qemu-e2k/hw/intc/sifive_plic.c
Bin Meng bc92f26151 hw/intc: sifive_plic: Fix the pending register range check
The pending register upper limit is currently set to
plic->num_sources >> 3, which is wrong, e.g.: considering
plic->num_sources is 7, the upper limit becomes 0 which fails
the range check if reading the pending register at pending_base.

Fixes: 1e24429e40 ("SiFive RISC-V PLIC Block")
Signed-off-by: Bin Meng <bmeng@tinylab.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-Id: <20221211030829.802437-16-bmeng@tinylab.org>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
2023-01-06 10:42:55 +10:00

516 lines
18 KiB
C

/*
* SiFive PLIC (Platform Level Interrupt Controller)
*
* Copyright (c) 2017 SiFive, Inc.
*
* This provides a parameterizable interrupt controller based on SiFive's PLIC.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/error-report.h"
#include "hw/sysbus.h"
#include "hw/pci/msi.h"
#include "hw/qdev-properties.h"
#include "hw/intc/sifive_plic.h"
#include "target/riscv/cpu.h"
#include "migration/vmstate.h"
#include "hw/irq.h"
#include "sysemu/kvm.h"
static bool addr_between(uint32_t addr, uint32_t base, uint32_t num)
{
return addr >= base && addr - base < num;
}
static PLICMode char_to_mode(char c)
{
switch (c) {
case 'U': return PLICMode_U;
case 'S': return PLICMode_S;
case 'M': return PLICMode_M;
default:
error_report("plic: invalid mode '%c'", c);
exit(1);
}
}
static uint32_t atomic_set_masked(uint32_t *a, uint32_t mask, uint32_t value)
{
uint32_t old, new, cmp = qatomic_read(a);
do {
old = cmp;
new = (old & ~mask) | (value & mask);
cmp = qatomic_cmpxchg(a, old, new);
} while (old != cmp);
return old;
}
static void sifive_plic_set_pending(SiFivePLICState *plic, int irq, bool level)
{
atomic_set_masked(&plic->pending[irq >> 5], 1 << (irq & 31), -!!level);
}
static void sifive_plic_set_claimed(SiFivePLICState *plic, int irq, bool level)
{
atomic_set_masked(&plic->claimed[irq >> 5], 1 << (irq & 31), -!!level);
}
static uint32_t sifive_plic_claimed(SiFivePLICState *plic, uint32_t addrid)
{
uint32_t max_irq = 0;
uint32_t max_prio = plic->target_priority[addrid];
int i, j;
int num_irq_in_word = 32;
for (i = 0; i < plic->bitfield_words; i++) {
uint32_t pending_enabled_not_claimed =
(plic->pending[i] & ~plic->claimed[i]) &
plic->enable[addrid * plic->bitfield_words + i];
if (!pending_enabled_not_claimed) {
continue;
}
if (i == (plic->bitfield_words - 1)) {
/*
* If plic->num_sources is not multiple of 32, num-of-irq in last
* word is not 32. Compute the num-of-irq of last word to avoid
* out-of-bound access of source_priority array.
