qemu-e2k/hw/timer/lm32_timer.c
Peter Maydell b360a65cf9 hw/timer/lm32_timer: Switch to transaction-based ptimer API
Switch the lm32_timer code away from bottom-half based ptimers to the
new transaction-based ptimer API.  This just requires adding
begin/commit calls around the various places that modify the ptimer
state, and using the new ptimer_init() function to create the ytimer.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20191017132905.5604-4-peter.maydell@linaro.org
2019-10-22 17:44:00 +01:00

250 lines
6.1 KiB
C

/*
* QEMU model of the LatticeMico32 timer block.
*
* Copyright (c) 2010 Michael Walle <michael@walle.cc>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*
* Specification available at:
* http://www.latticesemi.com/documents/mico32timer.pdf
*/
#include "qemu/osdep.h"
#include "hw/irq.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "trace.h"
#include "qemu/timer.h"
#include "hw/ptimer.h"
#include "hw/qdev-properties.h"
#include "qemu/error-report.h"
#include "qemu/module.h"
#define DEFAULT_FREQUENCY (50*1000000)
enum {
R_SR = 0,
R_CR,
R_PERIOD,
R_SNAPSHOT,
R_MAX
};
enum {
SR_TO = (1 << 0),
SR_RUN = (1 << 1),
};
enum {
CR_ITO = (1 << 0),
CR_CONT = (1 << 1),
CR_START = (1 << 2),
CR_STOP = (1 << 3),
};
#define TYPE_LM32_TIMER "lm32-timer"
#define LM32_TIMER(obj) OBJECT_CHECK(LM32TimerState, (obj), TYPE_LM32_TIMER)
struct LM32TimerState {
SysBusDevice parent_obj;
MemoryRegion iomem;
ptimer_state *ptimer;
qemu_irq irq;
uint32_t freq_hz;
uint32_t regs[R_MAX];
};
typedef struct LM32TimerState LM32TimerState;
static void timer_update_irq(LM32TimerState *s)
{
int state = (s->regs[R_SR] & SR_TO) && (s->regs[R_CR] & CR_ITO);
trace_lm32_timer_irq_state(state);
qemu_set_irq(s->irq, state);
}
static uint64_t timer_read(void *opaque, hwaddr addr, unsigned size)
{
LM32TimerState *s = opaque;
uint32_t r = 0;
addr >>= 2;
switch (addr) {
case R_SR:
case R_CR:
case R_PERIOD:
r = s->regs[addr];
break;
case R_SNAPSHOT:
r = (uint32_t)ptimer_get_count(s->ptimer);
break;
default:
error_report("lm32_timer: read access to unknown register 0x"
TARGET_FMT_plx, addr << 2);
break;
}
trace_lm32_timer_memory_read(addr << 2, r);
return r;
}
static void timer_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
LM32TimerState *s = opaque;
trace_lm32_timer_memory_write(addr, value);
addr >>= 2;
switch (addr) {
case R_SR:
s->regs[R_SR] &= ~SR_TO;
break;
case R_CR:
ptimer_transaction_begin(s->ptimer);
s->regs[R_CR] = value;
if (s->regs[R_CR] & CR_START) {
ptimer_run(s->ptimer, 1);
}
if (s->regs[R_CR] & CR_STOP) {
ptimer_stop(s->ptimer);
}
ptimer_transaction_commit(s->ptimer);
break;
case R_PERIOD:
s->regs[R_PERIOD] = value;
ptimer_transaction_begin(s->ptimer);
ptimer_set_count(s->ptimer, value);
ptimer_transaction_commit(s->ptimer);
break;
case R_SNAPSHOT:
error_report("lm32_timer: write access to read only register 0x"
TARGET_FMT_plx, addr << 2);
break;
default:
error_report("lm32_timer: write access to unknown register 0x"
TARGET_FMT_plx, addr << 2);
break;
}
timer_update_irq(s);
}
static const MemoryRegionOps timer_ops = {
.read = timer_read,
.write = timer_write,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static void timer_hit(void *opaque)
{
LM32TimerState *s = opaque;
trace_lm32_timer_hit();
s->regs[R_SR] |= SR_TO;
if (s->regs[R_CR] & CR_CONT) {
ptimer_set_count(s->ptimer, s->regs[R_PERIOD]);
ptimer_run(s->ptimer, 1);
}
timer_update_irq(s);
}
static void timer_reset(DeviceState *d)
{
LM32TimerState *s = LM32_TIMER(d);
int i;
for (i = 0; i < R_MAX; i++) {
s->regs[i] = 0;
}
ptimer_transaction_begin(s->ptimer);
ptimer_stop(s->ptimer);
ptimer_transaction_commit(s->ptimer);
}
static void lm32_timer_init(Object *obj)
{
LM32TimerState *s = LM32_TIMER(obj);
SysBusDevice *dev = SYS_BUS_DEVICE(obj);
sysbus_init_irq(dev, &s->irq);
memory_region_init_io(&s->iomem, obj, &timer_ops, s,
"timer", R_MAX * 4);
sysbus_init_mmio(dev, &s->iomem);
}
static void lm32_timer_realize(DeviceState *dev, Error **errp)
{
LM32TimerState *s = LM32_TIMER(dev);
s->ptimer = ptimer_init(timer_hit, s, PTIMER_POLICY_DEFAULT);
ptimer_transaction_begin(s->ptimer);
ptimer_set_freq(s->ptimer, s->freq_hz);
ptimer_transaction_commit(s->ptimer);
}
static const VMStateDescription vmstate_lm32_timer = {
.name = "lm32-timer",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_PTIMER(ptimer, LM32TimerState),
VMSTATE_UINT32(freq_hz, LM32TimerState),
VMSTATE_UINT32_ARRAY(regs, LM32TimerState, R_MAX),
VMSTATE_END_OF_LIST()
}
};
static Property lm32_timer_properties[] = {
DEFINE_PROP_UINT32("frequency", LM32TimerState, freq_hz, DEFAULT_FREQUENCY),
DEFINE_PROP_END_OF_LIST(),
};
static void lm32_timer_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = lm32_timer_realize;
dc->reset = timer_reset;
dc->vmsd = &vmstate_lm32_timer;
dc->props = lm32_timer_properties;
}
static const TypeInfo lm32_timer_info = {
.name = TYPE_LM32_TIMER,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(LM32TimerState),
.instance_init = lm32_timer_init,
.class_init = lm32_timer_class_init,
};
static void lm32_timer_register_types(void)
{
type_register_static(&lm32_timer_info);
}
type_init(lm32_timer_register_types)