = 0 forces UX to be 0 */
val = (val & ~(7 << CP0St_UX)) | ksux;
#endif
if (has_supervisor && extract32(val, CP0St_KSU, 2) == 0x3) {
mask &= ~(3 << CP0St_KSU);
}
mask &= ~(((1 << CP0St_SR) | (1 << CP0St_NMI)) & val);
}
env->CP0_Status = (old & ~mask) | (val & mask);
#if defined(TARGET_MIPS64)
if ((env->CP0_Status ^ old) & (old & (7 << CP0St_UX))) {
/* Access to at least one of the 64-bit segments has been disabled */
tlb_flush(CPU(mips_env_get_cpu(env)));
}
#endif
if (env->CP0_Config3 & (1 << CP0C3_MT)) {
sync_c0_status(env, env, env->current_tc);
} else {
compute_hflags(env);
}
}
void cpu_mips_store_cause(CPUMIPSState *env, target_ulong val)
{
uint32_t mask = 0x00C00300;
uint32_t old = env->CP0_Cause;
int i;
if (env->insn_flags & ISA_MIPS32R2) {
mask |= 1 << CP0Ca_DC;
}
if (env->insn_flags & ISA_MIPS32R6) {
mask &= ~((1 << CP0Ca_WP) & val);
}
env->CP0_Cause = (env->CP0_Cause & ~mask) | (val & mask);
if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
if (env->CP0_Cause & (1 << CP0Ca_DC)) {
cpu_mips_stop_count(env);
} else {
cpu_mips_start_count(env);
}
}
/* Set/reset software interrupts */
for (i = 0 ; i < 2 ; i++) {
if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
}
}
}
#endif
static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
int rw, int tlb_error)
{
CPUState *cs = CPU(mips_env_get_cpu(env));
int exception = 0, error_code = 0;
if (rw == MMU_INST_FETCH) {
error_code |= EXCP_INST_NOTAVAIL;
}
switch (tlb_error) {
default:
case TLBRET_BADADDR:
/* Reference to kernel address from user mode or supervisor mode */
/* Reference to supervisor address from user mode */
if (rw == MMU_DATA_STORE) {
exception = EXCP_AdES;
} else {
exception = EXCP_AdEL;
}
break;
case TLBRET_NOMATCH:
/* No TLB match for a mapped address */
if (rw == MMU_DATA_STORE) {
exception = EXCP_TLBS;
} else {
exception = EXCP_TLBL;
}
error_code |= EXCP_TLB_NOMATCH;
break;
case TLBRET_INVALID:
/* TLB match with no valid bit */
if (rw == MMU_DATA_STORE) {
exception = EXCP_TLBS;
} else {
exception = EXCP_TLBL;
}
break;
case TLBRET_DIRTY:
/* TLB match but 'D' bit is cleared */
exception = EXCP_LTLBL;
break;
case TLBRET_XI:
/* Execute-Inhibit Exception */
if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
exception = EXCP_TLBXI;
} else {
exception = EXCP_TLBL;
}
break;
case TLBRET_RI:
/* Read-Inhibit Exception */
if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
exception = EXCP_TLBRI;
} else {
exception = EXCP_TLBL;
}
break;
}
/* Raise exception */
if (!(env->hflags & MIPS_HFLAG_DM)) {
env->CP0_BadVAddr = address;
}
env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
((address >> 9) & 0x007ffff0);
env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
(env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
(address & (TARGET_PAGE_MASK << 1));
#if defined(TARGET_MIPS64)
env->CP0_EntryHi &= env->SEGMask;
env->CP0_XContext =
/* PTEBase */ (env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) |
/* R */ (extract64(address, 62, 2) << (env->SEGBITS - 9)) |
/* BadVPN2 */ (extract64(address, 13, env->SEGBITS - 13) << 4);
#endif
cs->exception_index = exception;
env->error_code = error_code;
}
#if !defined(CONFIG_USER_ONLY)
hwaddr mips_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
hwaddr phys_addr;
int prot;
if (get_physical_address(env, &phys_addr, &prot, addr, 0, ACCESS_INT,
cpu_mmu_index(env, false)) != 0) {
return -1;
}
return phys_addr;
}
#endif
#if !defined(CONFIG_USER_ONLY)
#if !defined(TARGET_MIPS64)
/*
* Perform hardware page table walk
*
* Memory accesses are performed using the KERNEL privilege level.
