fcedd92086
While debugging over TCP is fairly straightforward now we have test cases that want to orchestrate via make and currently a parallel build fails as two processes can't use the same listening port. While system emulation offers a wide cornucopia of connection methods thanks to the chardev abstraction we are a little more limited for linux user. Thankfully the programming API for a TCP socket and a local UNIX socket is pretty much the same once it's set up. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20200430190122.4592-7-alex.bennee@linaro.org>
204 lines
6.0 KiB
C
204 lines
6.0 KiB
C
#ifndef GDBSTUB_H
|
|
#define GDBSTUB_H
|
|
|
|
#define DEFAULT_GDBSTUB_PORT "1234"
|
|
|
|
/* GDB breakpoint/watchpoint types */
|
|
#define GDB_BREAKPOINT_SW 0
|
|
#define GDB_BREAKPOINT_HW 1
|
|
#define GDB_WATCHPOINT_WRITE 2
|
|
#define GDB_WATCHPOINT_READ 3
|
|
#define GDB_WATCHPOINT_ACCESS 4
|
|
|
|
#ifdef NEED_CPU_H
|
|
#include "cpu.h"
|
|
|
|
typedef void (*gdb_syscall_complete_cb)(CPUState *cpu,
|
|
target_ulong ret, target_ulong err);
|
|
|
|
/**
|
|
* gdb_do_syscall:
|
|
* @cb: function to call when the system call has completed
|
|
* @fmt: gdb syscall format string
|
|
* ...: list of arguments to interpolate into @fmt
|
|
*
|
|
* Send a GDB syscall request. This function will return immediately;
|
|
* the callback function will be called later when the remote system
|
|
* call has completed.
|
|
*
|
|
* @fmt should be in the 'call-id,parameter,parameter...' format documented
|
|
* for the F request packet in the GDB remote protocol. A limited set of
|
|
* printf-style format specifiers is supported:
|
|
* %x - target_ulong argument printed in hex
|
|
* %lx - 64-bit argument printed in hex
|
|
* %s - string pointer (target_ulong) and length (int) pair
|
|
*/
|
|
void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...);
|
|
/**
|
|
* gdb_do_syscallv:
|
|
* @cb: function to call when the system call has completed
|
|
* @fmt: gdb syscall format string
|
|
* @va: arguments to interpolate into @fmt
|
|
*
|
|
* As gdb_do_syscall, but taking a va_list rather than a variable
|
|
* argument list.
|
|
*/
|
|
void gdb_do_syscallv(gdb_syscall_complete_cb cb, const char *fmt, va_list va);
|
|
int use_gdb_syscalls(void);
|
|
void gdb_set_stop_cpu(CPUState *cpu);
|
|
void gdb_exit(CPUArchState *, int);
|
|
#ifdef CONFIG_USER_ONLY
|
|
/**
|
|
* gdb_handlesig: yield control to gdb
|
|
* @cpu: CPU
|
|
* @sig: if non-zero, the signal number which caused us to stop
|
|
*
|
|
* This function yields control to gdb, when a user-mode-only target
|
|
* needs to stop execution. If @sig is non-zero, then we will send a
|
|
* stop packet to tell gdb that we have stopped because of this signal.
|
|
*
|
|
* This function will block (handling protocol requests from gdb)
|
|
* until gdb tells us to continue target execution. When it does
|
|
* return, the return value is a signal to deliver to the target,
|
|
* or 0 if no signal should be delivered, ie the signal that caused
|
|
* us to stop should be ignored.
|
|
*/
|
|
int gdb_handlesig(CPUState *, int);
|
|
void gdb_signalled(CPUArchState *, int);
|
|
void gdbserver_fork(CPUState *);
|
|
#endif
|
|
/* Get or set a register. Returns the size of the register. */
|
|
typedef int (*gdb_get_reg_cb)(CPUArchState *env, GByteArray *buf, int reg);
|
|
typedef int (*gdb_set_reg_cb)(CPUArchState *env, uint8_t *buf, int reg);
|
|
void gdb_register_coprocessor(CPUState *cpu,
|
|
gdb_get_reg_cb get_reg, gdb_set_reg_cb set_reg,
|
|
int num_regs, const char *xml, int g_pos);
|
|
|
|
/*
|
|
* The GDB remote protocol transfers values in target byte order. As
|
|
* the gdbstub may be batching up several register values we always
|
|
* append to the array.
