qemu-e2k/include/qemu/atomic.h
Emilio G. Cota 782da5b292 util: add atomic64
This introduces read/set accessors for int64_t and uint64_t.

Signed-off-by: Emilio G. Cota <cota@braap.org>
Message-Id: <20180910232752.31565-3-cota@braap.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-10-02 18:47:55 +02:00

488 lines
20 KiB
C

/*
* Simple interface for atomic operations.
*
* Copyright (C) 2013 Red Hat, Inc.
*
* Author: Paolo Bonzini <pbonzini@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
* See docs/devel/atomics.txt for discussion about the guarantees each
* atomic primitive is meant to provide.
*/
#ifndef QEMU_ATOMIC_H
#define QEMU_ATOMIC_H
/* Compiler barrier */
#define barrier() ({ asm volatile("" ::: "memory"); (void)0; })
/* The variable that receives the old value of an atomically-accessed
* variable must be non-qualified, because atomic builtins return values
* through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
*
* This macro has to handle types smaller than int manually, because of
* implicit promotion. int and larger types, as well as pointers, can be
* converted to a non-qualified type just by applying a binary operator.
*/
#define typeof_strip_qual(expr) \
typeof( \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(expr), bool) || \
__builtin_types_compatible_p(typeof(expr), const bool) || \
__builtin_types_compatible_p(typeof(expr), volatile bool) || \
__builtin_types_compatible_p(typeof(expr), const volatile bool), \
(bool)1, \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(expr), signed char) || \
__builtin_types_compatible_p(typeof(expr), const signed char) || \
__builtin_types_compatible_p(typeof(expr), volatile signed char) || \
__builtin_types_compatible_p(typeof(expr), const volatile signed char), \
(signed char)1, \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(expr), unsigned char) || \
__builtin_types_compatible_p(typeof(expr), const unsigned char) || \
__builtin_types_compatible_p(typeof(expr), volatile unsigned char) || \
__builtin_types_compatible_p(typeof(expr), const volatile unsigned char), \
(unsigned char)1, \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(expr), signed short) || \
__builtin_types_compatible_p(typeof(expr), const signed short) || \
__builtin_types_compatible_p(typeof(expr), volatile signed short) || \
__builtin_types_compatible_p(typeof(expr), const volatile signed short), \
(signed short)1, \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(expr), unsigned short) || \
__builtin_types_compatible_p(typeof(expr), const unsigned short) || \
__builtin_types_compatible_p(typeof(expr), volatile unsigned short) || \
__builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
(unsigned short)1, \
(expr)+0))))))
#ifdef __ATOMIC_RELAXED
/* For C11 atomic ops */
/* Manual memory barriers
*
*__atomic_thread_fence does not include a compiler barrier; instead,
* the barrier is part of __atomic_load/__atomic_store's "volatile-like"
* semantics. If smp_wmb() is a no-op, absence of the barrier means that
* the compiler is free to reorder stores on each side of the barrier.
* Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
*/
#define smp_mb() ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
#define smp_mb_release() ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
#define smp_mb_acquire() ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
/* Most compilers currently treat consume and acquire the same, but really
* no processors except Alpha need a barrier here. Leave it in if
* using Thread Sanitizer to avoid warnings, otherwise optimize it away.
*/
#if defined(__SANITIZE_THREAD__)
#define smp_read_barrier_depends() ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
#elif defined(__alpha__)
#define smp_read_barrier_depends() asm volatile("mb":::"memory")
#else
#define smp_read_barrier_depends() barrier()
#endif
/* Sanity check that the size of an atomic operation isn't "overly large".
* Despite the fact that e.g. i686 has 64-bit atomic operations, we do not
* want to use them because we ought not need them, and this lets us do a
* bit of sanity checking that other 32-bit hosts might build.
*
* That said, we have a problem on 64-bit ILP32 hosts in that in order to
* sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS.
* We'd prefer not want to pull in everything else TCG related, so handle
* those few cases by hand.
*
* Note that x32 is fully detected with __x86_64__ + _ILP32, and that for
* Sparc we always force the use of sparcv9 in configure.
*/
#if defined(__x86_64__) || defined(__sparc__)
# define ATOMIC_REG_SIZE 8
#else
# define ATOMIC_REG_SIZE sizeof(void *)
#endif
/* Weak atomic operations prevent the compiler moving other
* loads/stores past the atomic operation load/store. However there is
* no explicit memory barrier for the processor.
