6faf2b6c4d
It's either "GNU *Library* General Public License version 2" or "GNU Lesser General Public License version *2.1*", but there was no "version 2.0" of the "Lesser" license. So assume that version 2.1 is meant here. Message-Id: <1550073530-4138-1-git-send-email-thuth@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com>
505 lines
13 KiB
C
505 lines
13 KiB
C
/*
|
|
* SH4 emulation
|
|
*
|
|
* Copyright (c) 2005 Samuel Tardieu
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/cpu_ldst.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
|
|
void superh_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
|
|
MMUAccessType access_type,
|
|
int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
switch (access_type) {
|
|
case MMU_INST_FETCH:
|
|
case MMU_DATA_LOAD:
|
|
cs->exception_index = 0x0e0;
|
|
break;
|
|
case MMU_DATA_STORE:
|
|
cs->exception_index = 0x100;
|
|
break;
|
|
}
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
|
|
void tlb_fill(CPUState *cs, target_ulong addr, int size,
|
|
MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
|
|
{
|
|
int ret;
|
|
|
|
ret = superh_cpu_handle_mmu_fault(cs, addr, size, access_type, mmu_idx);
|
|
if (ret) {
|
|
/* now we have a real cpu fault */
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void helper_ldtlb(CPUSH4State *env)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
SuperHCPU *cpu = sh_env_get_cpu(env);
|
|
|
|
/* XXXXX */
|
|
cpu_abort(CPU(cpu), "Unhandled ldtlb");
|
|
#else
|
|
cpu_load_tlb(env);
|
|
#endif
|
|
}
|
|
|
|
static inline void QEMU_NORETURN raise_exception(CPUSH4State *env, int index,
|
|
uintptr_t retaddr)
|
|
{
|
|
CPUState *cs = CPU(sh_env_get_cpu(env));
|
|
|
|
cs->exception_index = index;
|
|
cpu_loop_exit_restore(cs, retaddr);
|
|
}
|
|
|
|
void helper_raise_illegal_instruction(CPUSH4State *env)
|
|
{
|
|
raise_exception(env, 0x180, 0);
|
|
}
|
|
|
|
void helper_raise_slot_illegal_instruction(CPUSH4State *env)
|
|
{
|
|
raise_exception(env, 0x1a0, 0);
|
|
}
|
|
|
|
void helper_raise_fpu_disable(CPUSH4State *env)
|
|
{
|
|
raise_exception(env, 0x800, 0);
|
|
}
|
|
|
|
void helper_raise_slot_fpu_disable(CPUSH4State *env)
|
|
{
|
|
raise_exception(env, 0x820, 0);
|
|
}
|
|
|
|
void helper_debug(CPUSH4State *env)
|
|
{
|
|
raise_exception(env, EXCP_DEBUG, 0);
|
|
}
|
|
|
|
void helper_sleep(CPUSH4State *env)
|
|
{
|
|
CPUState *cs = CPU(sh_env_get_cpu(env));
|
|
|
|
cs->halted = 1;
|
|
env->in_sleep = 1;
|
|
raise_exception(env, EXCP_HLT, 0);
|
|
}
|
|
|
|
void helper_trapa(CPUSH4State *env, uint32_t tra)
|
|
{
|
|
env->tra = tra << 2;
|
|
raise_exception(env, 0x160, 0);
|
|
}
|
|
|
|
void helper_exclusive(CPUSH4State *env)
|
|
{
|
|
/* We do not want cpu_restore_state to run. */
|
|
cpu_loop_exit_atomic(ENV_GET_CPU(env), 0);
|
|
}
|
|
|
|
void helper_movcal(CPUSH4State *env, uint32_t address, uint32_t value)
|
|
{
|
|
if (cpu_sh4_is_cached (env, address))
|
|
{
|
|
memory_content *r = g_new(memory_content, 1);
|
|
|
|
r->address = address;
|
|
r->value = value;
|
|
r->next = NULL;
|
|
|
|
*(env->movcal_backup_tail) = r;
|
|
env->movcal_backup_tail = &(r->next);
|
|
}
|
|
}
|
|
|
|
void helper_discard_movcal_backup(CPUSH4State *env)
|
|
{
|
|
memory_content *current = env->movcal_backup;
|
|
|
|
while(current)
|
|
{
|
|
memory_content *next = current->next;
|
|
g_free(current);
|
|
env->movcal_backup = current = next;
|
|
if (current == NULL)
|
|
env->movcal_backup_tail = &(env->movcal_backup);
|
|
}
|
|
}
|
|
|
|
void helper_ocbi(CPUSH4State *env, uint32_t address)
|
|
{
|
|
memory_content **current = &(env->movcal_backup);
|
|
while (*current)
|
|
{
|
|
uint32_t a = (*current)->address;
|
|
if ((a & ~0x1F) == (address & ~0x1F))
|
|
{
|
|
memory_content *next = (*current)->next;
|
|
cpu_stl_data(env, a, (*current)->value);
|
|
|
|
if (next == NULL)
|
|
{
|
|
env->movcal_backup_tail = current;
|
|
}
|
|
|
|
g_free(*current);
|
|
*current = next;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_macl(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
|
|
{
|
|
int64_t res;
|
|
|
|
res = ((uint64_t) env->mach << 32) | env->macl;
|
|
res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
|
|
