qemu-e2k/hw/audio/intel-hda.c
Damien Hedde f703a04ce5 add device_legacy_reset function to prepare for reset api change
Provide a temporary device_legacy_reset function doing what
device_reset does to prepare for the transition with Resettable
API.

All occurrence of device_reset in the code tree are also replaced
by device_legacy_reset.

The new resettable API has different prototype and semantics
(resetting child buses as well as the specified device). Subsequent
commits will make the changeover for each call site individually; once
that is complete device_legacy_reset() will be removed.

Signed-off-by: Damien Hedde <damien.hedde@greensocs.com>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Acked-by: David Gibson <david@gibson.dropbear.id.au>
Acked-by: Cornelia Huck <cohuck@redhat.com>
Tested-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com>
Message-id: 20200123132823.1117486-2-damien.hedde@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2020-01-30 16:02:03 +00:00

1332 lines
40 KiB
C

/*
* Copyright (C) 2010 Red Hat, Inc.
*
* written by Gerd Hoffmann <kraxel@redhat.com>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 or
* (at your option) version 3 of the License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "hw/pci/pci.h"
#include "hw/qdev-properties.h"
#include "hw/pci/msi.h"
#include "qemu/timer.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "hw/audio/soundhw.h"
#include "intel-hda.h"
#include "migration/vmstate.h"
#include "intel-hda-defs.h"
#include "sysemu/dma.h"
#include "qapi/error.h"
/* --------------------------------------------------------------------- */
/* hda bus */
static Property hda_props[] = {
DEFINE_PROP_UINT32("cad", HDACodecDevice, cad, -1),
DEFINE_PROP_END_OF_LIST()
};
static const TypeInfo hda_codec_bus_info = {
.name = TYPE_HDA_BUS,
.parent = TYPE_BUS,
.instance_size = sizeof(HDACodecBus),
};
void hda_codec_bus_init(DeviceState *dev, HDACodecBus *bus, size_t bus_size,
hda_codec_response_func response,
hda_codec_xfer_func xfer)
{
qbus_create_inplace(bus, bus_size, TYPE_HDA_BUS, dev, NULL);
bus->response = response;
bus->xfer = xfer;
}
static void hda_codec_dev_realize(DeviceState *qdev, Error **errp)
{
HDACodecBus *bus = HDA_BUS(qdev->parent_bus);
HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
if (dev->cad == -1) {
dev->cad = bus->next_cad;
}
if (dev->cad >= 15) {
error_setg(errp, "HDA audio codec address is full");
return;
}
bus->next_cad = dev->cad + 1;
if (cdc->init(dev) != 0) {
error_setg(errp, "HDA audio init failed");
}
}
static void hda_codec_dev_unrealize(DeviceState *qdev, Error **errp)
{
HDACodecDevice *dev = HDA_CODEC_DEVICE(qdev);
HDACodecDeviceClass *cdc = HDA_CODEC_DEVICE_GET_CLASS(dev);
if (cdc->exit) {
cdc->exit(dev);
}
}
HDACodecDevice *hda_codec_find(HDACodecBus *bus, uint32_t cad)
{
BusChild *kid;
HDACodecDevice *cdev;
QTAILQ_FOREACH(kid, &bus->qbus.children, sibling) {
DeviceState *qdev = kid->child;
cdev = HDA_CODEC_DEVICE(qdev);
if (cdev->cad == cad) {
return cdev;
}
}
return NULL;
}
void hda_codec_response(HDACodecDevice *dev, bool solicited, uint32_t response)
{
HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
bus->response(dev, solicited, response);
}
bool hda_codec_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
uint8_t *buf, uint32_t len)
{
HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
return bus->xfer(dev, stnr, output, buf, len);
}
/* --------------------------------------------------------------------- */
/* intel hda emulation */
typedef struct IntelHDAStream IntelHDAStream;
typedef struct IntelHDAState IntelHDAState;
typedef struct IntelHDAReg IntelHDAReg;
typedef struct bpl {
uint64_t addr;
uint32_t len;
uint32_t flags;
} bpl;
struct IntelHDAStream {
/* registers */
uint32_t ctl;
uint32_t lpib;
uint32_t cbl;
uint32_t lvi;
uint32_t fmt;
uint32_t bdlp_lbase;