*
* The C11 memory model says that variables that are accessed from
* different threads should at least be done with __ATOMIC_RELAXED
* primitives or the result is undefined. Generally this has little to
* no effect on the generated code but not using the atomic primitives
* will get flagged by sanitizers as a violation.
*/
#define atomic_read__nocheck(ptr) \
__atomic_load_n(ptr, __ATOMIC_RELAXED)
#define atomic_read(ptr) \
({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
atomic_read__nocheck(ptr); \
})
#define atomic_set__nocheck(ptr, i) \
__atomic_store_n(ptr, i, __ATOMIC_RELAXED)
#define atomic_set(ptr, i) do { \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
atomic_set__nocheck(ptr, i); \
} while(0)
/* See above: most compilers currently treat consume and acquire the
* same, but this slows down atomic_rcu_read unnecessarily.
*/
#ifdef __SANITIZE_THREAD__
#define atomic_rcu_read__nocheck(ptr, valptr) \
__atomic_load(ptr, valptr, __ATOMIC_CONSUME);
#else
#define atomic_rcu_read__nocheck(ptr, valptr) \
__atomic_load(ptr, valptr, __ATOMIC_RELAXED); \
smp_read_barrier_depends();
#endif
#define atomic_rcu_read(ptr) \
({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
typeof_strip_qual(*ptr) _val; \
atomic_rcu_read__nocheck(ptr, &_val); \
_val; \
})
#define atomic_rcu_set(ptr, i) do { \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
__atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
} while(0)
#define atomic_load_acquire(ptr) \
({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
typeof_strip_qual(*ptr) _val; \
__atomic_load(ptr, &_val, __ATOMIC_ACQUIRE); \
_val; \
})
#define atomic_store_release(ptr, i) do { \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
__atomic_store_n(ptr, i, __ATOMIC_RELEASE); \
} while(0)
/* All the remaining operations are fully sequentially consistent */
#define atomic_xchg__nocheck(ptr, i) ({ \
__atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST); \
})
#define atomic_xchg(ptr, i) ({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
atomic_xchg__nocheck(ptr, i); \
})
/* Returns the eventual value, failed or not */
#define atomic_cmpxchg__nocheck(ptr, old, new) ({ \
typeof_strip_qual(*ptr) _old = (old); \
(void)__atomic_compare_exchange_n(ptr, &_old, new, false, \
__ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST); \
_old; \
})
#define atomic_cmpxchg(ptr, old, new) ({ \
QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
atomic_cmpxchg__nocheck(ptr, old, new); \
})
/* Provide shorter names for GCC atomic builtins, return old value */
#define atomic_fetch_inc(ptr) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_fetch_dec(ptr) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_or(ptr, n) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_inc_fetch(ptr) __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_dec_fetch(ptr) __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
#define atomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_or_fetch(ptr, n) __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
#define atomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
/* And even shorter names that return void. */
#define atomic_inc(ptr) ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
#define atomic_dec(ptr) ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
#define atomic_add(ptr, n) ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_sub(ptr, n) ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_and(ptr, n) ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_or(ptr, n) ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
#define atomic_xor(ptr, n) ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
#else /* __ATOMIC_RELAXED */
/*
* We use GCC builtin if it's available, as that can use mfence on
* 32-bit as well, e.g. if built with -march=pentium-m. However, on
* i386 the spec is buggy, and the implementation followed it until
* 4.3 (http://gcc.gnu.org/bugzilla/show_bug.cgi?id=36793).
*/
#if defined(__i386__) || defined(__x86_64__)
#if !QEMU_GNUC_PREREQ(4, 4)
#if defined __x86_64__
#define smp_mb() ({ asm volatile("mfence" ::: "memory"); (void)0; })
#else
#define smp_mb() ({ asm volatile("lock; addl $0,0(%%esp) " ::: "memory"); (void)0; })
#endif
#endif
#endif
#ifdef __alpha__
#define smp_read_barrier_depends() asm volatile("mb":::"memory")
#endif
#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
/*
* Because of the strongly ordered storage model, wmb() and rmb() are nops
* here (a compiler barrier only). QEMU doesn't do accesses to write-combining
* qemu memory or non-temporal load/stores from C code.
*/
#define smp_mb_release() barrier()
#define smp_mb_acquire() barrier()
/*
* __sync_lock_test_and_set() is documented to be an acquire barrier only,
* but it is a full barrier at the hardware level. Add a compiler barrier
* to make it a full barrier also at the compiler level.
