qemu-e2k/target/riscv/crypto_helper.c
Richard Henderson 4ad6f9bfa0 target/riscv: Use aesdec_ISB_ISR_IMC_AK
This implements the AES64DSM instruction.  This was the last use
of aes64_operation and its support macros, so remove them all.

Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-07-09 13:47:17 +01:00

235 lines
6.3 KiB
C

/*
* RISC-V Crypto Emulation Helpers for QEMU.
*
* Copyright (c) 2021 Ruibo Lu, luruibo2000@163.com
* Copyright (c) 2021 Zewen Ye, lustrew@foxmail.com
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "crypto/aes.h"
#include "crypto/aes-round.h"
#include "crypto/sm4.h"
#define AES_XTIME(a) \
((a << 1) ^ ((a & 0x80) ? 0x1b : 0))
#define AES_GFMUL(a, b) (( \
(((b) & 0x1) ? (a) : 0) ^ \
(((b) & 0x2) ? AES_XTIME(a) : 0) ^ \
(((b) & 0x4) ? AES_XTIME(AES_XTIME(a)) : 0) ^ \
(((b) & 0x8) ? AES_XTIME(AES_XTIME(AES_XTIME(a))) : 0)) & 0xFF)
static inline uint32_t aes_mixcolumn_byte(uint8_t x, bool fwd)
{
uint32_t u;
if (fwd) {
u = (AES_GFMUL(x, 3) << 24) | (x << 16) | (x << 8) |
(AES_GFMUL(x, 2) << 0);
} else {
u = (AES_GFMUL(x, 0xb) << 24) | (AES_GFMUL(x, 0xd) << 16) |
(AES_GFMUL(x, 0x9) << 8) | (AES_GFMUL(x, 0xe) << 0);
}
return u;
}
#define sext32_xlen(x) (target_ulong)(int32_t)(x)
static inline target_ulong aes32_operation(target_ulong shamt,
target_ulong rs1, target_ulong rs2,
bool enc, bool mix)
{
uint8_t si = rs2 >> shamt;
uint8_t so;
uint32_t mixed;
target_ulong res;
if (enc) {
so = AES_sbox[si];
if (mix) {
mixed = aes_mixcolumn_byte(so, true);
} else {
mixed = so;
}
} else {
so = AES_isbox[si];
if (mix) {
mixed = aes_mixcolumn_byte(so, false);
} else {
mixed = so;
}
}
mixed = rol32(mixed, shamt);
res = rs1 ^ mixed;
return sext32_xlen(res);
}
target_ulong HELPER(aes32esmi)(target_ulong rs1, target_ulong rs2,
target_ulong shamt)
{
return aes32_operation(shamt, rs1, rs2, true, true);
}
target_ulong HELPER(aes32esi)(target_ulong rs1, target_ulong rs2,
target_ulong shamt)
{
return aes32_operation(shamt, rs1, rs2, true, false);
}
target_ulong HELPER(aes32dsmi)(target_ulong rs1, target_ulong rs2,
target_ulong shamt)
{
return aes32_operation(shamt, rs1, rs2, false, true);
}
target_ulong HELPER(aes32dsi)(target_ulong rs1, target_ulong rs2,
target_ulong shamt)
{
return aes32_operation(shamt, rs1, rs2, false, false);
}
static const AESState aes_zero = { };
target_ulong HELPER(aes64esm)(target_ulong rs1, target_ulong rs2)
{
AESState t;
t.d[HOST_BIG_ENDIAN] = rs1;
t.d[!HOST_BIG_ENDIAN] = rs2;
aesenc_SB_SR_MC_AK(&t, &t, &aes_zero, false);
return t.d[HOST_BIG_ENDIAN];
}
target_ulong HELPER(aes64es)(target_ulong rs1, target_ulong rs2)
{