* Synchronous exceptions detected on memory accesses cause a silent exit
* from page table walking, resulting in a TLB or XTLB Refill exception.
*
* Implementations are not required to support page table walk memory
* accesses from mapped memory regions. When an unsupported access is
* attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
* exception.
*
* Note that if an exception is caused by AddressTranslation or LoadMemory
* functions, the exception is not taken, a silent exit is taken,
* resulting in a TLB or XTLB Refill exception.
*/
static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
uint64_t *pte)
{
if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
return false;
}
if (entry_size == 64) {
*pte = cpu_ldq_code(env, vaddr);
} else {
*pte = cpu_ldl_code(env, vaddr);
}
return true;
}
static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
int entry_size, int ptei)
{
uint64_t result = entry;
uint64_t rixi;
if (ptei > entry_size) {
ptei -= 32;
}
result >>= (ptei - 2);
rixi = result & 3;
result >>= 2;
result |= rixi << CP0EnLo_XI;
return result;
}
static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
int directory_index, bool *huge_page, bool *hgpg_directory_hit,
uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
{
int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
int directory_shift = (ptew > 1) ? -1 :
(hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
int leaf_shift = (ptew > 1) ? -1 :
(ptew == 1) ? native_shift + 1 : native_shift;
uint32_t direntry_size = 1 << (directory_shift + 3);
uint32_t leafentry_size = 1 << (leaf_shift + 3);
uint64_t entry;
uint64_t paddr;
int prot;
uint64_t lsb = 0;
uint64_t w = 0;
if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
ACCESS_INT, cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
/* wrong base address */
return 0;
}
if (!get_pte(env, *vaddr, direntry_size, &entry)) {
return 0;
}
if ((entry & (1 << psn)) && hugepg) {
*huge_page = true;
*hgpg_directory_hit = true;
entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
w = directory_index - 1;
if (directory_index & 0x1) {
/* Generate adjacent page from same PTE for odd TLB page */
lsb = (1 << w) >> 6;
*pw_entrylo0 = entry & ~lsb; /* even page */
*pw_entrylo1 = entry | lsb; /* odd page */
} else if (dph) {
int oddpagebit = 1 << leaf_shift;
uint64_t vaddr2 = *vaddr ^ oddpagebit;
if (*vaddr & oddpagebit) {
*pw_entrylo1 = entry;
} else {
*pw_entrylo0 = entry;
}
if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
ACCESS_INT, cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
return 0;
}
if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
return 0;
}
entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
if (*vaddr & oddpagebit) {
*pw_entrylo0 = entry;
} else {
*pw_entrylo1 = entry;
}
} else {
return 0;
}
return 1;
} else {
*vaddr = entry;
return 2;
}
}
static bool page_table_walk_refill(CPUMIPSState *env, vaddr address, int rw,
int mmu_idx)
{
int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
/* Initial values */
bool huge_page = false;
bool hgpg_bdhit = false;
bool hgpg_gdhit = false;
bool hgpg_udhit = false;
bool hgpg_mdhit = false;
int32_t pw_pagemask = 0;
target_ulong pw_entryhi = 0;
uint64_t pw_entrylo0 = 0;
uint64_t pw_entrylo1 = 0;
/* Native pointer size */
/*For the 32-bit architectures, this bit is fixed to 0.*/
int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
/* Indices from PWField */
int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
/* Indices computed from faulting address */
int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
int uindex = (address >> pf_udw) & ((1 << udw) - 1);
int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
/* Other HTW configs */
int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
/* HTW Shift values (depend on entry size) */
int directory_shift = (ptew > 1) ? -1 :
(hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
int leaf_shift = (ptew > 1) ? -1 :
(ptew == 1) ? native_shift + 1 : native_shift;
/* Offsets into tables */
int goffset = gindex << directory_shift;
int uoffset = uindex << directory_shift;