*/
#define atomic_xchg(ptr, i) (barrier(), __sync_lock_test_and_set(ptr, i))
#elif defined(_ARCH_PPC)
/*
* We use an eieio() for wmb() on powerpc. This assumes we don't
* need to order cacheable and non-cacheable stores with respect to
* each other.
*
* smp_mb has the same problem as on x86 for not-very-new GCC
* (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
*/
#define smp_wmb() ({ asm volatile("eieio" ::: "memory"); (void)0; })
#if defined(__powerpc64__)
#define smp_mb_release() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
#define smp_mb_acquire() ({ asm volatile("lwsync" ::: "memory"); (void)0; })
#else
#define smp_mb_release() ({ asm volatile("sync" ::: "memory"); (void)0; })
#define smp_mb_acquire() ({ asm volatile("sync" ::: "memory"); (void)0; })
#endif
#define smp_mb() ({ asm volatile("sync" ::: "memory"); (void)0; })
#endif /* _ARCH_PPC */
/*
* For (host) platforms we don't have explicit barrier definitions
* for, we use the gcc __sync_synchronize() primitive to generate a
* full barrier. This should be safe on all platforms, though it may
* be overkill for smp_mb_acquire() and smp_mb_release().
*/
#ifndef smp_mb
#define smp_mb() __sync_synchronize()
#endif
#ifndef smp_mb_acquire
#define smp_mb_acquire() __sync_synchronize()
#endif
#ifndef smp_mb_release
#define smp_mb_release() __sync_synchronize()
#endif
#ifndef smp_read_barrier_depends
#define smp_read_barrier_depends() barrier()
#endif
/* These will only be atomic if the processor does the fetch or store
* in a single issue memory operation
*/
#define atomic_read__nocheck(p) (*(__typeof__(*(p)) volatile*) (p))
#define atomic_set__nocheck(p, i) ((*(__typeof__(*(p)) volatile*) (p)) = (i))
#define atomic_read(ptr) atomic_read__nocheck(ptr)
#define atomic_set(ptr, i) atomic_set__nocheck(ptr,i)
/**
* atomic_rcu_read - reads a RCU-protected pointer to a local variable
* into a RCU read-side critical section. The pointer can later be safely
* dereferenced within the critical section.
*
* This ensures that the pointer copy is invariant thorough the whole critical
* section.
*
* Inserts memory barriers on architectures that require them (currently only
* Alpha) and documents which pointers are protected by RCU.
*
* atomic_rcu_read also includes a compiler barrier to ensure that
* value-speculative optimizations (e.g. VSS: Value Speculation
* Scheduling) does not perform the data read before the pointer read
* by speculating the value of the pointer.
*
* Should match atomic_rcu_set(), atomic_xchg(), atomic_cmpxchg().
*/
#define atomic_rcu_read(ptr) ({ \
typeof(*ptr) _val = atomic_read(ptr); \
smp_read_barrier_depends(); \
_val; \
})
/**
* atomic_rcu_set - assigns (publicizes) a pointer to a new data structure
* meant to be read by RCU read-side critical sections.
*
* Documents which pointers will be dereferenced by RCU read-side critical
* sections and adds the required memory barriers on architectures requiring
* them. It also makes sure the compiler does not reorder code initializing the
* data structure before its publication.
*
* Should match atomic_rcu_read().