uint32_t bdlp_ubase;
/* state */
bpl *bpl;
uint32_t bentries;
uint32_t bsize, be, bp;
};
struct IntelHDAState {
PCIDevice pci;
const char *name;
HDACodecBus codecs;
/* registers */
uint32_t g_ctl;
uint32_t wake_en;
uint32_t state_sts;
uint32_t int_ctl;
uint32_t int_sts;
uint32_t wall_clk;
uint32_t corb_lbase;
uint32_t corb_ubase;
uint32_t corb_rp;
uint32_t corb_wp;
uint32_t corb_ctl;
uint32_t corb_sts;
uint32_t corb_size;
uint32_t rirb_lbase;
uint32_t rirb_ubase;
uint32_t rirb_wp;
uint32_t rirb_cnt;
uint32_t rirb_ctl;
uint32_t rirb_sts;
uint32_t rirb_size;
uint32_t dp_lbase;
uint32_t dp_ubase;
uint32_t icw;
uint32_t irr;
uint32_t ics;
/* streams */
IntelHDAStream st[8];
/* state */
MemoryRegion mmio;
uint32_t rirb_count;
int64_t wall_base_ns;
/* debug logging */
const IntelHDAReg *last_reg;
uint32_t last_val;
uint32_t last_write;
uint32_t last_sec;
uint32_t repeat_count;
/* properties */
uint32_t debug;
OnOffAuto msi;
bool old_msi_addr;
};
#define TYPE_INTEL_HDA_GENERIC "intel-hda-generic"
#define INTEL_HDA(obj) \
OBJECT_CHECK(IntelHDAState, (obj), TYPE_INTEL_HDA_GENERIC)
struct IntelHDAReg {
const char *name; /* register name */
uint32_t size; /* size in bytes */
uint32_t reset; /* reset value */
uint32_t wmask; /* write mask */
uint32_t wclear; /* write 1 to clear bits */
uint32_t offset; /* location in IntelHDAState */
uint32_t shift; /* byte access entries for dwords */
uint32_t stream;
void (*whandler)(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old);
void (*rhandler)(IntelHDAState *d, const IntelHDAReg *reg);
};
static void intel_hda_reset(DeviceState *dev);
/* --------------------------------------------------------------------- */
static hwaddr intel_hda_addr(uint32_t lbase, uint32_t ubase)
{
return ((uint64_t)ubase << 32) | lbase;
}
static void intel_hda_update_int_sts(IntelHDAState *d)
{
uint32_t sts = 0;
uint32_t i;
/* update controller status */
if (d->rirb_sts & ICH6_RBSTS_IRQ) {
sts |= (1 << 30);
}
if (d->rirb_sts & ICH6_RBSTS_OVERRUN) {
sts |= (1 << 30);
}
if (d->state_sts & d->wake_en) {
sts |= (1 << 30);
}
/* update stream status */
for (i = 0; i < 8; i++) {
/* buffer completion interrupt */
if (d->st[i].ctl & (1 << 26)) {
sts |= (1 << i);
}
}
/* update global status */
if (sts & d->int_ctl) {
sts |= (1U << 31);
}
d->int_sts = sts;
}
static void intel_hda_update_irq(IntelHDAState *d)
{
bool msi = msi_enabled(&d->pci);
int level;
intel_hda_update_int_sts(d);
if (d->int_sts & (1U << 31) && d->int_ctl & (1U << 31)) {
level = 1;
} else {
level = 0;
}
dprint(d, 2, "%s: level %d [%s]\n", __func__,
level, msi ? "msi" : "intx");
if (msi) {
if (level) {
msi_notify(&d->pci, 0);
}
} else {
pci_set_irq(&d->pci, level);
}
}
static int intel_hda_send_command(IntelHDAState *d, uint32_t verb)
{
uint32_t cad, nid, data;
HDACodecDevice *codec;
HDACodecDeviceClass *cdc;
cad = (verb >> 28) & 0x0f;
if (verb & (1 << 27)) {
/* indirect node addressing, not specified in HDA 1.0 */
dprint(d, 1, "%s: indirect node addressing (guest bug?)\n", __func__);
return -1;
}
nid = (verb >> 20) & 0x7f;
data = verb & 0xfffff;
codec = hda_codec_find(&d->codecs, cad);
if (codec == NULL) {
dprint(d, 1, "%s: addressed non-existing codec\n", __func__);
return -1;
}
cdc = HDA_CODEC_DEVICE_GET_CLASS(codec);
cdc->command(codec, nid, data);
return 0;
}
static void intel_hda_corb_run(IntelHDAState *d)
{
hwaddr addr;
uint32_t rp, verb;
if (d->ics & ICH6_IRS_BUSY) {
dprint(d, 2, "%s: [icw] verb 0x%08x\n", __func__, d->icw);
intel_hda_send_command(d, d->icw);
return;
}
for (;;) {
if (!(d->corb_ctl & ICH6_CORBCTL_RUN)) {
dprint(d, 2, "%s: !run\n", __func__);
return;
}
if ((d->corb_rp & 0xff) == d->corb_wp) {
dprint(d, 2, "%s: corb ring empty\n", __func__);
return;
}
if (d->rirb_count == d->rirb_cnt) {
dprint(d, 2, "%s: rirb count reached\n", __func__);
return;
}
rp = (d->corb_rp + 1) & 0xff;
