qemu-e2k/target-arm/kvm.c
Pavel Fedin dc9f06ca81 kvm: Pass PCI device pointer to MSI routing functions
In-kernel ITS emulation on ARM64 will require to supply requester IDs.
These IDs can now be retrieved from the device pointer using new
pci_requester_id() function.

This patch adds pci_dev pointer to KVM GSI routing functions and makes
callers passing it.

x86 architecture does not use requester IDs, but hw/i386/kvm/pci-assign.c
also made passing PCI device pointer instead of NULL for consistency with
the rest of the code.

Signed-off-by: Pavel Fedin <p.fedin@samsung.com>
Message-Id: <ce081423ba2394a4efc30f30708fca07656bc500.1444916432.git.p.fedin@samsung.com>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2015-10-19 10:13:07 +02:00

617 lines
15 KiB
C

/*
* ARM implementation of KVM hooks
*
* Copyright Christoffer Dall 2009-2010
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include <stdio.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "cpu.h"
#include "internals.h"
#include "hw/arm/arm.h"
#include "exec/memattrs.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static bool cap_has_mp_state;
int kvm_arm_vcpu_init(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
struct kvm_vcpu_init init;
init.target = cpu->kvm_target;
memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
}
bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
int *fdarray,
struct kvm_vcpu_init *init)
{
int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
kvmfd = qemu_open("/dev/kvm", O_RDWR);
if (kvmfd < 0) {
goto err;
}
vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
if (vmfd < 0) {
goto err;
}
cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
if (cpufd < 0) {
goto err;
}
ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
if (ret >= 0) {
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
if (ret < 0) {
goto err;
}
} else {
/* Old kernel which doesn't know about the
* PREFERRED_TARGET ioctl: we know it will only support
* creating one kind of guest CPU which is its preferred
* CPU type.
*/
while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
init->target = *cpus_to_try++;
memset(init->features, 0, sizeof(init->features));
ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
if (ret >= 0) {
break;
}
}
if (ret < 0) {
goto err;
}
}
fdarray[0] = kvmfd;
fdarray[1] = vmfd;
fdarray[2] = cpufd;
return true;
err:
if (cpufd >= 0) {
close(cpufd);
}
if (vmfd >= 0) {
close(vmfd);
}
if (kvmfd >= 0) {
close(kvmfd);
}
return false;
}
void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
{
int i;
for (i = 2; i >= 0; i--) {
close(fdarray[i]);
}
}
static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
{
ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
/* All we really need to set up for the 'host' CPU
* is the feature bits -- we rely on the fact that the
* various ID register values in ARMCPU are only used for
* TCG CPUs.
*/
if (!kvm_arm_get_host_cpu_features(ahcc)) {
fprintf(stderr, "Failed to retrieve host CPU features!\n");
abort();
}
}
static void kvm_arm_host_cpu_initfn(Object *obj)
{
ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
ARMCPU *cpu = ARM_CPU(obj);
CPUARMState *env = &cpu->env;
cpu->kvm_target = ahcc->target;
cpu->dtb_compatible = ahcc->dtb_compatible;
env->features = ahcc->features;
}
static const TypeInfo host_arm_cpu_type_info = {
.name = TYPE_ARM_HOST_CPU,
#ifdef TARGET_AARCH64
.parent = TYPE_AARCH64_CPU,
#else
.parent = TYPE_ARM_CPU,
#endif
.instance_init = kvm_arm_host_cpu_initfn,
.class_init = kvm_arm_host_cpu_class_init,
.class_size = sizeof(ARMHostCPUClass),
};
int kvm_arch_init(MachineState *ms, KVMState *s)
{
/* For ARM interrupt delivery is always asynchronous,
* whether we are using an in-kernel VGIC or not.
*/
kvm_async_interrupts_allowed = true;
cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
type_register_static(&host_arm_cpu_type_info);
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
/* We track all the KVM devices which need their memory addresses
* passing to the kernel in a list of these structures.
* When board init is complete we run through the list and
* tell the kernel the base addresses of the memory regions.