*/
num_irq_in_word = plic->num_sources - ((plic->bitfield_words - 1) << 5);
}
for (j = 0; j < num_irq_in_word; j++) {
int irq = (i << 5) + j;
uint32_t prio = plic->source_priority[irq];
int enabled = pending_enabled_not_claimed & (1 << j);
if (enabled && prio > max_prio) {
max_irq = irq;
max_prio = prio;
}
}
}
return max_irq;
}
static void sifive_plic_update(SiFivePLICState *plic)
{
int addrid;
/* raise irq on harts where this irq is enabled */
for (addrid = 0; addrid < plic->num_addrs; addrid++) {
uint32_t hartid = plic->addr_config[addrid].hartid;
PLICMode mode = plic->addr_config[addrid].mode;
bool level = !!sifive_plic_claimed(plic, addrid);
switch (mode) {
case PLICMode_M:
qemu_set_irq(plic->m_external_irqs[hartid - plic->hartid_base], level);
break;
case PLICMode_S:
qemu_set_irq(plic->s_external_irqs[hartid - plic->hartid_base], level);
break;
default:
break;
}
}
}
static uint64_t sifive_plic_read(void *opaque, hwaddr addr, unsigned size)
{
SiFivePLICState *plic = opaque;
if (addr_between(addr, plic->priority_base, plic->num_sources << 2)) {
uint32_t irq = (addr - plic->priority_base) >> 2;
return plic->source_priority[irq];
} else if (addr_between(addr, plic->pending_base,
(plic->num_sources + 31) >> 3)) {
uint32_t word = (addr - plic->pending_base) >> 2;
return plic->pending[word];
} else if (addr_between(addr, plic->enable_base,
plic->num_addrs * plic->enable_stride)) {
uint32_t addrid = (addr - plic->enable_base) / plic->enable_stride;
uint32_t wordid = (addr & (plic->enable_stride - 1)) >> 2;
if (wordid < plic->bitfield_words) {
return plic->enable[addrid * plic->bitfield_words + wordid];
}
} else if (addr_between(addr, plic->context_base,
plic->num_addrs * plic->context_stride)) {
uint32_t addrid = (addr - plic->context_base) / plic->context_stride;
uint32_t contextid = (addr & (plic->context_stride - 1));
if (contextid == 0) {
return plic->target_priority[addrid];
} else if (contextid == 4) {
uint32_t max_irq = sifive_plic_claimed(plic, addrid);
if (max_irq) {
sifive_plic_set_pending(plic, max_irq, false);
sifive_plic_set_claimed(plic, max_irq, true);
}
sifive_plic_update(plic);
return max_irq;
}
}
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid register read 0x%" HWADDR_PRIx "\n",
__func__, addr);
return 0;
}
static void sifive_plic_write(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
SiFivePLICState *plic = opaque;
if (addr_between(addr, plic->priority_base, plic->num_sources << 2)) {
uint32_t irq = (addr - plic->priority_base) >> 2;
if (((plic->num_priorities + 1) & plic->num_priorities) == 0) {
/*
* if "num_priorities + 1" is power-of-2, make each register bit of
* interrupt priority WARL (Write-Any-Read-Legal). Just filter
* out the access to unsupported priority bits.
*/
plic->source_priority[irq] = value % (plic->num_priorities + 1);
sifive_plic_update(plic);
} else if (value <= plic->num_priorities) {
plic->source_priority[irq] = value;
sifive_plic_update(plic);
}
} else if (addr_between(addr, plic->pending_base,
(plic->num_sources + 31) >> 3)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid pending write: 0x%" HWADDR_PRIx "",
__func__, addr);
} else if (addr_between(addr, plic->enable_base,
plic->num_addrs * plic->enable_stride)) {
uint32_t addrid = (addr - plic->enable_base) / plic->enable_stride;
uint32_t wordid = (addr & (plic->enable_stride - 1)) >> 2;
if (wordid < plic->bitfield_words) {
plic->enable[addrid * plic->bitfield_words + wordid] = value;
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid enable write 0x%" HWADDR_PRIx "\n",
__func__, addr);
}
} else if (addr_between(addr, plic->context_base,
plic->num_addrs * plic->context_stride)) {
uint32_t addrid = (addr - plic->context_base) / plic->context_stride;
uint32_t contextid = (addr & (plic->context_stride - 1));
if (contextid == 0) {
if (((plic->num_priorities + 1) & plic->num_priorities) == 0) {
/*
* if "num_priorities + 1" is power-of-2, each register bit of
* interrupt priority is WARL (Write-Any-Read-Legal). Just
* filter out the access to unsupported priority bits.