addr = intel_hda_addr(d->corb_lbase, d->corb_ubase);
verb = ldl_le_pci_dma(&d->pci, addr + 4*rp);
d->corb_rp = rp;
dprint(d, 2, "%s: [rp 0x%x] verb 0x%08x\n", __func__, rp, verb);
intel_hda_send_command(d, verb);
}
}
static void intel_hda_response(HDACodecDevice *dev, bool solicited, uint32_t response)
{
HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
hwaddr addr;
uint32_t wp, ex;
if (d->ics & ICH6_IRS_BUSY) {
dprint(d, 2, "%s: [irr] response 0x%x, cad 0x%x\n",
__func__, response, dev->cad);
d->irr = response;
d->ics &= ~(ICH6_IRS_BUSY | 0xf0);
d->ics |= (ICH6_IRS_VALID | (dev->cad << 4));
return;
}
if (!(d->rirb_ctl & ICH6_RBCTL_DMA_EN)) {
dprint(d, 1, "%s: rirb dma disabled, drop codec response\n", __func__);
return;
}
ex = (solicited ? 0 : (1 << 4)) | dev->cad;
wp = (d->rirb_wp + 1) & 0xff;
addr = intel_hda_addr(d->rirb_lbase, d->rirb_ubase);
stl_le_pci_dma(&d->pci, addr + 8*wp, response);
stl_le_pci_dma(&d->pci, addr + 8*wp + 4, ex);
d->rirb_wp = wp;
dprint(d, 2, "%s: [wp 0x%x] response 0x%x, extra 0x%x\n",
__func__, wp, response, ex);
d->rirb_count++;
if (d->rirb_count == d->rirb_cnt) {
dprint(d, 2, "%s: rirb count reached (%d)\n", __func__, d->rirb_count);
if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
d->rirb_sts |= ICH6_RBSTS_IRQ;
intel_hda_update_irq(d);
}
} else if ((d->corb_rp & 0xff) == d->corb_wp) {
dprint(d, 2, "%s: corb ring empty (%d/%d)\n", __func__,
d->rirb_count, d->rirb_cnt);
if (d->rirb_ctl & ICH6_RBCTL_IRQ_EN) {
d->rirb_sts |= ICH6_RBSTS_IRQ;
intel_hda_update_irq(d);
}
}
}
static bool intel_hda_xfer(HDACodecDevice *dev, uint32_t stnr, bool output,
uint8_t *buf, uint32_t len)
{
HDACodecBus *bus = HDA_BUS(dev->qdev.parent_bus);
IntelHDAState *d = container_of(bus, IntelHDAState, codecs);
hwaddr addr;
uint32_t s, copy, left;
IntelHDAStream *st;
bool irq = false;
st = output ? d->st + 4 : d->st;
for (s = 0; s < 4; s++) {
if (stnr == ((st[s].ctl >> 20) & 0x0f)) {
st = st + s;
break;
}
}
if (s == 4) {
return false;
}
if (st->bpl == NULL) {
return false;
}
left = len;
s = st->bentries;
while (left > 0 && s-- > 0) {
copy = left;
if (copy > st->bsize - st->lpib)
copy = st->bsize - st->lpib;
if (copy > st->bpl[st->be].len - st->bp)
copy = st->bpl[st->be].len - st->bp;
dprint(d, 3, "dma: entry %d, pos %d/%d, copy %d\n",
st->be, st->bp, st->bpl[st->be].len, copy);
pci_dma_rw(&d->pci, st->bpl[st->be].addr + st->bp, buf, copy, !output);
st->lpib += copy;
st->bp += copy;
buf += copy;
left -= copy;
if (st->bpl[st->be].len == st->bp) {
/* bpl entry filled */
if (st->bpl[st->be].flags & 0x01) {
irq = true;
}
st->bp = 0;
st->be++;
if (st->be == st->bentries) {
/* bpl wrap around */
st->be = 0;
st->lpib = 0;
}
}
}
if (d->dp_lbase & 0x01) {
s = st - d->st;
addr = intel_hda_addr(d->dp_lbase & ~0x01, d->dp_ubase);
stl_le_pci_dma(&d->pci, addr + 8*s, st->lpib);
}
dprint(d, 3, "dma: --\n");
if (irq) {
st->ctl |= (1 << 26); /* buffer completion interrupt */
intel_hda_update_irq(d);
}
return true;
}
static void intel_hda_parse_bdl(IntelHDAState *d, IntelHDAStream *st)
{
hwaddr addr;
uint8_t buf[16];
uint32_t i;
addr = intel_hda_addr(st->bdlp_lbase, st->bdlp_ubase);
st->bentries = st->lvi +1;
g_free(st->bpl);
st->bpl = g_malloc(sizeof(bpl) * st->bentries);
for (i = 0; i < st->bentries; i++, addr += 16) {
pci_dma_read(&d->pci, addr, buf, 16);
st->bpl[i].addr = le64_to_cpu(*(uint64_t *)buf);
st->bpl[i].len = le32_to_cpu(*(uint32_t *)(buf + 8));
st->bpl[i].flags = le32_to_cpu(*(uint32_t *)(buf + 12));
dprint(d, 1, "bdl/%d: 0x%" PRIx64 " +0x%x, 0x%x\n",
i, st->bpl[i].addr, st->bpl[i].len, st->bpl[i].flags);
}
st->bsize = st->cbl;
st->lpib = 0;
st->be = 0;
st->bp = 0;
}
static void intel_hda_notify_codecs(IntelHDAState *d, uint32_t stream, bool running, bool output)
{
BusChild *kid;
HDACodecDevice *cdev;
QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
DeviceState *qdev = kid->child;
