cf83f14005
Time to wire up all the call sites that request a shutdown or reset to use the enum added in the previous patch. It would have been less churn to keep the common case with no arguments as meaning guest-triggered, and only modified the host-triggered code paths, via a wrapper function, but then we'd still have to audit that I didn't miss any host-triggered spots; changing the signature forces us to double-check that I correctly categorized all callers. Since command line options can change whether a guest reset request causes an actual reset vs. a shutdown, it's easy to also add the information to reset requests. Signed-off-by: Eric Blake <eblake@redhat.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> [ppc parts] Reviewed-by: Mark Cave-Ayland <mark.cave-ayland@ilande.co.uk> [SPARC part] Reviewed-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x parts] Message-Id: <20170515214114.15442-5-eblake@redhat.com> Reviewed-by: Markus Armbruster <armbru@redhat.com> Signed-off-by: Markus Armbruster <armbru@redhat.com>
1406 lines
41 KiB
C
1406 lines
41 KiB
C
/*
|
|
* QEMU generic PowerPC hardware System Emulator
|
|
*
|
|
* Copyright (c) 2003-2007 Jocelyn Mayer
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "hw/hw.h"
|
|
#include "hw/ppc/ppc.h"
|
|
#include "hw/ppc/ppc_e500.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "hw/timer/m48t59.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qapi/error.h"
|
|
#include "hw/loader.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_ppc.h"
|
|
#include "trace.h"
|
|
|
|
//#define PPC_DEBUG_IRQ
|
|
//#define PPC_DEBUG_TB
|
|
|
|
#ifdef PPC_DEBUG_IRQ
|
|
# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
|
|
#else
|
|
# define LOG_IRQ(...) do { } while (0)
|
|
#endif
|
|
|
|
|
|
#ifdef PPC_DEBUG_TB
|
|
# define LOG_TB(...) qemu_log(__VA_ARGS__)
|
|
#else
|
|
# define LOG_TB(...) do { } while (0)
|
|
#endif
|
|
|
|
static void cpu_ppc_tb_stop (CPUPPCState *env);
|
|
static void cpu_ppc_tb_start (CPUPPCState *env);
|
|
|
|
void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
unsigned int old_pending;
|
|
bool locked = false;
|
|
|
|
/* We may already have the BQL if coming from the reset path */
|
|
if (!qemu_mutex_iothread_locked()) {
|
|
locked = true;
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
old_pending = env->pending_interrupts;
|
|
|
|
if (level) {
|
|
env->pending_interrupts |= 1 << n_IRQ;
|
|
cpu_interrupt(cs, CPU_INTERRUPT_HARD);
|
|
} else {
|
|
env->pending_interrupts &= ~(1 << n_IRQ);
|
|
if (env->pending_interrupts == 0) {
|
|
cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
|
|
}
|
|
}
|
|
|
|
if (old_pending != env->pending_interrupts) {
|
|
#ifdef CONFIG_KVM
|
|
kvmppc_set_interrupt(cpu, n_IRQ, level);
|
|
#endif
|
|
}
|
|
|
|
|
|
LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
|
|
"req %08x\n", __func__, env, n_IRQ, level,
|
|
env->pending_interrupts, CPU(cpu)->interrupt_request);
|
|
|
|
if (locked) {
|
|
qemu_mutex_unlock_iothread();
|
|
}
|
|
}
|
|
|
|
/* PowerPC 6xx / 7xx internal IRQ controller */
|
|
static void ppc6xx_set_irq(void *opaque, int pin, int level)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
CPUPPCState *env = &cpu->env;
|
|
int cur_level;
|
|
|
|
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
|
|
env, pin, level);
|
|
cur_level = (env->irq_input_state >> pin) & 1;
|
|
/* Don't generate spurious events */
|
|
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
switch (pin) {
|
|
case PPC6xx_INPUT_TBEN:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: %s the time base\n",
|
|
__func__, level ? "start" : "stop");
|
|
if (level) {
|
|
cpu_ppc_tb_start(env);
|
|
} else {
|
|
cpu_ppc_tb_stop(env);
|
|
}
|
|
case PPC6xx_INPUT_INT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the external IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
|
|
break;
|
|
case PPC6xx_INPUT_SMI:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the SMI IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
|
|
break;
|
|
case PPC6xx_INPUT_MCP:
|
|
/* Negative edge sensitive */
|
|
/* XXX: TODO: actual reaction may depends on HID0 status
|
|
* 603/604/740/750: check HID0[EMCP]
|
|
*/
|
|
if (cur_level == 1 && level == 0) {
|
|
LOG_IRQ("%s: raise machine check state\n",
|
|
__func__);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
|
|
}
|
|
break;
|
|
case PPC6xx_INPUT_CKSTP_IN:
|
|
/* Level sensitive - active low */
|
|
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
|
|
/* XXX: Note that the only way to restart the CPU is to reset it */
|
|
if (level) {
|
|
LOG_IRQ("%s: stop the CPU\n", __func__);
|
|
cs->halted = 1;
|
|
}
|
|
break;
|
|
case PPC6xx_INPUT_HRESET:
|
|
/* Level sensitive - active low */
|
|
if (level) {
|
|
LOG_IRQ("%s: reset the CPU\n", __func__);
|
|
cpu_interrupt(cs, CPU_INTERRUPT_RESET);
|
|
}
|
|
break;
|
|
case PPC6xx_INPUT_SRESET:
|
|