int moffset = mindex << directory_shift;
int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
uint32_t leafentry_size = 1 << (leaf_shift + 3);
/* Starting address - Page Table Base */
uint64_t vaddr = env->CP0_PWBase;
uint64_t dir_entry;
uint64_t paddr;
int prot;
int m;
if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
/* walker is unimplemented */
return false;
}
if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
/* walker is disabled */
return false;
}
if (!(gdw > 0 || udw > 0 || mdw > 0)) {
/* no structure to walk */
return false;
}
if ((directory_shift == -1) || (leaf_shift == -1)) {
return false;
}
/* Global Directory */
if (gdw > 0) {
vaddr |= goffset;
switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
&pw_entrylo0, &pw_entrylo1))
{
case 0:
return false;
case 1:
goto refill;
case 2:
default:
break;
}
}
/* Upper directory */
if (udw > 0) {
vaddr |= uoffset;
switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
&pw_entrylo0, &pw_entrylo1))
{
case 0:
return false;
case 1:
goto refill;
case 2:
default:
break;
}
}
/* Middle directory */
if (mdw > 0) {
vaddr |= moffset;
switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
&pw_entrylo0, &pw_entrylo1))
{
case 0:
return false;
case 1:
goto refill;
case 2:
default:
break;
}
}
/* Leaf Level Page Table - First half of PTE pair */
vaddr |= ptoffset0;
if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
ACCESS_INT, cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
return false;
}
if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
return false;
}
dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
pw_entrylo0 = dir_entry;
/* Leaf Level Page Table - Second half of PTE pair */
vaddr |= ptoffset1;
if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
ACCESS_INT, cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
return false;
}
if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
return false;
}
dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
pw_entrylo1 = dir_entry;
refill:
m = (1 << pf_ptw) - 1;
if (huge_page) {
switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
hgpg_mdhit)
{
case 4:
m = (1 << pf_gdw) - 1;
if (pf_gdw & 1) {
m >>= 1;
}
break;
case 2:
m = (1 << pf_udw) - 1;
if (pf_udw & 1) {
m >>= 1;
}
break;
case 1:
m = (1 << pf_mdw) - 1;
if (pf_mdw & 1) {
m >>= 1;
}
break;
}
}
pw_pagemask = m >> 12;
update_pagemask(env, pw_pagemask << 13, &pw_pagemask);
pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
{
target_ulong tmp_entryhi = env->CP0_EntryHi;
int32_t tmp_pagemask = env->CP0_PageMask;
uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
env->CP0_EntryHi = pw_entryhi;
env->CP0_PageMask = pw_pagemask;
env->CP0_EntryLo0 = pw_entrylo0;
env->CP0_EntryLo1 = pw_entrylo1;
/*
* The hardware page walker inserts a page into the TLB in a manner
* identical to a TLBWR instruction as executed by the software refill
* handler.
*/
r4k_helper_tlbwr(env);
env->CP0_EntryHi = tmp_entryhi;
env->CP0_PageMask = tmp_pagemask;
env->CP0_EntryLo0 = tmp_entrylo0;
env->CP0_EntryLo1 = tmp_entrylo1;
}
return true;
}
#endif
#endif
bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
#if !defined(CONFIG_USER_ONLY)
hwaddr physical;
int prot;
int mips_access_type;
#endif
int ret = TLBRET_BADADDR;
/* data access */
#if !defined(CONFIG_USER_ONLY)
/* XXX: put correct access by using cpu_restore_state() correctly */
mips_access_type = ACCESS_INT;
ret = get_physical_address(env, &physical, &prot, address,
access_type, mips_access_type, mmu_idx);
switch (ret) {
case TLBRET_MATCH:
qemu_log_mask(CPU_LOG_MMU,
"%s address=%" VADDR_PRIx " physical " TARGET_FMT_plx
" prot %d\n", __func__, address, physical, prot);
break;
default:
qemu_log_mask(CPU_LOG_MMU,
"%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
ret);
break;
}
if (ret == TLBRET_MATCH) {
tlb_set_page(cs, address & TARGET_PAGE_MASK,
physical & TARGET_PAGE_MASK, prot | PAGE_EXEC,
mmu_idx, TARGET_PAGE_SIZE);
return true;
}
#if !defined(TARGET_MIPS64)
if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
/*
* Memory reads during hardware page table walking are performed
* as if they were kernel-mode load instructions.