HDACodecDeviceClass *cdc;
cdev = HDA_CODEC_DEVICE(qdev);
cdc = HDA_CODEC_DEVICE_GET_CLASS(cdev);
if (cdc->stream) {
cdc->stream(cdev, stream, running, output);
}
}
}
/* --------------------------------------------------------------------- */
static void intel_hda_set_g_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
if ((d->g_ctl & ICH6_GCTL_RESET) == 0) {
intel_hda_reset(DEVICE(d));
}
}
static void intel_hda_set_wake_en(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
intel_hda_update_irq(d);
}
static void intel_hda_set_state_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
intel_hda_update_irq(d);
}
static void intel_hda_set_int_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
intel_hda_update_irq(d);
}
static void intel_hda_get_wall_clk(IntelHDAState *d, const IntelHDAReg *reg)
{
int64_t ns;
ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - d->wall_base_ns;
d->wall_clk = (uint32_t)(ns * 24 / 1000); /* 24 MHz */
}
static void intel_hda_set_corb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
intel_hda_corb_run(d);
}
static void intel_hda_set_corb_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
intel_hda_corb_run(d);
}
static void intel_hda_set_rirb_wp(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
if (d->rirb_wp & ICH6_RIRBWP_RST) {
d->rirb_wp = 0;
}
}
static void intel_hda_set_rirb_sts(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
intel_hda_update_irq(d);
if ((old & ICH6_RBSTS_IRQ) && !(d->rirb_sts & ICH6_RBSTS_IRQ)) {
/* cleared ICH6_RBSTS_IRQ */
d->rirb_count = 0;
intel_hda_corb_run(d);
}
}
static void intel_hda_set_ics(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
if (d->ics & ICH6_IRS_BUSY) {
intel_hda_corb_run(d);
}
}
static void intel_hda_set_st_ctl(IntelHDAState *d, const IntelHDAReg *reg, uint32_t old)
{
bool output = reg->stream >= 4;
IntelHDAStream *st = d->st + reg->stream;
if (st->ctl & 0x01) {
/* reset */
dprint(d, 1, "st #%d: reset\n", reg->stream);
st->ctl = SD_STS_FIFO_READY << 24;
}
if ((st->ctl & 0x02) != (old & 0x02)) {
uint32_t stnr = (st->ctl >> 20) & 0x0f;
/* run bit flipped */
if (st->ctl & 0x02) {
/* start */
dprint(d, 1, "st #%d: start %d (ring buf %d bytes)\n",
reg->stream, stnr, st->cbl);
intel_hda_parse_bdl(d, st);
intel_hda_notify_codecs(d, stnr, true, output);
} else {
/* stop */
dprint(d, 1, "st #%d: stop %d\n", reg->stream, stnr);
intel_hda_notify_codecs(d, stnr, false, output);
}
}
intel_hda_update_irq(d);
}
/* --------------------------------------------------------------------- */
#define ST_REG(_n, _o) (0x80 + (_n) * 0x20 + (_o))
static const struct IntelHDAReg regtab[] = {
/* global */
[ ICH6_REG_GCAP ] = {
.name = "GCAP",
.size = 2,
.reset = 0x4401,
},
[ ICH6_REG_VMIN ] = {
.name = "VMIN",
.size = 1,
},
[ ICH6_REG_VMAJ ] = {
.name = "VMAJ",
.size = 1,
.reset = 1,
},
[ ICH6_REG_OUTPAY ] = {
.name = "OUTPAY",
.size = 2,
.reset = 0x3c,
},
[ ICH6_REG_INPAY ] = {
.name = "INPAY",
.size = 2,
.reset = 0x1d,
},
[ ICH6_REG_GCTL ] = {
.name = "GCTL",
.size = 4,
.wmask = 0x0103,
.offset = offsetof(IntelHDAState, g_ctl),
.whandler = intel_hda_set_g_ctl,
},
[ ICH6_REG_WAKEEN ] = {
.name = "WAKEEN",
.size = 2,
.wmask = 0x7fff,
.offset = offsetof(IntelHDAState, wake_en),
.whandler = intel_hda_set_wake_en,
},
[ ICH6_REG_STATESTS ] = {
.name = "STATESTS",
.size = 2,
.wmask = 0x7fff,
.wclear = 0x7fff,
.offset = offsetof(IntelHDAState, state_sts),
.whandler = intel_hda_set_state_sts,
},
/* interrupts */
[ ICH6_REG_INTCTL ] = {
.name = "INTCTL",
.size = 4,
.wmask = 0xc00000ff,
.offset = offsetof(IntelHDAState, int_ctl),
.whandler = intel_hda_set_int_ctl,
},
[ ICH6_REG_INTSTS ] = {
.name = "INTSTS",
.size = 4,
.wmask = 0xc00000ff,
.wclear = 0xc00000ff,
.offset = offsetof(IntelHDAState, int_sts),
},
/* misc */
[ ICH6_REG_WALLCLK ] = {
.name = "WALLCLK",
.size = 4,