*/
#define atomic_rcu_set(ptr, i) do { \
smp_wmb(); \
atomic_set(ptr, i); \
} while (0)
#define atomic_load_acquire(ptr) ({ \
typeof(*ptr) _val = atomic_read(ptr); \
smp_mb_acquire(); \
_val; \
})
#define atomic_store_release(ptr, i) do { \
smp_mb_release(); \
atomic_set(ptr, i); \
} while (0)
#ifndef atomic_xchg
#if defined(__clang__)
#define atomic_xchg(ptr, i) __sync_swap(ptr, i)
#else
/* __sync_lock_test_and_set() is documented to be an acquire barrier only. */
#define atomic_xchg(ptr, i) (smp_mb(), __sync_lock_test_and_set(ptr, i))
#endif
#endif
#define atomic_xchg__nocheck atomic_xchg
/* Provide shorter names for GCC atomic builtins. */
#define atomic_fetch_inc(ptr) __sync_fetch_and_add(ptr, 1)
#define atomic_fetch_dec(ptr) __sync_fetch_and_add(ptr, -1)
#define atomic_fetch_add(ptr, n) __sync_fetch_and_add(ptr, n)
#define atomic_fetch_sub(ptr, n) __sync_fetch_and_sub(ptr, n)
#define atomic_fetch_and(ptr, n) __sync_fetch_and_and(ptr, n)
#define atomic_fetch_or(ptr, n) __sync_fetch_and_or(ptr, n)
#define atomic_fetch_xor(ptr, n) __sync_fetch_and_xor(ptr, n)
#define atomic_inc_fetch(ptr) __sync_add_and_fetch(ptr, 1)
#define atomic_dec_fetch(ptr) __sync_add_and_fetch(ptr, -1)
#define atomic_add_fetch(ptr, n) __sync_add_and_fetch(ptr, n)
#define atomic_sub_fetch(ptr, n) __sync_sub_and_fetch(ptr, n)
#define atomic_and_fetch(ptr, n) __sync_and_and_fetch(ptr, n)
#define atomic_or_fetch(ptr, n) __sync_or_and_fetch(ptr, n)
#define atomic_xor_fetch(ptr, n) __sync_xor_and_fetch(ptr, n)
#define atomic_cmpxchg(ptr, old, new) __sync_val_compare_and_swap(ptr, old, new)
#define atomic_cmpxchg__nocheck(ptr, old, new) atomic_cmpxchg(ptr, old, new)
/* And even shorter names that return void. */
#define atomic_inc(ptr) ((void) __sync_fetch_and_add(ptr, 1))
#define atomic_dec(ptr) ((void) __sync_fetch_and_add(ptr, -1))
#define atomic_add(ptr, n) ((void) __sync_fetch_and_add(ptr, n))
#define atomic_sub(ptr, n) ((void) __sync_fetch_and_sub(ptr, n))
#define atomic_and(ptr, n) ((void) __sync_fetch_and_and(ptr, n))
#define atomic_or(ptr, n) ((void) __sync_fetch_and_or(ptr, n))
#define atomic_xor(ptr, n) ((void) __sync_fetch_and_xor(ptr, n))
#endif /* __ATOMIC_RELAXED */
#ifndef smp_wmb
#define smp_wmb() smp_mb_release()
#endif
#ifndef smp_rmb
#define smp_rmb() smp_mb_acquire()
#endif
/* This is more efficient than a store plus a fence. */
#if !defined(__SANITIZE_THREAD__)
#if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
#define atomic_mb_set(ptr, i) ((void)atomic_xchg(ptr, i))
#endif
#endif
/* atomic_mb_read/set semantics map Java volatile variables. They are
* less expensive on some platforms (notably POWER) than fully
* sequentially consistent operations.
*
* As long as they are used as paired operations they are safe to
* use. See docs/devel/atomics.txt for more discussion.
*/
#ifndef atomic_mb_read
#define atomic_mb_read(ptr) \
atomic_load_acquire(ptr)
#endif
#ifndef atomic_mb_set
#define atomic_mb_set(ptr, i) do { \
atomic_store_release(ptr, i); \
smp_mb(); \
} while(0)
#endif
#define atomic_fetch_inc_nonzero(ptr) ({ \
typeof_strip_qual(*ptr) _oldn = atomic_read(ptr); \
while (_oldn && atomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) { \
_oldn = atomic_read(ptr); \
} \
_oldn; \
})
/* Abstractions to access atomically (i.e. "once") i64/u64 variables */
#ifdef CONFIG_ATOMIC64
static inline int64_t atomic_read_i64(const int64_t *ptr)
{
/* use __nocheck because sizeof(void *) might be < sizeof(u64) */
return atomic_read__nocheck(ptr);
}
static inline uint64_t atomic_read_u64(const uint64_t *ptr)
{
return atomic_read__nocheck(ptr);
}
static inline void atomic_set_i64(int64_t *ptr, int64_t val)
{
atomic_set__nocheck(ptr, val);
}
static inline void atomic_set_u64(uint64_t *ptr, uint64_t val)
{
atomic_set__nocheck(ptr, val);
}
static inline void atomic64_init(void)
{
}
#else /* !CONFIG_ATOMIC64 */
int64_t atomic_read_i64(const int64_t *ptr);
uint64_t atomic_read_u64(const uint64_t *ptr);
void atomic_set_i64(int64_t *ptr, int64_t val);
void atomic_set_u64(uint64_t *ptr, uint64_t val);
void atomic64_init(void);
#endif /* !CONFIG_ATOMIC64 */
#endif /* QEMU_ATOMIC_H */