AESState t;
t.d[HOST_BIG_ENDIAN] = rs1;
t.d[!HOST_BIG_ENDIAN] = rs2;
aesenc_SB_SR_AK(&t, &t, &aes_zero, false);
return t.d[HOST_BIG_ENDIAN];
}
target_ulong HELPER(aes64ds)(target_ulong rs1, target_ulong rs2)
{
AESState t;
t.d[HOST_BIG_ENDIAN] = rs1;
t.d[!HOST_BIG_ENDIAN] = rs2;
aesdec_ISB_ISR_AK(&t, &t, &aes_zero, false);
return t.d[HOST_BIG_ENDIAN];
}
target_ulong HELPER(aes64dsm)(target_ulong rs1, target_ulong rs2)
{
AESState t, z = { };
/*
* This instruction does not include a round key,
* so supply a zero to our primitive.
*/
t.d[HOST_BIG_ENDIAN] = rs1;
t.d[!HOST_BIG_ENDIAN] = rs2;
aesdec_ISB_ISR_IMC_AK(&t, &t, &z, false);
return t.d[HOST_BIG_ENDIAN];
}
target_ulong HELPER(aes64ks2)(target_ulong rs1, target_ulong rs2)
{
uint64_t RS1 = rs1;
uint64_t RS2 = rs2;
uint32_t rs1_hi = RS1 >> 32;
uint32_t rs2_lo = RS2;
uint32_t rs2_hi = RS2 >> 32;
uint32_t r_lo = (rs1_hi ^ rs2_lo);
uint32_t r_hi = (rs1_hi ^ rs2_lo ^ rs2_hi);
target_ulong result = ((uint64_t)r_hi << 32) | r_lo;
return result;
}
target_ulong HELPER(aes64ks1i)(target_ulong rs1, target_ulong rnum)
{
uint64_t RS1 = rs1;
static const uint8_t round_consts[10] = {
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36
};
uint8_t enc_rnum = rnum;
uint32_t temp = (RS1 >> 32) & 0xFFFFFFFF;
uint8_t rcon_ = 0;
target_ulong result;
if (enc_rnum != 0xA) {
temp = ror32(temp, 8); /* Rotate right by 8 */
rcon_ = round_consts[enc_rnum];
}
temp = ((uint32_t)AES_sbox[(temp >> 24) & 0xFF] << 24) |
((uint32_t)AES_sbox[(temp >> 16) & 0xFF] << 16) |
((uint32_t)AES_sbox[(temp >> 8) & 0xFF] << 8) |
((uint32_t)AES_sbox[(temp >> 0) & 0xFF] << 0);
temp ^= rcon_;
result = ((uint64_t)temp << 32) | temp;
return result;
}
target_ulong HELPER(aes64im)(target_ulong rs1)
{
AESState t;
t.d[HOST_BIG_ENDIAN] = rs1;
t.d[!HOST_BIG_ENDIAN] = 0;
aesdec_IMC(&t, &t, false);
return t.d[HOST_BIG_ENDIAN];
}
target_ulong HELPER(sm4ed)(target_ulong rs1, target_ulong rs2,
target_ulong shamt)
{
uint32_t sb_in = (uint8_t)(rs2 >> shamt);
uint32_t sb_out = (uint32_t)sm4_sbox[sb_in];
uint32_t x = sb_out ^ (sb_out << 8) ^ (sb_out << 2) ^ (sb_out << 18) ^
((sb_out & 0x3f) << 26) ^ ((sb_out & 0xC0) << 10);
uint32_t rotl = rol32(x, shamt);
return sext32_xlen(rotl ^ (uint32_t)rs1);
}
target_ulong HELPER(sm4ks)(target_ulong rs1, target_ulong rs2,
target_ulong shamt)
{
uint32_t sb_in = (uint8_t)(rs2 >> shamt);
uint32_t sb_out = sm4_sbox[sb_in];
uint32_t x = sb_out ^ ((sb_out & 0x07) << 29) ^ ((sb_out & 0xFE) << 7) ^
((sb_out & 0x01) << 23) ^ ((sb_out & 0xF8) << 13);
uint32_t rotl = rol32(x, shamt);
return sext32_xlen(rotl ^ (uint32_t)rs1);
}
#undef sext32_xlen