*/
plic->target_priority[addrid] = value %
(plic->num_priorities + 1);
sifive_plic_update(plic);
} else if (value <= plic->num_priorities) {
plic->target_priority[addrid] = value;
sifive_plic_update(plic);
}
} else if (contextid == 4) {
if (value < plic->num_sources) {
sifive_plic_set_claimed(plic, value, false);
sifive_plic_update(plic);
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid context write 0x%" HWADDR_PRIx "\n",
__func__, addr);
}
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid register write 0x%" HWADDR_PRIx "\n",
__func__, addr);
}
}
static const MemoryRegionOps sifive_plic_ops = {
.read = sifive_plic_read,
.write = sifive_plic_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4
}
};
static void sifive_plic_reset(DeviceState *dev)
{
SiFivePLICState *s = SIFIVE_PLIC(dev);
int i;
memset(s->source_priority, 0, sizeof(uint32_t) * s->num_sources);
memset(s->target_priority, 0, sizeof(uint32_t) * s->num_addrs);
memset(s->pending, 0, sizeof(uint32_t) * s->bitfield_words);
memset(s->claimed, 0, sizeof(uint32_t) * s->bitfield_words);
memset(s->enable, 0, sizeof(uint32_t) * s->num_enables);
for (i = 0; i < s->num_harts; i++) {
qemu_set_irq(s->m_external_irqs[i], 0);
qemu_set_irq(s->s_external_irqs[i], 0);
}
}
/*
* parse PLIC hart/mode address offset config
*
* "M" 1 hart with M mode
* "MS,MS" 2 harts, 0-1 with M and S mode
* "M,MS,MS,MS,MS" 5 harts, 0 with M mode, 1-5 with M and S mode
*/
static void parse_hart_config(SiFivePLICState *plic)
{
int addrid, hartid, modes, m;
const char *p;
char c;
/* count and validate hart/mode combinations */
addrid = 0, hartid = 0, modes = 0;
p = plic->hart_config;
while ((c = *p++)) {
if (c == ',') {
if (modes) {
addrid += ctpop8(modes);
hartid++;
modes = 0;
}
} else {
m = 1 << char_to_mode(c);
if (modes == (modes | m)) {
error_report("plic: duplicate mode '%c' in config: %s",
c, plic->hart_config);
exit(1);
}
modes |= m;
}
}
if (modes) {
addrid += ctpop8(modes);
hartid++;
modes = 0;
}
plic->num_addrs = addrid;
plic->num_harts = hartid;
/* store hart/mode combinations */
plic->addr_config = g_new(PLICAddr, plic->num_addrs);
addrid = 0, hartid = plic->hartid_base;
p = plic->hart_config;
while ((c = *p++)) {
if (c == ',') {
if (modes) {
hartid++;
modes = 0;
}
} else {
m = char_to_mode(c);
plic->addr_config[addrid].addrid = addrid;
plic->addr_config[addrid].hartid = hartid;
plic->addr_config[addrid].mode = m;
modes |= (1 << m);
addrid++;
}
}
}
static void sifive_plic_irq_request(void *opaque, int irq, int level)
{
SiFivePLICState *s = opaque;
sifive_plic_set_pending(s, irq, level > 0);
sifive_plic_update(s);
}
static void sifive_plic_realize(DeviceState *dev, Error **errp)
{
SiFivePLICState *s = SIFIVE_PLIC(dev);
int i;
memory_region_init_io(&s->mmio, OBJECT(dev), &sifive_plic_ops, s,
TYPE_SIFIVE_PLIC, s->aperture_size);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio);
parse_hart_config(s);
if (!s->num_sources) {
error_setg(errp, "plic: invalid number of interrupt sources");
return;
}
s->bitfield_words = (s->num_sources + 31) >> 5;
s->num_enables = s->bitfield_words * s->num_addrs;
s->source_priority = g_new0(uint32_t, s->num_sources);
s->target_priority = g_new(uint32_t, s->num_addrs);
s->pending = g_new0(uint32_t, s->bitfield_words);
s->claimed = g_new0(uint32_t, s->bitfield_words);
s->enable = g_new0(uint32_t, s->num_enables);
qdev_init_gpio_in(dev, sifive_plic_irq_request, s->num_sources);
s->s_external_irqs = g_malloc(sizeof(qemu_irq) * s->num_harts);
qdev_init_gpio_out(dev, s->s_external_irqs, s->num_harts);
s->m_external_irqs = g_malloc(sizeof(qemu_irq) * s->num_harts);
qdev_init_gpio_out(dev, s->m_external_irqs, s->num_harts);
/*
* We can't allow the supervisor to control SEIP as this would allow the
* supervisor to clear a pending external interrupt which will result in
* lost a interrupt in the case a PLIC is attached. The SEIP bit must be
* hardware controlled when a PLIC is attached.