LOG_IRQ("%s: set the RESET IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
|
|
break;
|
|
default:
|
|
/* Unknown pin - do nothing */
|
|
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
|
|
return;
|
|
}
|
|
if (level)
|
|
env->irq_input_state |= 1 << pin;
|
|
else
|
|
env->irq_input_state &= ~(1 << pin);
|
|
}
|
|
}
|
|
|
|
void ppc6xx_irq_init(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
|
|
PPC6xx_INPUT_NB);
|
|
}
|
|
|
|
#if defined(TARGET_PPC64)
|
|
/* PowerPC 970 internal IRQ controller */
|
|
static void ppc970_set_irq(void *opaque, int pin, int level)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
CPUPPCState *env = &cpu->env;
|
|
int cur_level;
|
|
|
|
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
|
|
env, pin, level);
|
|
cur_level = (env->irq_input_state >> pin) & 1;
|
|
/* Don't generate spurious events */
|
|
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
switch (pin) {
|
|
case PPC970_INPUT_INT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the external IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
|
|
break;
|
|
case PPC970_INPUT_THINT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
|
|
level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
|
|
break;
|
|
case PPC970_INPUT_MCP:
|
|
/* Negative edge sensitive */
|
|
/* XXX: TODO: actual reaction may depends on HID0 status
|
|
* 603/604/740/750: check HID0[EMCP]
|
|
*/
|
|
if (cur_level == 1 && level == 0) {
|
|
LOG_IRQ("%s: raise machine check state\n",
|
|
__func__);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
|
|
}
|
|
break;
|
|
case PPC970_INPUT_CKSTP:
|
|
/* Level sensitive - active low */
|
|
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
|
|
if (level) {
|
|
LOG_IRQ("%s: stop the CPU\n", __func__);
|
|
cs->halted = 1;
|
|
} else {
|
|
LOG_IRQ("%s: restart the CPU\n", __func__);
|
|
cs->halted = 0;
|
|
qemu_cpu_kick(cs);
|
|
}
|
|
break;
|
|
case PPC970_INPUT_HRESET:
|
|
/* Level sensitive - active low */
|
|
if (level) {
|
|
cpu_interrupt(cs, CPU_INTERRUPT_RESET);
|
|
}
|
|
break;
|
|
case PPC970_INPUT_SRESET:
|
|
LOG_IRQ("%s: set the RESET IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
|
|
break;
|
|
case PPC970_INPUT_TBEN:
|
|
LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
|
|
level);
|
|
/* XXX: TODO */
|
|
break;
|
|
default:
|
|
/* Unknown pin - do nothing */
|
|
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
|
|
return;
|
|
}
|
|
if (level)
|
|
env->irq_input_state |= 1 << pin;
|
|
else
|
|
env->irq_input_state &= ~(1 << pin);
|
|
}
|
|
}
|
|
|
|
void ppc970_irq_init(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
|
|
PPC970_INPUT_NB);
|
|
}
|
|
|
|
/* POWER7 internal IRQ controller */
|
|
static void power7_set_irq(void *opaque, int pin, int level)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
|
|
env, pin, level);
|
|
|
|
switch (pin) {
|
|
case POWER7_INPUT_INT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the external IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
|
|
break;
|
|
default:
|
|
/* Unknown pin - do nothing */
|
|
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
|
|
return;
|
|
}
|
|
if (level) {
|
|
env->irq_input_state |= 1 << pin;
|
|
} else {
|
|
env->irq_input_state &= ~(1 << pin);
|
|
}
|
|
}
|
|
|
|
void ppcPOWER7_irq_init(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
|
|
POWER7_INPUT_NB);
|
|
}
|
|
#endif /* defined(TARGET_PPC64) */
|
|
|
|
/* PowerPC 40x internal IRQ controller */
|
|
static void ppc40x_set_irq(void *opaque, int pin, int level)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
CPUPPCState *env = &cpu->env;
|
|
int cur_level;
|
|
|
|
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
|
|
env, pin, level);
|
|
cur_level = (env->irq_input_state >> pin) & 1;
|
|
/* Don't generate spurious events */
|
|
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
switch (pin) {
|
|
case PPC40x_INPUT_RESET_SYS:
|
|
if (level) {
|
|
LOG_IRQ("%s: reset the PowerPC system\n",
|
|
__func__);
|
|
ppc40x_system_reset(cpu);
|
|
}
|
|
break;
|
|
case PPC40x_INPUT_RESET_CHIP:
|
|
if (level) {
|
|
LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
|
|
ppc40x_chip_reset(cpu);
|
|
}
|
|
break;
|
|
case PPC40x_INPUT_RESET_CORE:
|
|
/* XXX: TODO: update DBSR[MRR] */
|
|
if (level) {
|
|
LOG_IRQ("%s: reset the PowerPC core\n", __func__);
|
|
ppc40x_core_reset(cpu);
|
|
}
|
|
break;
|
|
case PPC40x_INPUT_CINT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the critical IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
|
|
break;
|
|
case PPC40x_INPUT_INT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the external IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
|
|
break;
|
|
case PPC40x_INPUT_HALT:
|
|
/* Level sensitive - active low */
|
|
if (level) {
|
|
LOG_IRQ("%s: stop the CPU\n", __func__);
|
|
cs->halted = 1;
|
|
} else {
|
|
LOG_IRQ("%s: restart the CPU\n", __func__);
|
|
cs->halted = 0;
|
|