env->mach = (res >> 32) & 0xffffffff;
|
|
env->macl = res & 0xffffffff;
|
|
if (env->sr & (1u << SR_S)) {
|
|
if (res < 0)
|
|
env->mach |= 0xffff0000;
|
|
else
|
|
env->mach &= 0x00007fff;
|
|
}
|
|
}
|
|
|
|
void helper_macw(CPUSH4State *env, uint32_t arg0, uint32_t arg1)
|
|
{
|
|
int64_t res;
|
|
|
|
res = ((uint64_t) env->mach << 32) | env->macl;
|
|
res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
|
|
env->mach = (res >> 32) & 0xffffffff;
|
|
env->macl = res & 0xffffffff;
|
|
if (env->sr & (1u << SR_S)) {
|
|
if (res < -0x80000000) {
|
|
env->mach = 1;
|
|
env->macl = 0x80000000;
|
|
} else if (res > 0x000000007fffffff) {
|
|
env->mach = 1;
|
|
env->macl = 0x7fffffff;
|
|
}
|
|
}
|
|
}
|
|
|
|
void helper_ld_fpscr(CPUSH4State *env, uint32_t val)
|
|
{
|
|
env->fpscr = val & FPSCR_MASK;
|
|
if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
|
|
set_float_rounding_mode(float_round_to_zero, &env->fp_status);
|
|
} else {
|
|
set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
|
|
}
|
|
set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
|
|
}
|
|
|
|
static void update_fpscr(CPUSH4State *env, uintptr_t retaddr)
|
|
{
|
|
int xcpt, cause, enable;
|
|
|
|
xcpt = get_float_exception_flags(&env->fp_status);
|
|
|
|
/* Clear the cause entries */
|
|
env->fpscr &= ~FPSCR_CAUSE_MASK;
|
|
|
|
if (unlikely(xcpt)) {
|
|
if (xcpt & float_flag_invalid) {
|
|
env->fpscr |= FPSCR_CAUSE_V;
|
|
}
|
|
if (xcpt & float_flag_divbyzero) {
|
|
env->fpscr |= FPSCR_CAUSE_Z;
|
|
}
|
|
if (xcpt & float_flag_overflow) {
|
|
env->fpscr |= FPSCR_CAUSE_O;
|
|
}
|
|
if (xcpt & float_flag_underflow) {
|
|
env->fpscr |= FPSCR_CAUSE_U;
|
|
}
|
|
if (xcpt & float_flag_inexact) {
|
|
env->fpscr |= FPSCR_CAUSE_I;
|
|
}
|
|
|
|
/* Accumulate in flag entries */
|
|
env->fpscr |= (env->fpscr & FPSCR_CAUSE_MASK)
|
|
>> (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
|
|
|
|
/* Generate an exception if enabled */
|
|
cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
|
|
enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
|
|
if (cause & enable) {
|
|
raise_exception(env, 0x120, retaddr);
|
|
}
|
|
}
|
|
}
|
|
|
|
float32 helper_fadd_FT(CPUSH4State *env, float32 t0, float32 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float32_add(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float64 helper_fadd_DT(CPUSH4State *env, float64 t0, float64 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float64_add(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
uint32_t helper_fcmp_eq_FT(CPUSH4State *env, float32 t0, float32 t1)
|
|
{
|
|
int relation;
|
|
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
relation = float32_compare(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return relation == float_relation_equal;
|
|
}
|
|
|
|
uint32_t helper_fcmp_eq_DT(CPUSH4State *env, float64 t0, float64 t1)
|
|
{
|
|
int relation;
|
|
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
relation = float64_compare(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return relation == float_relation_equal;
|
|
}
|
|
|
|
uint32_t helper_fcmp_gt_FT(CPUSH4State *env, float32 t0, float32 t1)
|
|
{
|
|
int relation;
|
|
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
relation = float32_compare(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return relation == float_relation_greater;
|
|
}
|
|
|
|
uint32_t helper_fcmp_gt_DT(CPUSH4State *env, float64 t0, float64 t1)
|
|
{
|
|
int relation;
|
|
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
relation = float64_compare(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return relation == float_relation_greater;
|
|
}
|
|
|
|
float64 helper_fcnvsd_FT_DT(CPUSH4State *env, float32 t0)
|
|
{
|
|
float64 ret;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
ret = float32_to_float64(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 helper_fcnvds_DT_FT(CPUSH4State *env, float64 t0)
|
|
{
|
|
float32 ret;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