*/
int mode = (env->hflags & MIPS_HFLAG_KSU);
bool ret_walker;
env->hflags &= ~MIPS_HFLAG_KSU;
ret_walker = page_table_walk_refill(env, address, access_type, mmu_idx);
env->hflags |= mode;
if (ret_walker) {
ret = get_physical_address(env, &physical, &prot, address,
access_type, mips_access_type, mmu_idx);
if (ret == TLBRET_MATCH) {
tlb_set_page(cs, address & TARGET_PAGE_MASK,
physical & TARGET_PAGE_MASK, prot | PAGE_EXEC,
mmu_idx, TARGET_PAGE_SIZE);
return true;
}
}
}
#endif
if (probe) {
return false;
}
#endif
raise_mmu_exception(env, address, access_type, ret);
do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
}
#ifndef CONFIG_USER_ONLY
hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address, int rw)
{
hwaddr physical;
int prot;
int access_type;
int ret = 0;
/* data access */
access_type = ACCESS_INT;
ret = get_physical_address(env, &physical, &prot, address, rw, access_type,
cpu_mmu_index(env, false));
if (ret != TLBRET_MATCH) {
raise_mmu_exception(env, address, rw, ret);
return -1LL;
} else {
return physical;
}
}
static const char * const excp_names[EXCP_LAST + 1] = {
[EXCP_RESET] = "reset",
[EXCP_SRESET] = "soft reset",
[EXCP_DSS] = "debug single step",
[EXCP_DINT] = "debug interrupt",
[EXCP_NMI] = "non-maskable interrupt",
[EXCP_MCHECK] = "machine check",
[EXCP_EXT_INTERRUPT] = "interrupt",
[EXCP_DFWATCH] = "deferred watchpoint",
[EXCP_DIB] = "debug instruction breakpoint",
[EXCP_IWATCH] = "instruction fetch watchpoint",
[EXCP_AdEL] = "address error load",
[EXCP_AdES] = "address error store",
[EXCP_TLBF] = "TLB refill",
[EXCP_IBE] = "instruction bus error",
[EXCP_DBp] = "debug breakpoint",
[EXCP_SYSCALL] = "syscall",
[EXCP_BREAK] = "break",
[EXCP_CpU] = "coprocessor unusable",
[EXCP_RI] = "reserved instruction",
[EXCP_OVERFLOW] = "arithmetic overflow",
[EXCP_TRAP] = "trap",
[EXCP_FPE] = "floating point",
[EXCP_DDBS] = "debug data break store",
[EXCP_DWATCH] = "data watchpoint",
[EXCP_LTLBL] = "TLB modify",
[EXCP_TLBL] = "TLB load",
[EXCP_TLBS] = "TLB store",
[EXCP_DBE] = "data bus error",
[EXCP_DDBL] = "debug data break load",
[EXCP_THREAD] = "thread",
[EXCP_MDMX] = "MDMX",
[EXCP_C2E] = "precise coprocessor 2",
[EXCP_CACHE] = "cache error",
[EXCP_TLBXI] = "TLB execute-inhibit",
[EXCP_TLBRI] = "TLB read-inhibit",
[EXCP_MSADIS] = "MSA disabled",
[EXCP_MSAFPE] = "MSA floating point",
};
#endif
target_ulong exception_resume_pc (CPUMIPSState *env)
{
target_ulong bad_pc;
target_ulong isa_mode;
isa_mode = !!(env->hflags & MIPS_HFLAG_M16);
bad_pc = env->active_tc.PC | isa_mode;
if (env->hflags & MIPS_HFLAG_BMASK) {
/* If the exception was raised from a delay slot, come back to
the jump. */
bad_pc -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
}
return bad_pc;
}
#if !defined(CONFIG_USER_ONLY)
static void set_hflags_for_handler (CPUMIPSState *env)
{
/* Exception handlers are entered in 32-bit mode. */
env->hflags &= ~(MIPS_HFLAG_M16);
/* ...except that microMIPS lets you choose. */
if (env->insn_flags & ASE_MICROMIPS) {
env->hflags |= (!!(env->CP0_Config3
& (1 << CP0C3_ISA_ON_EXC))
<< MIPS_HFLAG_M16_SHIFT);
}
}
static inline void set_badinstr_registers(CPUMIPSState *env)
{
if (env->insn_flags & ISA_NANOMIPS32) {
if (env->CP0_Config3 & (1 << CP0C3_BI)) {
uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
if ((instr & 0x10000000) == 0) {
instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
}
env->CP0_BadInstr = instr;
if ((instr & 0xFC000000) == 0x60000000) {
instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