qemu_cpu_kick(cs);
|
|
}
|
|
break;
|
|
case PPC40x_INPUT_DEBUG:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the debug pin state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
|
|
break;
|
|
default:
|
|
/* Unknown pin - do nothing */
|
|
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
|
|
return;
|
|
}
|
|
if (level)
|
|
env->irq_input_state |= 1 << pin;
|
|
else
|
|
env->irq_input_state &= ~(1 << pin);
|
|
}
|
|
}
|
|
|
|
void ppc40x_irq_init(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
|
|
cpu, PPC40x_INPUT_NB);
|
|
}
|
|
|
|
/* PowerPC E500 internal IRQ controller */
|
|
static void ppce500_set_irq(void *opaque, int pin, int level)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
CPUPPCState *env = &cpu->env;
|
|
int cur_level;
|
|
|
|
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
|
|
env, pin, level);
|
|
cur_level = (env->irq_input_state >> pin) & 1;
|
|
/* Don't generate spurious events */
|
|
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
|
|
switch (pin) {
|
|
case PPCE500_INPUT_MCK:
|
|
if (level) {
|
|
LOG_IRQ("%s: reset the PowerPC system\n",
|
|
__func__);
|
|
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
|
|
}
|
|
break;
|
|
case PPCE500_INPUT_RESET_CORE:
|
|
if (level) {
|
|
LOG_IRQ("%s: reset the PowerPC core\n", __func__);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
|
|
}
|
|
break;
|
|
case PPCE500_INPUT_CINT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the critical IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
|
|
break;
|
|
case PPCE500_INPUT_INT:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the core IRQ state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
|
|
break;
|
|
case PPCE500_INPUT_DEBUG:
|
|
/* Level sensitive - active high */
|
|
LOG_IRQ("%s: set the debug pin state to %d\n",
|
|
__func__, level);
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
|
|
break;
|
|
default:
|
|
/* Unknown pin - do nothing */
|
|
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
|
|
return;
|
|
}
|
|
if (level)
|
|
env->irq_input_state |= 1 << pin;
|
|
else
|
|
env->irq_input_state &= ~(1 << pin);
|
|
}
|
|
}
|
|
|
|
void ppce500_irq_init(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
|
|
cpu, PPCE500_INPUT_NB);
|
|
}
|
|
|
|
/* Enable or Disable the E500 EPR capability */
|
|
void ppce500_set_mpic_proxy(bool enabled)
|
|
{
|
|
CPUState *cs;
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
|
|
cpu->env.mpic_proxy = enabled;
|
|
if (kvm_enabled()) {
|
|
kvmppc_set_mpic_proxy(cpu, enabled);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* PowerPC time base and decrementer emulation */
|
|
|
|
uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
|
|
{
|
|
/* TB time in tb periods */
|
|
return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
|
|
}
|
|
|
|
uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
if (kvm_enabled()) {
|
|
return env->spr[SPR_TBL];
|
|
}
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
|
|
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
|
|
|
|
return tb;
|
|
}
|
|
|
|
static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
|
|
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
|
|
|
|
return tb >> 32;
|
|
}
|
|
|
|
uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
|
|
{
|
|
if (kvm_enabled()) {
|
|
return env->spr[SPR_TBU];
|
|
}
|
|
|
|
return _cpu_ppc_load_tbu(env);
|
|
}
|
|
|
|
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
|
|
int64_t *tb_offsetp, uint64_t value)
|
|
{
|
|
*tb_offsetp = value -
|
|
muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
|
|
|
|
LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
|
|
__func__, value, *tb_offsetp);
|
|
}
|
|
|
|
void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
|
|
tb &= 0xFFFFFFFF00000000ULL;
|
|
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
&tb_env->tb_offset, tb | (uint64_t)value);
|
|
}
|
|
|
|
static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
|
|
tb &= 0x00000000FFFFFFFFULL;
|
|
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
&tb_env->tb_offset, ((uint64_t)value << 32) | tb);
|
|
}
|
|
|
|
void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
|
|
{
|
|
_cpu_ppc_store_tbu(env, value);
|
|
}
|
|
|
|
uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
|
|
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
|
|
|
|
return tb;
|
|
}
|
|
|
|
uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
|
|
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
|
|
|
|
return tb >> 32;
|
|
}
|
|
|
|
void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
|
|
tb &= 0xFFFFFFFF00000000ULL;
|
|
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
&tb_env->atb_offset, tb | (uint64_t)value);
|
|
}
|
|
|
|
void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb;
|
|
|
|
tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
|
|
tb &= 0x00000000FFFFFFFFULL;
|
|
cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
|
|
&tb_env->atb_offset, ((uint64_t)value << 32) | tb);
|
|
}
|
|
|
|
static void cpu_ppc_tb_stop (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb, atb, vmclk;
|
|
|
|
/* If the time base is already frozen, do nothing */
|
|
if (tb_env->tb_freq != 0) {
|
|
vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
/* Get the time base */
|
|
tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
|
|
/* Get the alternate time base */
|
|
atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
|
|
/* Store the time base value (ie compute the current offset) */
|
|
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
|
|
/* Store the alternate time base value (compute the current offset) */
|
|
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
|
|
/* Set the time base frequency to zero */
|
|
tb_env->tb_freq = 0;
|
|
/* Now, the time bases are frozen to tb_offset / atb_offset value */
|
|
}
|
|
}
|
|
|
|
static void cpu_ppc_tb_start (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t tb, atb, vmclk;
|
|
|
|
/* If the time base is not frozen, do nothing */
|
|
if (tb_env->tb_freq == 0) {
|
|
vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
/* Get the time base from tb_offset */
|
|
tb = tb_env->tb_offset;
|
|
/* Get the alternate time base from atb_offset */
|
|
atb = tb_env->atb_offset;
|
|
/* Restore the tb frequency from the decrementer frequency */
|
|
tb_env->tb_freq = tb_env->decr_freq;
|
|
/* Store the time base value */
|
|
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
|
|
/* Store the alternate time base value */
|
|
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
|
|
}
|
|
}
|
|
|
|
bool ppc_decr_clear_on_delivery(CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
|
|
return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
|
|
}
|
|
|
|
static inline uint32_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint32_t decr;
|
|
int64_t diff;
|
|
|
|
diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
if (diff >= 0) {
|
|
decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
|
|
} else if (tb_env->flags & PPC_TIMER_BOOKE) {
|
|
decr = 0;
|
|
} else {
|
|
decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
|
|
}
|
|
LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
|
|
|
|
return decr;
|
|
}
|
|
|
|
uint32_t cpu_ppc_load_decr (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
|
|
if (kvm_enabled()) {
|
|
return env->spr[SPR_DECR];
|
|
}
|
|
|
|
return _cpu_ppc_load_decr(env, tb_env->decr_next);
|
|
}
|
|
|
|
uint32_t cpu_ppc_load_hdecr (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
|
|
return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
|
|
}
|
|
|
|
uint64_t cpu_ppc_load_purr (CPUPPCState *env)
|
|
{
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t diff;
|
|
|
|
diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
|
|
|
|
return tb_env->purr_load +
|
|
muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
|
|
}
|
|
|
|
/* When decrementer expires,
|
|
* all we need to do is generate or queue a CPU exception
|
|
*/
|
|
static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
|
|
{
|
|
/* Raise it */
|
|
LOG_TB("raise decrementer exception\n");
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
|
|
}
|
|
|
|
static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
|
|
{
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
|
|
}
|
|
|
|
static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
|
|
/* Raise it */
|
|
LOG_TB("raise hv decrementer exception\n");
|
|
|
|
/* The architecture specifies that we don't deliver HDEC
|
|
* interrupts in a PM state. Not only they don't cause a
|
|
* wakeup but they also get effectively discarded.
|
|
*/
|
|
if (!env->in_pm_state) {
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
|
|
}
|
|
}
|
|
|
|
static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
|
|
{
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
|
|
}
|
|
|
|
static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
|
|
QEMUTimer *timer,
|
|
void (*raise_excp)(void *),
|
|
void (*lower_excp)(PowerPCCPU *),
|
|
uint32_t decr, uint32_t value)
|
|
{
|
|
CPUPPCState *env = &cpu->env;
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
uint64_t now, next;
|
|
|
|
LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
|
|
decr, value);
|
|
|
|
if (kvm_enabled()) {
|
|
/* KVM handles decrementer exceptions, we don't need our own timer */
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
|
|
* interrupt.
|
|
*
|
|
* If we get a really small DEC value, we can assume that by the time we
|
|
* handled it we should inject an interrupt already.
|
|
*
|
|
* On MSB level based DEC implementations the MSB always means the interrupt
|
|
* is pending, so raise it on those.
|
|
*
|
|
* On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
|
|
* an edge interrupt, so raise it here too.