.offset = offsetof(IntelHDAState, wall_clk),
.rhandler = intel_hda_get_wall_clk,
},
[ ICH6_REG_WALLCLK + 0x2000 ] = {
.name = "WALLCLK(alias)",
.size = 4,
.offset = offsetof(IntelHDAState, wall_clk),
.rhandler = intel_hda_get_wall_clk,
},
/* dma engine */
[ ICH6_REG_CORBLBASE ] = {
.name = "CORBLBASE",
.size = 4,
.wmask = 0xffffff80,
.offset = offsetof(IntelHDAState, corb_lbase),
},
[ ICH6_REG_CORBUBASE ] = {
.name = "CORBUBASE",
.size = 4,
.wmask = 0xffffffff,
.offset = offsetof(IntelHDAState, corb_ubase),
},
[ ICH6_REG_CORBWP ] = {
.name = "CORBWP",
.size = 2,
.wmask = 0xff,
.offset = offsetof(IntelHDAState, corb_wp),
.whandler = intel_hda_set_corb_wp,
},
[ ICH6_REG_CORBRP ] = {
.name = "CORBRP",
.size = 2,
.wmask = 0x80ff,
.offset = offsetof(IntelHDAState, corb_rp),
},
[ ICH6_REG_CORBCTL ] = {
.name = "CORBCTL",
.size = 1,
.wmask = 0x03,
.offset = offsetof(IntelHDAState, corb_ctl),
.whandler = intel_hda_set_corb_ctl,
},
[ ICH6_REG_CORBSTS ] = {
.name = "CORBSTS",
.size = 1,
.wmask = 0x01,
.wclear = 0x01,
.offset = offsetof(IntelHDAState, corb_sts),
},
[ ICH6_REG_CORBSIZE ] = {
.name = "CORBSIZE",
.size = 1,
.reset = 0x42,
.offset = offsetof(IntelHDAState, corb_size),
},
[ ICH6_REG_RIRBLBASE ] = {
.name = "RIRBLBASE",
.size = 4,
.wmask = 0xffffff80,
.offset = offsetof(IntelHDAState, rirb_lbase),
},
[ ICH6_REG_RIRBUBASE ] = {
.name = "RIRBUBASE",
.size = 4,
.wmask = 0xffffffff,
.offset = offsetof(IntelHDAState, rirb_ubase),
},
[ ICH6_REG_RIRBWP ] = {
.name = "RIRBWP",
.size = 2,
.wmask = 0x8000,
.offset = offsetof(IntelHDAState, rirb_wp),
.whandler = intel_hda_set_rirb_wp,
},
[ ICH6_REG_RINTCNT ] = {
.name = "RINTCNT",
.size = 2,
.wmask = 0xff,
.offset = offsetof(IntelHDAState, rirb_cnt),
},
[ ICH6_REG_RIRBCTL ] = {
.name = "RIRBCTL",
.size = 1,
.wmask = 0x07,
.offset = offsetof(IntelHDAState, rirb_ctl),
},
[ ICH6_REG_RIRBSTS ] = {
.name = "RIRBSTS",
.size = 1,
.wmask = 0x05,
.wclear = 0x05,
.offset = offsetof(IntelHDAState, rirb_sts),
.whandler = intel_hda_set_rirb_sts,
},
[ ICH6_REG_RIRBSIZE ] = {
.name = "RIRBSIZE",
.size = 1,
.reset = 0x42,
.offset = offsetof(IntelHDAState, rirb_size),
},
[ ICH6_REG_DPLBASE ] = {
.name = "DPLBASE",
.size = 4,
.wmask = 0xffffff81,
.offset = offsetof(IntelHDAState, dp_lbase),
},
[ ICH6_REG_DPUBASE ] = {
.name = "DPUBASE",
.size = 4,
.wmask = 0xffffffff,
.offset = offsetof(IntelHDAState, dp_ubase),
},
[ ICH6_REG_IC ] = {
.name = "ICW",
.size = 4,
.wmask = 0xffffffff,
.offset = offsetof(IntelHDAState, icw),
},
[ ICH6_REG_IR ] = {
.name = "IRR",
.size = 4,
.offset = offsetof(IntelHDAState, irr),
},
[ ICH6_REG_IRS ] = {
.name = "ICS",
.size = 2,
.wmask = 0x0003,
.wclear = 0x0002,
.offset = offsetof(IntelHDAState, ics),
.whandler = intel_hda_set_ics,
},
#define HDA_STREAM(_t, _i) \
[ ST_REG(_i, ICH6_REG_SD_CTL) ] = { \
.stream = _i, \
.name = _t stringify(_i) " CTL", \
.size = 4, \
.wmask = 0x1cff001f, \
.offset = offsetof(IntelHDAState, st[_i].ctl), \
.whandler = intel_hda_set_st_ctl, \
}, \
[ ST_REG(_i, ICH6_REG_SD_CTL) + 2] = { \
.stream = _i, \
.name = _t stringify(_i) " CTL(stnr)", \
.size = 1, \
.shift = 16, \
.wmask = 0x00ff0000, \
.offset = offsetof(IntelHDAState, st[_i].ctl), \
.whandler = intel_hda_set_st_ctl, \
}, \
[ ST_REG(_i, ICH6_REG_SD_STS)] = { \
.stream = _i, \
.name = _t stringify(_i) " CTL(sts)", \
.size = 1, \
.shift = 24, \
.wmask = 0x1c000000, \
.wclear = 0x1c000000, \
.offset = offsetof(IntelHDAState, st[_i].ctl), \
.whandler = intel_hda_set_st_ctl, \
.reset = SD_STS_FIFO_READY << 24 \
}, \
[ ST_REG(_i, ICH6_REG_SD_LPIB) ] = { \
.stream = _i, \
.name = _t stringify(_i) " LPIB", \
.size = 4, \
.offset = offsetof(IntelHDAState, st[_i].lpib), \
}, \
[ ST_REG(_i, ICH6_REG_SD_LPIB) + 0x2000 ] = { \
.stream = _i, \
.name = _t stringify(_i) " LPIB(alias)", \
.size = 4, \
.offset = offsetof(IntelHDAState, st[_i].lpib), \
}, \
[ ST_REG(_i, ICH6_REG_SD_CBL) ] = { \