* We use a MemoryListener to track mapping and unmapping of
* the regions during board creation, so the board models don't
* need to do anything special for the KVM case.
*/
typedef struct KVMDevice {
struct kvm_arm_device_addr kda;
struct kvm_device_attr kdattr;
MemoryRegion *mr;
QSLIST_ENTRY(KVMDevice) entries;
int dev_fd;
} KVMDevice;
static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
static void kvm_arm_devlistener_add(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = section->offset_within_address_space;
}
}
}
static void kvm_arm_devlistener_del(MemoryListener *listener,
MemoryRegionSection *section)
{
KVMDevice *kd;
QSLIST_FOREACH(kd, &kvm_devices_head, entries) {
if (section->mr == kd->mr) {
kd->kda.addr = -1;
}
}
}
static MemoryListener devlistener = {
.region_add = kvm_arm_devlistener_add,
.region_del = kvm_arm_devlistener_del,
};
static void kvm_arm_set_device_addr(KVMDevice *kd)
{
struct kvm_device_attr *attr = &kd->kdattr;
int ret;
/* If the device control API is available and we have a device fd on the
* KVMDevice struct, let's use the newer API
*/
if (kd->dev_fd >= 0) {
uint64_t addr = kd->kda.addr;
attr->addr = (uintptr_t)&addr;
ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
} else {
ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
}
if (ret < 0) {
fprintf(stderr, "Failed to set device address: %s\n",
strerror(-ret));
abort();
}
}
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
KVMDevice *kd, *tkd;
memory_listener_unregister(&devlistener);
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
if (kd->kda.addr != -1) {
kvm_arm_set_device_addr(kd);
}
memory_region_unref(kd->mr);
g_free(kd);
}
}
static Notifier notify = {
.notify = kvm_arm_machine_init_done,
};
void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
uint64_t attr, int dev_fd)
{
KVMDevice *kd;
if (!kvm_irqchip_in_kernel()) {
return;
}
if (QSLIST_EMPTY(&kvm_devices_head)) {
memory_listener_register(&devlistener, NULL);
qemu_add_machine_init_done_notifier(&notify);
}
kd = g_new0(KVMDevice, 1);
kd->mr = mr;
kd->kda.id = devid;
kd->kda.addr = -1;
kd->kdattr.flags = 0;
kd->kdattr.group = group;
kd->kdattr.attr = attr;
kd->dev_fd = dev_fd;
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
memory_region_ref(kd->mr);
}
static int compare_u64(const void *a, const void *b)
{
if (*(uint64_t *)a > *(uint64_t *)b) {
return 1;
}
if (*(uint64_t *)a < *(uint64_t *)b) {
return -1;
}
return 0;
}
/* Initialize the CPUState's cpreg list according to the kernel's
* definition of what CPU registers it knows about (and throw away
* the previous TCG-created cpreg list).
*/
int kvm_arm_init_cpreg_list(ARMCPU *cpu)
{
struct kvm_reg_list rl;
struct kvm_reg_list *rlp;
int i, ret, arraylen;
CPUState *cs = CPU(cpu);
rl.n = 0;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, &rl);
if (ret != -E2BIG) {
return ret;
}
rlp = g_malloc(sizeof(struct kvm_reg_list) + rl.n * sizeof(uint64_t));
rlp->n = rl.n;
ret = kvm_vcpu_ioctl(cs, KVM_GET_REG_LIST, rlp);
if (ret) {
goto out;
}
/* Sort the list we get back from the kernel, since cpreg_tuples
* must be in strictly ascending order.
*/
qsort(&rlp->reg, rlp->n, sizeof(rlp->reg[0]), compare_u64);
for (i = 0, arraylen = 0; i < rlp->n; i++) {
if (!kvm_arm_reg_syncs_via_cpreg_list(rlp->reg[i])) {
continue;
}
switch (rlp->reg[i] & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
case KVM_REG_SIZE_U64:
break;
default:
fprintf(stderr, "Can't handle size of register in kernel list\n");
ret = -EINVAL;
goto out;
}
arraylen++;
}
cpu->cpreg_indexes = g_renew(uint64_t, cpu->cpreg_indexes, arraylen);
cpu->cpreg_values = g_renew(uint64_t, cpu->cpreg_values, arraylen);
cpu->cpreg_vmstate_indexes = g_renew(uint64_t, cpu->cpreg_vmstate_indexes,
arraylen);
cpu->cpreg_vmstate_values = g_renew(uint64_t, cpu->cpreg_vmstate_values,
arraylen);
cpu->cpreg_array_len = arraylen;
cpu->cpreg_vmstate_array_len = arraylen;
for (i = 0, arraylen = 0; i < rlp->n; i++) {
uint64_t regidx = rlp->reg[i];
if (!kvm_arm_reg_syncs_via_cpreg_list(regidx)) {
continue;
}
cpu->cpreg_indexes[arraylen] = regidx;
arraylen++;
}
assert(cpu->cpreg_array_len == arraylen);
if (!write_kvmstate_to_list(cpu)) {