*/
for (i = 0; i < s->num_harts; i++) {
RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(s->hartid_base + i));
if (riscv_cpu_claim_interrupts(cpu, MIP_SEIP) < 0) {
error_setg(errp, "SEIP already claimed");
return;
}
}
msi_nonbroken = true;
}
static const VMStateDescription vmstate_sifive_plic = {
.name = "riscv_sifive_plic",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_VARRAY_UINT32(source_priority, SiFivePLICState,
num_sources, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(target_priority, SiFivePLICState,
num_addrs, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(pending, SiFivePLICState, bitfield_words, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(claimed, SiFivePLICState, bitfield_words, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_VARRAY_UINT32(enable, SiFivePLICState, num_enables, 0,
vmstate_info_uint32, uint32_t),
VMSTATE_END_OF_LIST()
}
};
static Property sifive_plic_properties[] = {
DEFINE_PROP_STRING("hart-config", SiFivePLICState, hart_config),
DEFINE_PROP_UINT32("hartid-base", SiFivePLICState, hartid_base, 0),
/* number of interrupt sources including interrupt source 0 */
DEFINE_PROP_UINT32("num-sources", SiFivePLICState, num_sources, 1),
DEFINE_PROP_UINT32("num-priorities", SiFivePLICState, num_priorities, 0),
/* interrupt priority register base starting from source 0 */
DEFINE_PROP_UINT32("priority-base", SiFivePLICState, priority_base, 0),
DEFINE_PROP_UINT32("pending-base", SiFivePLICState, pending_base, 0),
DEFINE_PROP_UINT32("enable-base", SiFivePLICState, enable_base, 0),
DEFINE_PROP_UINT32("enable-stride", SiFivePLICState, enable_stride, 0),
DEFINE_PROP_UINT32("context-base", SiFivePLICState, context_base, 0),
DEFINE_PROP_UINT32("context-stride", SiFivePLICState, context_stride, 0),
DEFINE_PROP_UINT32("aperture-size", SiFivePLICState, aperture_size, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void sifive_plic_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = sifive_plic_reset;
device_class_set_props(dc, sifive_plic_properties);
dc->realize = sifive_plic_realize;
dc->vmsd = &vmstate_sifive_plic;
}
static const TypeInfo sifive_plic_info = {
.name = TYPE_SIFIVE_PLIC,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SiFivePLICState),
.class_init = sifive_plic_class_init,
};
static void sifive_plic_register_types(void)
{
type_register_static(&sifive_plic_info);
}
type_init(sifive_plic_register_types)
/*
* Create PLIC device.
*/
DeviceState *sifive_plic_create(hwaddr addr, char *hart_config,
uint32_t num_harts,
uint32_t hartid_base, uint32_t num_sources,
uint32_t num_priorities, uint32_t priority_base,
uint32_t pending_base, uint32_t enable_base,
uint32_t enable_stride, uint32_t context_base,
uint32_t context_stride, uint32_t aperture_size)
{
DeviceState *dev = qdev_new(TYPE_SIFIVE_PLIC);
int i;
SiFivePLICState *plic;
assert(enable_stride == (enable_stride & -enable_stride));
assert(context_stride == (context_stride & -context_stride));
qdev_prop_set_string(dev, "hart-config", hart_config);
qdev_prop_set_uint32(dev, "hartid-base", hartid_base);
qdev_prop_set_uint32(dev, "num-sources", num_sources);
qdev_prop_set_uint32(dev, "num-priorities", num_priorities);
qdev_prop_set_uint32(dev, "priority-base", priority_base);
qdev_prop_set_uint32(dev, "pending-base", pending_base);
qdev_prop_set_uint32(dev, "enable-base", enable_base);
qdev_prop_set_uint32(dev, "enable-stride", enable_stride);
qdev_prop_set_uint32(dev, "context-base", context_base);
qdev_prop_set_uint32(dev, "context-stride", context_stride);
qdev_prop_set_uint32(dev, "aperture-size", aperture_size);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr);
plic = SIFIVE_PLIC(dev);
for (i = 0; i < plic->num_addrs; i++) {
int cpu_num = plic->addr_config[i].hartid;
CPUState *cpu = qemu_get_cpu(cpu_num);
if (plic->addr_config[i].mode == PLICMode_M) {
qdev_connect_gpio_out(dev, cpu_num - hartid_base + num_harts,
qdev_get_gpio_in(DEVICE(cpu), IRQ_M_EXT));
}
if (plic->addr_config[i].mode == PLICMode_S) {
qdev_connect_gpio_out(dev, cpu_num - hartid_base,
qdev_get_gpio_in(DEVICE(cpu), IRQ_S_EXT));
}
}
return dev;
}