.stream = _i, \
.name = _t stringify(_i) " CBL", \
.size = 4, \
.wmask = 0xffffffff, \
.offset = offsetof(IntelHDAState, st[_i].cbl), \
}, \
[ ST_REG(_i, ICH6_REG_SD_LVI) ] = { \
.stream = _i, \
.name = _t stringify(_i) " LVI", \
.size = 2, \
.wmask = 0x00ff, \
.offset = offsetof(IntelHDAState, st[_i].lvi), \
}, \
[ ST_REG(_i, ICH6_REG_SD_FIFOSIZE) ] = { \
.stream = _i, \
.name = _t stringify(_i) " FIFOS", \
.size = 2, \
.reset = HDA_BUFFER_SIZE, \
}, \
[ ST_REG(_i, ICH6_REG_SD_FORMAT) ] = { \
.stream = _i, \
.name = _t stringify(_i) " FMT", \
.size = 2, \
.wmask = 0x7f7f, \
.offset = offsetof(IntelHDAState, st[_i].fmt), \
}, \
[ ST_REG(_i, ICH6_REG_SD_BDLPL) ] = { \
.stream = _i, \
.name = _t stringify(_i) " BDLPL", \
.size = 4, \
.wmask = 0xffffff80, \
.offset = offsetof(IntelHDAState, st[_i].bdlp_lbase), \
}, \
[ ST_REG(_i, ICH6_REG_SD_BDLPU) ] = { \
.stream = _i, \
.name = _t stringify(_i) " BDLPU", \
.size = 4, \
.wmask = 0xffffffff, \
.offset = offsetof(IntelHDAState, st[_i].bdlp_ubase), \
}, \
HDA_STREAM("IN", 0)
HDA_STREAM("IN", 1)
HDA_STREAM("IN", 2)
HDA_STREAM("IN", 3)
HDA_STREAM("OUT", 4)
HDA_STREAM("OUT", 5)
HDA_STREAM("OUT", 6)
HDA_STREAM("OUT", 7)
};
static const IntelHDAReg *intel_hda_reg_find(IntelHDAState *d, hwaddr addr)
{
const IntelHDAReg *reg;
if (addr >= ARRAY_SIZE(regtab)) {
goto noreg;
}
reg = regtab+addr;
if (reg->name == NULL) {
goto noreg;
}
return reg;
noreg:
dprint(d, 1, "unknown register, addr 0x%x\n", (int) addr);
return NULL;
}
static uint32_t *intel_hda_reg_addr(IntelHDAState *d, const IntelHDAReg *reg)
{
uint8_t *addr = (void*)d;
addr += reg->offset;
return (uint32_t*)addr;
}
static void intel_hda_reg_write(IntelHDAState *d, const IntelHDAReg *reg, uint32_t val,
uint32_t wmask)
{
uint32_t *addr;
uint32_t old;
if (!reg) {
return;
}
if (!reg->wmask) {
qemu_log_mask(LOG_GUEST_ERROR, "intel-hda: write to r/o reg %s\n",
reg->name);
return;
}
if (d->debug) {
time_t now = time(NULL);
if (d->last_write && d->last_reg == reg && d->last_val == val) {
d->repeat_count++;
if (d->last_sec != now) {
dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
d->last_sec = now;
d->repeat_count = 0;
}
} else {
if (d->repeat_count) {
dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
}
dprint(d, 2, "write %-16s: 0x%x (%x)\n", reg->name, val, wmask);
d->last_write = 1;
d->last_reg = reg;
d->last_val = val;
d->last_sec = now;
d->repeat_count = 0;
}
}
assert(reg->offset != 0);
addr = intel_hda_reg_addr(d, reg);
old = *addr;
if (reg->shift) {
val <<= reg->shift;
wmask <<= reg->shift;
}
wmask &= reg->wmask;
*addr &= ~wmask;
*addr |= wmask & val;
*addr &= ~(val & reg->wclear);
if (reg->whandler) {
reg->whandler(d, reg, old);
}
}
static uint32_t intel_hda_reg_read(IntelHDAState *d, const IntelHDAReg *reg,
uint32_t rmask)
{
uint32_t *addr, ret;
if (!reg) {
return 0;
}
if (reg->rhandler) {
reg->rhandler(d, reg);
}
if (reg->offset == 0) {
/* constant read-only register */
ret = reg->reset;
} else {
addr = intel_hda_reg_addr(d, reg);
ret = *addr;
if (reg->shift) {
ret >>= reg->shift;
}
ret &= rmask;
}
if (d->debug) {
time_t now = time(NULL);
if (!d->last_write && d->last_reg == reg && d->last_val == ret) {
d->repeat_count++;
if (d->last_sec != now) {
dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
d->last_sec = now;
d->repeat_count = 0;
}
} else {
if (d->repeat_count) {
dprint(d, 2, "previous register op repeated %d times\n", d->repeat_count);
}
dprint(d, 2, "read %-16s: 0x%x (%x)\n", reg->name, ret, rmask);
d->last_write = 0;
d->last_reg = reg;
d->last_val = ret;
d->last_sec = now;
d->repeat_count = 0;
}
}
return ret;
}
static void intel_hda_regs_reset(IntelHDAState *d)
{
uint32_t *addr;
int i;
for (i = 0; i < ARRAY_SIZE(regtab); i++) {
if (regtab[i].name == NULL) {
continue;
}
if (regtab[i].offset == 0) {
continue;
}
addr = intel_hda_reg_addr(d, regtab + i);