/* Shouldn't happen unless kernel is inconsistent about
* what registers exist.
*/
fprintf(stderr, "Initial read of kernel register state failed\n");
ret = -EINVAL;
goto out;
}
out:
g_free(rlp);
return ret;
}
bool write_kvmstate_to_list(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
struct kvm_one_reg r;
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
r.id = regidx;
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
r.addr = (uintptr_t)&v32;
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
if (!ret) {
cpu->cpreg_values[i] = v32;
}
break;
case KVM_REG_SIZE_U64:
r.addr = (uintptr_t)(cpu->cpreg_values + i);
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
break;
default:
abort();
}
if (ret) {
ok = false;
}
}
return ok;
}
bool write_list_to_kvmstate(ARMCPU *cpu, int level)
{
CPUState *cs = CPU(cpu);
int i;
bool ok = true;
for (i = 0; i < cpu->cpreg_array_len; i++) {
struct kvm_one_reg r;
uint64_t regidx = cpu->cpreg_indexes[i];
uint32_t v32;
int ret;
if (kvm_arm_cpreg_level(regidx) > level) {
continue;
}
r.id = regidx;
switch (regidx & KVM_REG_SIZE_MASK) {
case KVM_REG_SIZE_U32:
v32 = cpu->cpreg_values[i];
r.addr = (uintptr_t)&v32;
break;
case KVM_REG_SIZE_U64:
r.addr = (uintptr_t)(cpu->cpreg_values + i);
break;
default:
abort();
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
/* We might fail for "unknown register" and also for
* "you tried to set a register which is constant with
* a different value from what it actually contains".
*/
ok = false;
}
}
return ok;
}
void kvm_arm_reset_vcpu(ARMCPU *cpu)
{
int ret;
/* Re-init VCPU so that all registers are set to
* their respective reset values.
*/
ret = kvm_arm_vcpu_init(CPU(cpu));
if (ret < 0) {
fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
abort();
}
if (!write_kvmstate_to_list(cpu)) {
fprintf(stderr, "write_kvmstate_to_list failed\n");
abort();
}
}
/*
* Update KVM's MP_STATE based on what QEMU thinks it is
*/
int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state = {
.mp_state =
cpu->powered_off ? KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
};
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
if (ret) {
fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
__func__, ret, strerror(-ret));
return -1;
}
}
return 0;
}
/*
* Sync the KVM MP_STATE into QEMU
*/
int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
{
if (cap_has_mp_state) {
struct kvm_mp_state mp_state;
int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
if (ret) {
fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
__func__, ret, strerror(-ret));
abort();
}
cpu->powered_off = (mp_state.mp_state == KVM_MP_STATE_STOPPED);
}
return 0;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
{
}
MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
{
return MEMTXATTRS_UNSPECIFIED;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
return 0;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
}
int kvm_arch_process_async_events(CPUState *cs)
{
return 0;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cs, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}
void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs,
struct kvm_sw_breakpoint *bp)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
target_ulong len, int type)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs,
struct kvm_sw_breakpoint *bp)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
return -EINVAL;
}
void kvm_arch_remove_all_hw_breakpoints(void)
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_arch_irqchip_create(KVMState *s)
{
/* If we can create the VGIC using the newer device control API, we
* let the device do this when it initializes itself, otherwise we
* fall back to the old API */
return kvm_check_extension(s, KVM_CAP_DEVICE_CTRL);
}
int kvm_arm_vgic_probe(void)
{
if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V3, true) == 0) {
return 3;
} else if (kvm_create_device(kvm_state,
KVM_DEV_TYPE_ARM_VGIC_V2, true) == 0) {
return 2;
} else {
return 0;
}
}
int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route,
uint64_t address, uint32_t data, PCIDevice *dev)
{
return 0;
}
int kvm_arch_msi_data_to_gsi(uint32_t data)
{
return (data - 32) & 0xffff;
}