|
|
*/
|
|
if ((value < 3) ||
|
|
((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && (value & 0x80000000)) ||
|
|
((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && (value & 0x80000000)
|
|
&& !(decr & 0x80000000))) {
|
|
(*raise_excp)(cpu);
|
|
return;
|
|
}
|
|
|
|
/* On MSB level based systems a 0 for the MSB stops interrupt delivery */
|
|
if (!(value & 0x80000000) && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
|
|
(*lower_excp)(cpu);
|
|
}
|
|
|
|
/* Calculate the next timer event */
|
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
|
|
*nextp = next;
|
|
|
|
/* Adjust timer */
|
|
timer_mod(timer, next);
|
|
}
|
|
|
|
static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, uint32_t decr,
|
|
uint32_t value)
|
|
{
|
|
ppc_tb_t *tb_env = cpu->env.tb_env;
|
|
|
|
__cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
|
|
tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
|
|
value);
|
|
}
|
|
|
|
void cpu_ppc_store_decr (CPUPPCState *env, uint32_t value)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
|
|
_cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value);
|
|
}
|
|
|
|
static void cpu_ppc_decr_cb(void *opaque)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
|
|
cpu_ppc_decr_excp(cpu);
|
|
}
|
|
|
|
static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, uint32_t hdecr,
|
|
uint32_t value)
|
|
{
|
|
ppc_tb_t *tb_env = cpu->env.tb_env;
|
|
|
|
if (tb_env->hdecr_timer != NULL) {
|
|
__cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
|
|
tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
|
|
hdecr, value);
|
|
}
|
|
}
|
|
|
|
void cpu_ppc_store_hdecr (CPUPPCState *env, uint32_t value)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
|
|
_cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value);
|
|
}
|
|
|
|
static void cpu_ppc_hdecr_cb(void *opaque)
|
|
{
|
|
PowerPCCPU *cpu = opaque;
|
|
|
|
cpu_ppc_hdecr_excp(cpu);
|
|
}
|
|
|
|
static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
|
|
{
|
|
ppc_tb_t *tb_env = cpu->env.tb_env;
|
|
|
|
tb_env->purr_load = value;
|
|
tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
|
|
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
|
|
{
|
|
CPUPPCState *env = opaque;
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
|
|
tb_env->tb_freq = freq;
|
|
tb_env->decr_freq = freq;
|
|
/* There is a bug in Linux 2.4 kernels:
|
|
* if a decrementer exception is pending when it enables msr_ee at startup,
|
|
* it's not ready to handle it...
|
|
*/
|
|
_cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
_cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF);
|
|
cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
|
|
}
|
|
|
|
static void timebase_save(PPCTimebase *tb)
|
|
{
|
|
uint64_t ticks = cpu_get_host_ticks();
|
|
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
|
|
|
|
if (!first_ppc_cpu->env.tb_env) {
|
|
error_report("No timebase object");
|
|
return;
|
|
}
|
|
|
|
/* not used anymore, we keep it for compatibility */
|
|
tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
|
|
/*
|
|
* tb_offset is only expected to be changed by QEMU so
|
|
* there is no need to update it from KVM here
|
|
*/
|
|
tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
|
|
}
|
|
|
|
static void timebase_load(PPCTimebase *tb)
|
|
{
|
|
CPUState *cpu;
|
|
PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
|
|
int64_t tb_off_adj, tb_off;
|
|
unsigned long freq;
|
|
|
|
if (!first_ppc_cpu->env.tb_env) {
|
|
error_report("No timebase object");
|
|
return;
|
|
}
|
|
|
|
freq = first_ppc_cpu->env.tb_env->tb_freq;
|
|
|
|
tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
|
|
|
|
tb_off = first_ppc_cpu->env.tb_env->tb_offset;
|
|
trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
|
|
(tb_off_adj - tb_off) / freq);
|
|
|
|
/* Set new offset to all CPUs */
|
|
CPU_FOREACH(cpu) {
|
|
PowerPCCPU *pcpu = POWERPC_CPU(cpu);
|
|
pcpu->env.tb_env->tb_offset = tb_off_adj;
|
|
#if defined(CONFIG_KVM)
|
|
kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
|
|
&pcpu->env.tb_env->tb_offset);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void cpu_ppc_clock_vm_state_change(void *opaque, int running,
|
|
RunState state)
|
|
{
|
|
PPCTimebase *tb = opaque;
|
|
|
|
if (running) {
|
|
timebase_load(tb);
|
|
} else {
|
|
timebase_save(tb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When migrating, read the clock just before migration,
|
|
* so that the guest clock counts during the events
|
|
* between:
|
|
*
|
|
* * vm_stop()
|
|
* *
|
|
* * pre_save()
|
|
*
|
|
* This reduces clock difference on migration from 5s
|
|
* to 0.1s (when max_downtime == 5s), because sending the
|
|
* final pages of memory (which happens between vm_stop()
|
|
* and pre_save()) takes max_downtime.