*addr = regtab[i].reset;
}
}
/* --------------------------------------------------------------------- */
static void intel_hda_mmio_write(void *opaque, hwaddr addr, uint64_t val,
unsigned size)
{
IntelHDAState *d = opaque;
const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
intel_hda_reg_write(d, reg, val, MAKE_64BIT_MASK(0, size * 8));
}
static uint64_t intel_hda_mmio_read(void *opaque, hwaddr addr, unsigned size)
{
IntelHDAState *d = opaque;
const IntelHDAReg *reg = intel_hda_reg_find(d, addr);
return intel_hda_reg_read(d, reg, MAKE_64BIT_MASK(0, size * 8));
}
static const MemoryRegionOps intel_hda_mmio_ops = {
.read = intel_hda_mmio_read,
.write = intel_hda_mmio_write,
.impl = {
.min_access_size = 1,
.max_access_size = 4,
},
.endianness = DEVICE_NATIVE_ENDIAN,
};
/* --------------------------------------------------------------------- */
static void intel_hda_reset(DeviceState *dev)
{
BusChild *kid;
IntelHDAState *d = INTEL_HDA(dev);
HDACodecDevice *cdev;
intel_hda_regs_reset(d);
d->wall_base_ns = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* reset codecs */
QTAILQ_FOREACH(kid, &d->codecs.qbus.children, sibling) {
DeviceState *qdev = kid->child;
cdev = HDA_CODEC_DEVICE(qdev);
device_legacy_reset(DEVICE(cdev));
d->state_sts |= (1 << cdev->cad);
}
intel_hda_update_irq(d);
}
static void intel_hda_realize(PCIDevice *pci, Error **errp)
{
IntelHDAState *d = INTEL_HDA(pci);
uint8_t *conf = d->pci.config;
Error *err = NULL;
int ret;
d->name = object_get_typename(OBJECT(d));
pci_config_set_interrupt_pin(conf, 1);
/* HDCTL off 0x40 bit 0 selects signaling mode (1-HDA, 0 - Ac97) 18.1.19 */
conf[0x40] = 0x01;
if (d->msi != ON_OFF_AUTO_OFF) {
ret = msi_init(&d->pci, d->old_msi_addr ? 0x50 : 0x60,
1, true, false, &err);
/* Any error other than -ENOTSUP(board's MSI support is broken)
* is a programming error */
assert(!ret || ret == -ENOTSUP);
if (ret && d->msi == ON_OFF_AUTO_ON) {
/* Can't satisfy user's explicit msi=on request, fail */
error_append_hint(&err, "You have to use msi=auto (default) or "
"msi=off with this machine type.\n");
error_propagate(errp, err);
return;
}
assert(!err || d->msi == ON_OFF_AUTO_AUTO);
/* With msi=auto, we fall back to MSI off silently */
error_free(err);
}
memory_region_init_io(&d->mmio, OBJECT(d), &intel_hda_mmio_ops, d,
"intel-hda", 0x4000);
pci_register_bar(&d->pci, 0, 0, &d->mmio);
hda_codec_bus_init(DEVICE(pci), &d->codecs, sizeof(d->codecs),
intel_hda_response, intel_hda_xfer);
}
static void intel_hda_exit(PCIDevice *pci)
{
IntelHDAState *d = INTEL_HDA(pci);
msi_uninit(&d->pci);
}
static int intel_hda_post_load(void *opaque, int version)
{
IntelHDAState* d = opaque;
int i;
dprint(d, 1, "%s\n", __func__);
for (i = 0; i < ARRAY_SIZE(d->st); i++) {
if (d->st[i].ctl & 0x02) {
intel_hda_parse_bdl(d, &d->st[i]);
}
}
intel_hda_update_irq(d);
return 0;
}
static const VMStateDescription vmstate_intel_hda_stream = {
.name = "intel-hda-stream",
.version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(ctl, IntelHDAStream),
VMSTATE_UINT32(lpib, IntelHDAStream),
VMSTATE_UINT32(cbl, IntelHDAStream),
VMSTATE_UINT32(lvi, IntelHDAStream),
VMSTATE_UINT32(fmt, IntelHDAStream),
VMSTATE_UINT32(bdlp_lbase, IntelHDAStream),
VMSTATE_UINT32(bdlp_ubase, IntelHDAStream),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_intel_hda = {
.name = "intel-hda",
.version_id = 1,
.post_load = intel_hda_post_load,
.fields = (VMStateField[]) {
VMSTATE_PCI_DEVICE(pci, IntelHDAState),
/* registers */
VMSTATE_UINT32(g_ctl, IntelHDAState),
VMSTATE_UINT32(wake_en, IntelHDAState),
VMSTATE_UINT32(state_sts, IntelHDAState),
VMSTATE_UINT32(int_ctl, IntelHDAState),
VMSTATE_UINT32(int_sts, IntelHDAState),
VMSTATE_UINT32(wall_clk, IntelHDAState),
VMSTATE_UINT32(corb_lbase, IntelHDAState),
VMSTATE_UINT32(corb_ubase, IntelHDAState),
VMSTATE_UINT32(corb_rp, IntelHDAState),