env->CP0_BadInstrX = instr;
}
}
return;
}
if (env->hflags & MIPS_HFLAG_M16) {
/* TODO: add BadInstr support for microMIPS */
return;
}
if (env->CP0_Config3 & (1 << CP0C3_BI)) {
env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
}
if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
(env->hflags & MIPS_HFLAG_BMASK)) {
env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
}
}
#endif
void mips_cpu_do_interrupt(CPUState *cs)
{
#if !defined(CONFIG_USER_ONLY)
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
bool update_badinstr = 0;
target_ulong offset;
int cause = -1;
const char *name;
if (qemu_loglevel_mask(CPU_LOG_INT)
&& cs->exception_index != EXCP_EXT_INTERRUPT) {
if (cs->exception_index < 0 || cs->exception_index > EXCP_LAST) {
name = "unknown";
} else {
name = excp_names[cs->exception_index];
}
qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
" %s exception\n",
__func__, env->active_tc.PC, env->CP0_EPC, name);
}
if (cs->exception_index == EXCP_EXT_INTERRUPT &&
(env->hflags & MIPS_HFLAG_DM)) {
cs->exception_index = EXCP_DINT;
}
offset = 0x180;
switch (cs->exception_index) {
case EXCP_DSS:
env->CP0_Debug |= 1 << CP0DB_DSS;
/* Debug single step cannot be raised inside a delay slot and
resume will always occur on the next instruction
(but we assume the pc has always been updated during
code translation). */
env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
goto enter_debug_mode;
case EXCP_DINT:
env->CP0_Debug |= 1 << CP0DB_DINT;
goto set_DEPC;
case EXCP_DIB:
env->CP0_Debug |= 1 << CP0DB_DIB;
goto set_DEPC;
case EXCP_DBp:
env->CP0_Debug |= 1 << CP0DB_DBp;
/* Setup DExcCode - SDBBP instruction */
env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) | 9 << CP0DB_DEC;
goto set_DEPC;
case EXCP_DDBS:
env->CP0_Debug |= 1 << CP0DB_DDBS;
goto set_DEPC;
case EXCP_DDBL:
env->CP0_Debug |= 1 << CP0DB_DDBL;
set_DEPC:
env->CP0_DEPC = exception_resume_pc(env);
env->hflags &= ~MIPS_HFLAG_BMASK;
enter_debug_mode:
if (env->insn_flags & ISA_MIPS3) {
env->hflags |= MIPS_HFLAG_64;
if (!(env->insn_flags & ISA_MIPS64R6) ||
env->CP0_Status & (1 << CP0St_KX)) {
env->hflags &= ~MIPS_HFLAG_AWRAP;
}
}
env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
env->hflags &= ~(MIPS_HFLAG_KSU);
/* EJTAG probe trap enable is not implemented... */
if (!(env->CP0_Status & (1 << CP0St_EXL)))
env->CP0_Cause &= ~(1U << CP0Ca_BD);
env->active_tc.PC = env->exception_base + 0x480;
set_hflags_for_handler(env);
break;
case EXCP_RESET:
cpu_reset(CPU(cpu));
break;
case EXCP_SRESET:
env->CP0_Status |= (1 << CP0St_SR);
memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
goto set_error_EPC;
case EXCP_NMI:
env->CP0_Status |= (1 << CP0St_NMI);
set_error_EPC:
env->CP0_ErrorEPC = exception_resume_pc(env);
env->hflags &= ~MIPS_HFLAG_BMASK;
env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
if (env->insn_flags & ISA_MIPS3) {
env->hflags |= MIPS_HFLAG_64;
if (!(env->insn_flags & ISA_MIPS64R6) ||
env->CP0_Status & (1 << CP0St_KX)) {
env->hflags &= ~MIPS_HFLAG_AWRAP;
}
}
env->hflags |= MIPS_HFLAG_CP0;
env->hflags &= ~(MIPS_HFLAG_KSU);
if (!(env->CP0_Status & (1 << CP0St_EXL)))
env->CP0_Cause &= ~(1U << CP0Ca_BD);
env->active_tc.PC = env->exception_base;
set_hflags_for_handler(env);
break;
case EXCP_EXT_INTERRUPT:
cause = 0;
if (env->CP0_Cause & (1 << CP0Ca_IV)) {
uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
offset = 0x200;
} else {
uint32_t vector = 0;
uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
/* For VEIC mode, the external interrupt controller feeds