|
|
*/
|
|
static void timebase_pre_save(void *opaque)
|
|
{
|
|
PPCTimebase *tb = opaque;
|
|
|
|
timebase_save(tb);
|
|
}
|
|
|
|
const VMStateDescription vmstate_ppc_timebase = {
|
|
.name = "timebase",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.pre_save = timebase_pre_save,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT64(guest_timebase, PPCTimebase),
|
|
VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
};
|
|
|
|
/* Set up (once) timebase frequency (in Hz) */
|
|
clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
|
|
{
|
|
PowerPCCPU *cpu = ppc_env_get_cpu(env);
|
|
ppc_tb_t *tb_env;
|
|
|
|
tb_env = g_malloc0(sizeof(ppc_tb_t));
|
|
env->tb_env = tb_env;
|
|
tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
|
|
if (env->insns_flags & PPC_SEGMENT_64B) {
|
|
/* All Book3S 64bit CPUs implement level based DEC logic */
|
|
tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
|
|
}
|
|
/* Create new timer */
|
|
tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
|
|
if (env->has_hv_mode) {
|
|
tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
|
|
cpu);
|
|
} else {
|
|
tb_env->hdecr_timer = NULL;
|
|
}
|
|
cpu_ppc_set_tb_clk(env, freq);
|
|
|
|
return &cpu_ppc_set_tb_clk;
|
|
}
|
|
|
|
/* Specific helpers for POWER & PowerPC 601 RTC */
|
|
void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
|
|
{
|
|
_cpu_ppc_store_tbu(env, value);
|
|
}
|
|
|
|
uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
|
|
{
|
|
return _cpu_ppc_load_tbu(env);
|
|
}
|
|
|
|
void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
|
|
{
|
|
cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
|
|
}
|
|
|
|
uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
|
|
{
|
|
return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* PowerPC 40x timers */
|
|
|
|
/* PIT, FIT & WDT */
|
|
typedef struct ppc40x_timer_t ppc40x_timer_t;
|
|
struct ppc40x_timer_t {
|
|
uint64_t pit_reload; /* PIT auto-reload value */
|
|
uint64_t fit_next; /* Tick for next FIT interrupt */
|
|
QEMUTimer *fit_timer;
|
|
uint64_t wdt_next; /* Tick for next WDT interrupt */
|
|
QEMUTimer *wdt_timer;
|
|
|
|
/* 405 have the PIT, 440 have a DECR. */
|
|
unsigned int decr_excp;
|
|
};
|
|
|
|
/* Fixed interval timer */
|
|
static void cpu_4xx_fit_cb (void *opaque)
|
|
{
|
|
PowerPCCPU *cpu;
|
|
CPUPPCState *env;
|
|
ppc_tb_t *tb_env;
|
|
ppc40x_timer_t *ppc40x_timer;
|
|
uint64_t now, next;
|
|
|
|
env = opaque;
|
|
cpu = ppc_env_get_cpu(env);
|
|
tb_env = env->tb_env;
|
|
ppc40x_timer = tb_env->opaque;
|
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
|
|
case 0:
|
|
next = 1 << 9;
|
|
break;
|
|
case 1:
|
|
next = 1 << 13;
|
|
break;
|
|
case 2:
|
|
next = 1 << 17;
|
|
break;
|
|
case 3:
|
|
next = 1 << 21;
|
|
break;
|
|
default:
|
|
/* Cannot occur, but makes gcc happy */
|
|
return;
|
|
}
|
|
next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
|
|
if (next == now)
|
|
next++;
|
|
timer_mod(ppc40x_timer->fit_timer, next);
|
|
env->spr[SPR_40x_TSR] |= 1 << 26;
|
|
if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
|
|
}
|
|
LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
|
|
(int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
|
|
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
|
|
}
|
|
|
|
/* Programmable interval timer */
|
|
static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
|
|
{
|
|
ppc40x_timer_t *ppc40x_timer;
|
|
uint64_t now, next;
|
|
|
|
ppc40x_timer = tb_env->opaque;
|
|
if (ppc40x_timer->pit_reload <= 1 ||
|
|
!((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
|
|
(is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
|
|
/* Stop PIT */
|
|
LOG_TB("%s: stop PIT\n", __func__);
|
|
timer_del(tb_env->decr_timer);
|
|
} else {
|
|
LOG_TB("%s: start PIT %016" PRIx64 "\n",
|
|
__func__, ppc40x_timer->pit_reload);
|
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
next = now + muldiv64(ppc40x_timer->pit_reload,
|
|