VMSTATE_UINT32(corb_wp, IntelHDAState),
VMSTATE_UINT32(corb_ctl, IntelHDAState),
VMSTATE_UINT32(corb_sts, IntelHDAState),
VMSTATE_UINT32(corb_size, IntelHDAState),
VMSTATE_UINT32(rirb_lbase, IntelHDAState),
VMSTATE_UINT32(rirb_ubase, IntelHDAState),
VMSTATE_UINT32(rirb_wp, IntelHDAState),
VMSTATE_UINT32(rirb_cnt, IntelHDAState),
VMSTATE_UINT32(rirb_ctl, IntelHDAState),
VMSTATE_UINT32(rirb_sts, IntelHDAState),
VMSTATE_UINT32(rirb_size, IntelHDAState),
VMSTATE_UINT32(dp_lbase, IntelHDAState),
VMSTATE_UINT32(dp_ubase, IntelHDAState),
VMSTATE_UINT32(icw, IntelHDAState),
VMSTATE_UINT32(irr, IntelHDAState),
VMSTATE_UINT32(ics, IntelHDAState),
VMSTATE_STRUCT_ARRAY(st, IntelHDAState, 8, 0,
vmstate_intel_hda_stream,
IntelHDAStream),
/* additional state info */
VMSTATE_UINT32(rirb_count, IntelHDAState),
VMSTATE_INT64(wall_base_ns, IntelHDAState),
VMSTATE_END_OF_LIST()
}
};
static Property intel_hda_properties[] = {
DEFINE_PROP_UINT32("debug", IntelHDAState, debug, 0),
DEFINE_PROP_ON_OFF_AUTO("msi", IntelHDAState, msi, ON_OFF_AUTO_AUTO),
DEFINE_PROP_BOOL("old_msi_addr", IntelHDAState, old_msi_addr, false),
DEFINE_PROP_END_OF_LIST(),
};
static void intel_hda_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->realize = intel_hda_realize;
k->exit = intel_hda_exit;
k->vendor_id = PCI_VENDOR_ID_INTEL;
k->class_id = PCI_CLASS_MULTIMEDIA_HD_AUDIO;
dc->reset = intel_hda_reset;
dc->vmsd = &vmstate_intel_hda;
device_class_set_props(dc, intel_hda_properties);
}
static void intel_hda_class_init_ich6(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->device_id = 0x2668;
k->revision = 1;
set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
dc->desc = "Intel HD Audio Controller (ich6)";
}
static void intel_hda_class_init_ich9(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
k->device_id = 0x293e;
k->revision = 3;
set_bit(DEVICE_CATEGORY_SOUND, dc->categories);
dc->desc = "Intel HD Audio Controller (ich9)";
}
static const TypeInfo intel_hda_info = {
.name = TYPE_INTEL_HDA_GENERIC,
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(IntelHDAState),
.class_init = intel_hda_class_init,
.abstract = true,
.interfaces = (InterfaceInfo[]) {
{ INTERFACE_CONVENTIONAL_PCI_DEVICE },
{ },
},
};
static const TypeInfo intel_hda_info_ich6 = {
.name = "intel-hda",
.parent = TYPE_INTEL_HDA_GENERIC,
.class_init = intel_hda_class_init_ich6,
};
static const TypeInfo intel_hda_info_ich9 = {
.name = "ich9-intel-hda",
.parent = TYPE_INTEL_HDA_GENERIC,
.class_init = intel_hda_class_init_ich9,
};
static void hda_codec_device_class_init(ObjectClass *klass, void *data)
{
DeviceClass *k = DEVICE_CLASS(klass);
k->realize = hda_codec_dev_realize;
k->unrealize = hda_codec_dev_unrealize;
set_bit(DEVICE_CATEGORY_SOUND, k->categories);
k->bus_type = TYPE_HDA_BUS;
device_class_set_props(k, hda_props);
}
static const TypeInfo hda_codec_device_type_info = {
.name = TYPE_HDA_CODEC_DEVICE,
.parent = TYPE_DEVICE,
.instance_size = sizeof(HDACodecDevice),
.abstract = true,
.class_size = sizeof(HDACodecDeviceClass),
.class_init = hda_codec_device_class_init,
};
/*
* create intel hda controller with codec attached to it,
* so '-soundhw hda' works.
*/
static int intel_hda_and_codec_init(PCIBus *bus)
{
DeviceState *controller;
BusState *hdabus;
DeviceState *codec;
controller = DEVICE(pci_create_simple(bus, -1, "intel-hda"));
hdabus = QLIST_FIRST(&controller->child_bus);
codec = qdev_create(hdabus, "hda-duplex");
qdev_init_nofail(codec);
return 0;
}
static void intel_hda_register_types(void)
{
type_register_static(&hda_codec_bus_info);
type_register_static(&intel_hda_info);
type_register_static(&intel_hda_info_ich6);
type_register_static(&intel_hda_info_ich9);
type_register_static(&hda_codec_device_type_info);
pci_register_soundhw("hda", "Intel HD Audio", intel_hda_and_codec_init);
}
type_init(intel_hda_register_types)