* the vector through the CP0Cause IP lines. */
vector = pending;
} else {
/* Vectored Interrupts
* Mask with Status.IM7-IM0 to get enabled interrupts. */
pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
/* Find the highest-priority interrupt. */
while (pending >>= 1) {
vector++;
}
}
offset = 0x200 + (vector * (spacing << 5));
}
}
goto set_EPC;
case EXCP_LTLBL:
cause = 1;
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
goto set_EPC;
case EXCP_TLBL:
cause = 2;
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
if ((env->error_code & EXCP_TLB_NOMATCH) &&
!(env->CP0_Status & (1 << CP0St_EXL))) {
#if defined(TARGET_MIPS64)
int R = env->CP0_BadVAddr >> 62;
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
if ((R != 0 || UX) && (R != 3 || KX) &&
(!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
offset = 0x080;
} else {
#endif
offset = 0x000;
#if defined(TARGET_MIPS64)
}
#endif
}
goto set_EPC;
case EXCP_TLBS:
cause = 3;
update_badinstr = 1;
if ((env->error_code & EXCP_TLB_NOMATCH) &&
!(env->CP0_Status & (1 << CP0St_EXL))) {
#if defined(TARGET_MIPS64)
int R = env->CP0_BadVAddr >> 62;
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
if ((R != 0 || UX) && (R != 3 || KX) &&
(!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
offset = 0x080;
} else {
#endif
offset = 0x000;
#if defined(TARGET_MIPS64)
}
#endif
}
goto set_EPC;
case EXCP_AdEL:
cause = 4;
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
goto set_EPC;
case EXCP_AdES:
cause = 5;
update_badinstr = 1;
goto set_EPC;
case EXCP_IBE:
cause = 6;
goto set_EPC;
case EXCP_DBE:
cause = 7;
goto set_EPC;
case EXCP_SYSCALL:
cause = 8;
update_badinstr = 1;
goto set_EPC;
case EXCP_BREAK:
cause = 9;
update_badinstr = 1;
goto set_EPC;
case EXCP_RI:
cause = 10;
update_badinstr = 1;
goto set_EPC;
case EXCP_CpU:
cause = 11;
update_badinstr = 1;
env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
(env->error_code << CP0Ca_CE);
goto set_EPC;
case EXCP_OVERFLOW:
cause = 12;
update_badinstr = 1;
goto set_EPC;
case EXCP_TRAP:
cause = 13;
update_badinstr = 1;
goto set_EPC;
case EXCP_MSAFPE:
cause = 14;
update_badinstr = 1;
goto set_EPC;
case EXCP_FPE:
cause = 15;
update_badinstr = 1;
goto set_EPC;
case EXCP_C2E:
cause = 18;
goto set_EPC;
case EXCP_TLBRI:
cause = 19;
update_badinstr = 1;
goto set_EPC;
case EXCP_TLBXI:
cause = 20;
goto set_EPC;
case EXCP_MSADIS:
cause = 21;
update_badinstr = 1;
goto set_EPC;
case EXCP_MDMX:
cause = 22;
goto set_EPC;
case EXCP_DWATCH:
cause = 23;
/* XXX: TODO: manage deferred watch exceptions */
goto set_EPC;
case EXCP_MCHECK:
cause = 24;
goto set_EPC;
case EXCP_THREAD:
cause = 25;
goto set_EPC;
case EXCP_DSPDIS:
cause = 26;
goto set_EPC;
case EXCP_CACHE:
cause = 30;
offset = 0x100;
set_EPC:
if (!(env->CP0_Status & (1 << CP0St_EXL))) {
env->CP0_EPC = exception_resume_pc(env);
if (update_badinstr) {
set_badinstr_registers(env);
}
if (env->hflags & MIPS_HFLAG_BMASK) {
env->CP0_Cause |= (1U << CP0Ca_BD);
} else {
env->CP0_Cause &= ~(1U << CP0Ca_BD);
}
env->CP0_Status |= (1 << CP0St_EXL);
if (env->insn_flags & ISA_MIPS3) {
env->hflags |= MIPS_HFLAG_64;
if (!(env->insn_flags & ISA_MIPS64R6) ||
env->CP0_Status & (1 << CP0St_KX)) {
env->hflags &= ~MIPS_HFLAG_AWRAP;
}
}
env->hflags |= MIPS_HFLAG_CP0;
env->hflags &= ~(MIPS_HFLAG_KSU);
}
env->hflags &= ~MIPS_HFLAG_BMASK;
if (env->CP0_Status & (1 << CP0St_BEV)) {
env->active_tc.PC = env->exception_base + 0x200;
} else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
env->CP0_Config5 & (1 << CP0C5_CV))) {