NANOSECONDS_PER_SECOND, tb_env->decr_freq);
|
|
if (is_excp)
|
|
next += tb_env->decr_next - now;
|
|
if (next == now)
|
|
next++;
|
|
timer_mod(tb_env->decr_timer, next);
|
|
tb_env->decr_next = next;
|
|
}
|
|
}
|
|
|
|
static void cpu_4xx_pit_cb (void *opaque)
|
|
{
|
|
PowerPCCPU *cpu;
|
|
CPUPPCState *env;
|
|
ppc_tb_t *tb_env;
|
|
ppc40x_timer_t *ppc40x_timer;
|
|
|
|
env = opaque;
|
|
cpu = ppc_env_get_cpu(env);
|
|
tb_env = env->tb_env;
|
|
ppc40x_timer = tb_env->opaque;
|
|
env->spr[SPR_40x_TSR] |= 1 << 27;
|
|
if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
|
|
ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
|
|
}
|
|
start_stop_pit(env, tb_env, 1);
|
|
LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
|
|
"%016" PRIx64 "\n", __func__,
|
|
(int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
|
|
(int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
|
|
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
|
|
ppc40x_timer->pit_reload);
|
|
}
|
|
|
|
/* Watchdog timer */
|
|
static void cpu_4xx_wdt_cb (void *opaque)
|
|
{
|
|
PowerPCCPU *cpu;
|
|
CPUPPCState *env;
|
|
ppc_tb_t *tb_env;
|
|
ppc40x_timer_t *ppc40x_timer;
|
|
uint64_t now, next;
|
|
|
|
env = opaque;
|
|
cpu = ppc_env_get_cpu(env);
|
|
tb_env = env->tb_env;
|
|
ppc40x_timer = tb_env->opaque;
|
|
now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
|
|
case 0:
|
|
next = 1 << 17;
|
|
break;
|
|
case 1:
|
|
next = 1 << 21;
|
|
break;
|
|
case 2:
|
|
next = 1 << 25;
|
|
break;
|
|
case 3:
|
|
next = 1 << 29;
|
|
break;
|
|
default:
|
|
/* Cannot occur, but makes gcc happy */
|
|
return;
|
|
}
|
|
next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
|
|
if (next == now)
|
|
next++;
|
|
LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
|
|
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
|
|
switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
|
|
case 0x0:
|
|
case 0x1:
|
|
timer_mod(ppc40x_timer->wdt_timer, next);
|
|
ppc40x_timer->wdt_next = next;
|
|
env->spr[SPR_40x_TSR] |= 1U << 31;
|
|
break;
|
|
case 0x2:
|
|
timer_mod(ppc40x_timer->wdt_timer, next);
|
|
ppc40x_timer->wdt_next = next;
|
|
env->spr[SPR_40x_TSR] |= 1 << 30;
|
|
if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
|
|
ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
|
|
}
|
|
break;
|
|
case 0x3:
|
|
env->spr[SPR_40x_TSR] &= ~0x30000000;
|
|
env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
|
|
switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
|
|
case 0x0:
|
|
/* No reset */
|
|
break;
|
|
case 0x1: /* Core reset */
|
|
ppc40x_core_reset(cpu);
|
|
break;
|
|
case 0x2: /* Chip reset */
|
|
ppc40x_chip_reset(cpu);
|
|
break;
|
|
case 0x3: /* System reset */
|
|
ppc40x_system_reset(cpu);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void store_40x_pit (CPUPPCState *env, target_ulong val)
|
|
{
|
|
ppc_tb_t *tb_env;
|
|
ppc40x_timer_t *ppc40x_timer;
|
|
|
|
tb_env = env->tb_env;
|
|
ppc40x_timer = tb_env->opaque;
|
|
LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
|
|
ppc40x_timer->pit_reload = val;
|
|
start_stop_pit(env, tb_env, 0);
|
|
}
|
|
|
|
target_ulong load_40x_pit (CPUPPCState *env)
|
|
{
|
|
return cpu_ppc_load_decr(env);
|
|
}
|
|
|
|
static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
|
|
{
|
|
CPUPPCState *env = opaque;
|
|
ppc_tb_t *tb_env = env->tb_env;
|
|
|
|
LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
|
|
freq);
|
|
tb_env->tb_freq = freq;
|
|
tb_env->decr_freq = freq;
|
|
/* XXX: we should also update all timers */
|
|
}
|
|
|
|
clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
|
|
unsigned int decr_excp)
|
|
{
|
|
ppc_tb_t *tb_env;
|
|
ppc40x_timer_t *ppc40x_timer;
|
|
|
|
tb_env = g_malloc0(sizeof(ppc_tb_t));
|
|
env->tb_env = tb_env;
|
|
tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
|
|
ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
|
|
tb_env->tb_freq = freq;
|
|
tb_env->decr_freq = freq;
|
|
tb_env->opaque = ppc40x_timer;
|
|
LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
|
|
if (ppc40x_timer != NULL) {
|
|
/* We use decr timer for PIT */
|
|
tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
|
|
ppc40x_timer->fit_timer =
|
|
timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
|
|
ppc40x_timer->wdt_timer =
|
|
timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
|
|
ppc40x_timer->decr_excp = decr_excp;
|
|
}
|
|
|
|
return &ppc_40x_set_tb_clk;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Embedded PowerPC Device Control Registers */
|
|
typedef struct ppc_dcrn_t ppc_dcrn_t;
|
|
struct ppc_dcrn_t {
|
|
dcr_read_cb dcr_read;
|
|
dcr_write_cb dcr_write;
|
|
void *opaque;
|
|
};
|
|
|
|
/* XXX: on 460, DCR addresses are 32 bits wide,
|
|
* using DCRIPR to get the 22 upper bits of the DCR address
|
|
*/
|
|
#define DCRN_NB 1024
|
|
struct ppc_dcr_t {
|
|
ppc_dcrn_t dcrn[DCRN_NB];
|
|
int (*read_error)(int dcrn);
|
|
int (*write_error)(int dcrn);
|
|
};
|
|
|
|
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
|
|
{
|
|
ppc_dcrn_t *dcr;
|
|
|
|
if (dcrn < 0 || dcrn >= DCRN_NB)
|
|
goto error;
|
|
dcr = &dcr_env->dcrn[dcrn];
|
|
if (dcr->dcr_read == NULL)
|
|
goto error;
|
|
*valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (dcr_env->read_error != NULL)
|
|
return (*dcr_env->read_error)(dcrn);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
|
|
{
|
|
ppc_dcrn_t *dcr;
|
|
|
|
if (dcrn < 0 || dcrn >= DCRN_NB)
|
|
goto error;
|
|
dcr = &dcr_env->dcrn[dcrn];
|
|
if (dcr->dcr_write == NULL)
|
|
goto error;
|
|
(*dcr->dcr_write)(dcr->opaque, dcrn, val);
|
|
|
|
return 0;
|
|
|
|
error:
|
|
if (dcr_env->write_error != NULL)
|
|
return (*dcr_env->write_error)(dcrn);
|
|
|
|
return -1;
|
|
}
|
|
|
|
int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
|
|
dcr_read_cb dcr_read, dcr_write_cb dcr_write)
|
|
{
|
|
ppc_dcr_t *dcr_env;
|
|
ppc_dcrn_t *dcr;
|
|
|
|
dcr_env = env->dcr_env;
|
|
if (dcr_env == NULL)
|
|
return -1;
|
|
if (dcrn < 0 || dcrn >= DCRN_NB)
|
|
return -1;
|
|
dcr = &dcr_env->dcrn[dcrn];
|
|
if (dcr->opaque != NULL ||
|
|
dcr->dcr_read != NULL ||
|
|
dcr->dcr_write != NULL)
|
|
return -1;
|
|
dcr->opaque = opaque;
|
|
dcr->dcr_read = dcr_read;
|
|
dcr->dcr_write = dcr_write;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
|
|
int (*write_error)(int dcrn))
|
|
{
|
|
ppc_dcr_t *dcr_env;
|
|
|
|
dcr_env = g_malloc0(sizeof(ppc_dcr_t));
|
|
dcr_env->read_error = read_error;
|
|
dcr_env->write_error = write_error;
|
|
env->dcr_env = dcr_env;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
/* Debug port */
|
|
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
|
|
{
|
|
addr &= 0xF;
|
|
switch (addr) {
|
|
case 0:
|
|
printf("%c", val);
|
|
break;
|
|
case 1:
|
|
printf("\n");
|
|
fflush(stdout);
|
|
break;
|
|
case 2:
|
|
printf("Set loglevel to %04" PRIx32 "\n", val);
|
|
qemu_set_log(val | 0x100);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* CPU device-tree ID helpers */
|
|
int ppc_get_vcpu_dt_id(PowerPCCPU *cpu)
|
|
{
|
|
return cpu->cpu_dt_id;
|
|
}
|
|
|
|
PowerPCCPU *ppc_get_vcpu_by_dt_id(int cpu_dt_id)
|
|
{
|
|
CPUState *cs;
|
|
|
|
CPU_FOREACH(cs) {
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
|
|
if (cpu->cpu_dt_id == cpu_dt_id) {
|
|
return cpu;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
void ppc_cpu_parse_features(const char *cpu_model)
|
|
{
|
|
CPUClass *cc;
|
|
ObjectClass *oc;
|
|
const char *typename;
|
|
gchar **model_pieces;
|
|
|
|
model_pieces = g_strsplit(cpu_model, ",", 2);
|
|
if (!model_pieces[0]) {
|
|
error_report("Invalid/empty CPU model name");
|
|
exit(1);
|
|
}
|
|
|
|
oc = cpu_class_by_name(TYPE_POWERPC_CPU, model_pieces[0]);
|
|
if (oc == NULL) {
|
|
error_report("Unable to find CPU definition: %s", model_pieces[0]);
|
|
exit(1);
|
|
}
|
|
|
|
typename = object_class_get_name(oc);
|
|
cc = CPU_CLASS(oc);
|
|
cc->parse_features(typename, model_pieces[1], &error_fatal);
|
|
g_strfreev(model_pieces);
|
|
}
|