ret = float64_to_float32(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 helper_fdiv_FT(CPUSH4State *env, float32 t0, float32 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float32_div(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float64 helper_fdiv_DT(CPUSH4State *env, float64 t0, float64 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float64_div(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float32 helper_float_FT(CPUSH4State *env, uint32_t t0)
|
|
{
|
|
float32 ret;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
ret = int32_to_float32(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float64 helper_float_DT(CPUSH4State *env, uint32_t t0)
|
|
{
|
|
float64 ret;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
ret = int32_to_float64(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
float32 helper_fmac_FT(CPUSH4State *env, float32 t0, float32 t1, float32 t2)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float32_muladd(t0, t1, t2, 0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float32 helper_fmul_FT(CPUSH4State *env, float32 t0, float32 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float32_mul(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float64 helper_fmul_DT(CPUSH4State *env, float64 t0, float64 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float64_mul(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float32 helper_fsqrt_FT(CPUSH4State *env, float32 t0)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float32_sqrt(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float64 helper_fsqrt_DT(CPUSH4State *env, float64 t0)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float64_sqrt(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float32 helper_fsrra_FT(CPUSH4State *env, float32 t0)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
/* "Approximate" 1/sqrt(x) via actual computation. */
|
|
t0 = float32_sqrt(t0, &env->fp_status);
|
|
t0 = float32_div(float32_one, t0, &env->fp_status);
|
|
/* Since this is supposed to be an approximation, an imprecision
|
|
exception is required. One supposes this also follows the usual
|
|
IEEE rule that other exceptions take precidence. */
|
|
if (get_float_exception_flags(&env->fp_status) == 0) {
|
|
set_float_exception_flags(float_flag_inexact, &env->fp_status);
|
|
}
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float32 helper_fsub_FT(CPUSH4State *env, float32 t0, float32 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float32_sub(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
float64 helper_fsub_DT(CPUSH4State *env, float64 t0, float64 t1)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
t0 = float64_sub(t0, t1, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return t0;
|
|
}
|
|
|
|
uint32_t helper_ftrc_FT(CPUSH4State *env, float32 t0)
|
|
{
|
|
uint32_t ret;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
ret = float32_to_int32_round_to_zero(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
uint32_t helper_ftrc_DT(CPUSH4State *env, float64 t0)
|
|
{
|
|
uint32_t ret;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
ret = float64_to_int32_round_to_zero(t0, &env->fp_status);
|
|
update_fpscr(env, GETPC());
|
|
return ret;
|
|
}
|
|
|
|
void helper_fipr(CPUSH4State *env, uint32_t m, uint32_t n)
|
|
{
|
|
int bank, i;
|
|
float32 r, p;
|
|
|
|
bank = (env->sr & FPSCR_FR) ? 16 : 0;
|
|
r = float32_zero;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
|
|
for (i = 0 ; i < 4 ; i++) {
|
|
p = float32_mul(env->fregs[bank + m + i],
|
|
env->fregs[bank + n + i],
|
|
&env->fp_status);
|
|
r = float32_add(r, p, &env->fp_status);
|
|
}
|
|
update_fpscr(env, GETPC());
|
|
|
|
env->fregs[bank + n + 3] = r;
|
|
}
|
|
|
|
void helper_ftrv(CPUSH4State *env, uint32_t n)
|
|
{
|
|
int bank_matrix, bank_vector;
|
|
int i, j;
|
|
float32 r[4];
|
|
float32 p;
|
|
|
|
bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
|
|
bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
for (i = 0 ; i < 4 ; i++) {
|
|
r[i] = float32_zero;
|
|
for (j = 0 ; j < 4 ; j++) {
|
|
p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
|
|
env->fregs[bank_vector + j],
|
|
&env->fp_status);
|
|
r[i] = float32_add(r[i], p, &env->fp_status);
|
|
}
|
|
}
|
|
update_fpscr(env, GETPC());
|
|
|
|
for (i = 0 ; i < 4 ; i++) {
|
|
env->fregs[bank_vector + i] = r[i];
|
|
}
|
|
}
|