/* Force KSeg1 for cache errors */
env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
} else {
env->active_tc.PC = env->CP0_EBase & ~0xfff;
}
env->active_tc.PC += offset;
set_hflags_for_handler(env);
env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) | (cause << CP0Ca_EC);
break;
default:
abort();
}
if (qemu_loglevel_mask(CPU_LOG_INT)
&& cs->exception_index != EXCP_EXT_INTERRUPT) {
qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
" S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
__func__, env->active_tc.PC, env->CP0_EPC, cause,
env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
env->CP0_DEPC);
}
#endif
cs->exception_index = EXCP_NONE;
}
bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
if (interrupt_request & CPU_INTERRUPT_HARD) {
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
if (cpu_mips_hw_interrupts_enabled(env) &&
cpu_mips_hw_interrupts_pending(env)) {
/* Raise it */
cs->exception_index = EXCP_EXT_INTERRUPT;
env->error_code = 0;
mips_cpu_do_interrupt(cs);
return true;
}
}
return false;
}
#if !defined(CONFIG_USER_ONLY)
void r4k_invalidate_tlb (CPUMIPSState *env, int idx, int use_extra)
{
MIPSCPU *cpu = mips_env_get_cpu(env);
CPUState *cs;
r4k_tlb_t *tlb;
target_ulong addr;
target_ulong end;
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
target_ulong mask;
tlb = &env->tlb->mmu.r4k.tlb[idx];
/* The qemu TLB is flushed when the ASID changes, so no need to
flush these entries again. */
if (tlb->G == 0 && tlb->ASID != ASID) {
return;
}
if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
/* For tlbwr, we can shadow the discarded entry into
a new (fake) TLB entry, as long as the guest can not
tell that it's there. */
env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
env->tlb->tlb_in_use++;
return;
}
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
if (tlb->V0) {
cs = CPU(cpu);
addr = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
addr |= 0x3FFFFF0000000000ULL;
}
#endif
end = addr | (mask >> 1);
while (addr < end) {
tlb_flush_page(cs, addr);
addr += TARGET_PAGE_SIZE;
}
}
if (tlb->V1) {
cs = CPU(cpu);
addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
#if defined(TARGET_MIPS64)
if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
addr |= 0x3FFFFF0000000000ULL;
}
#endif
end = addr | mask;
while (addr - 1 < end) {
tlb_flush_page(cs, addr);
addr += TARGET_PAGE_SIZE;
}
}
}
#endif
void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
uint32_t exception,
int error_code,
uintptr_t pc)
{
CPUState *cs = CPU(mips_env_get_cpu(env));
qemu_log_mask(CPU_LOG_INT, "%s: %d %d\n",
__func__, exception, error_code);
cs->exception_index = exception;
env->error_code = error_code;
cpu_loop_exit_restore(cs, pc);
}
static void mips_cpu_add_definition(gpointer data, gpointer user_data)
{
ObjectClass *oc = data;
CpuDefinitionInfoList **cpu_list = user_data;
CpuDefinitionInfoList *entry;
CpuDefinitionInfo *info;
const char *typename;
typename = object_class_get_name(oc);
info = g_malloc0(sizeof(*info));
info->name = g_strndup(typename,
strlen(typename) - strlen("-" TYPE_MIPS_CPU));
info->q_typename = g_strdup(typename);
entry = g_malloc0(sizeof(*entry));
entry->value = info;
entry->next = *cpu_list;
*cpu_list = entry;
}
CpuDefinitionInfoList *qmp_query_cpu_definitions(Error **errp)
{
CpuDefinitionInfoList *cpu_list = NULL;
GSList *list;
list = object_class_get_list(TYPE_MIPS_CPU, false);
g_slist_foreach(list, mips_cpu_add_definition, &cpu_list);
g_slist_free(list);
return cpu_list;
}