|
|
*/
|
|
|
|
static inline int gdb_get_reg8(GByteArray *buf, uint8_t val)
|
|
{
|
|
g_byte_array_append(buf, &val, 1);
|
|
return 1;
|
|
}
|
|
|
|
static inline int gdb_get_reg16(GByteArray *buf, uint16_t val)
|
|
{
|
|
uint16_t to_word = tswap16(val);
|
|
g_byte_array_append(buf, (uint8_t *) &to_word, 2);
|
|
return 2;
|
|
}
|
|
|
|
static inline int gdb_get_reg32(GByteArray *buf, uint32_t val)
|
|
{
|
|
uint32_t to_long = tswap32(val);
|
|
g_byte_array_append(buf, (uint8_t *) &to_long, 4);
|
|
return 4;
|
|
}
|
|
|
|
static inline int gdb_get_reg64(GByteArray *buf, uint64_t val)
|
|
{
|
|
uint64_t to_quad = tswap64(val);
|
|
g_byte_array_append(buf, (uint8_t *) &to_quad, 8);
|
|
return 8;
|
|
}
|
|
|
|
static inline int gdb_get_reg128(GByteArray *buf, uint64_t val_hi,
|
|
uint64_t val_lo)
|
|
{
|
|
uint64_t to_quad;
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
to_quad = tswap64(val_hi);
|
|
g_byte_array_append(buf, (uint8_t *) &to_quad, 8);
|
|
to_quad = tswap64(val_lo);
|
|
g_byte_array_append(buf, (uint8_t *) &to_quad, 8);
|
|
#else
|
|
to_quad = tswap64(val_lo);
|
|
g_byte_array_append(buf, (uint8_t *) &to_quad, 8);
|
|
to_quad = tswap64(val_hi);
|
|
g_byte_array_append(buf, (uint8_t *) &to_quad, 8);
|
|
#endif
|
|
return 16;
|
|
}
|
|
|
|
static inline int gdb_get_float32(GByteArray *array, float32 val)
|
|
{
|
|
uint8_t buf[sizeof(CPU_FloatU)];
|
|
|
|
stfl_p(buf, val);
|
|
g_byte_array_append(array, buf, sizeof(buf));
|
|
|
|
return sizeof(buf);
|
|
}
|
|
|
|
static inline int gdb_get_float64(GByteArray *array, float64 val)
|
|
{
|
|
uint8_t buf[sizeof(CPU_DoubleU)];
|
|
|
|
stfq_p(buf, val);
|
|
g_byte_array_append(array, buf, sizeof(buf));
|
|
|
|
return sizeof(buf);
|
|
}
|
|
|
|
static inline int gdb_get_zeroes(GByteArray *array, size_t len)
|
|
{
|
|
guint oldlen = array->len;
|
|
g_byte_array_set_size(array, oldlen + len);
|
|
memset(array->data + oldlen, 0, len);
|
|
|
|
return len;
|
|
}
|
|
|
|
/**
|
|
* gdb_get_reg_ptr: get pointer to start of last element
|
|
* @len: length of element
|
|
*
|
|
* This is a helper function to extract the pointer to the last
|
|
* element for additional processing. Some front-ends do additional
|
|
* dynamic swapping of the elements based on CPU state.
|
|
*/
|
|
static inline uint8_t * gdb_get_reg_ptr(GByteArray *buf, int len)
|
|
{
|
|
return buf->data + buf->len - len;
|
|
}
|
|
|
|
#if TARGET_LONG_BITS == 64
|
|
#define gdb_get_regl(buf, val) gdb_get_reg64(buf, val)
|
|
#define ldtul_p(addr) ldq_p(addr)
|
|
#else
|
|
#define gdb_get_regl(buf, val) gdb_get_reg32(buf, val)
|
|
#define ldtul_p(addr) ldl_p(addr)
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/**
|
|
* gdbserver_start: start the gdb server
|
|
* @port_or_device: connection spec for gdb
|
|
*
|
|
* For CONFIG_USER this is either a tcp port or a path to a fifo. For
|
|
* system emulation you can use a full chardev spec for your gdbserver
|
|
* port.
|
|
*/
|
|
int gdbserver_start(const char *port_or_device);
|
|
|
|
void gdbserver_cleanup(void);
|
|
|
|
/**
|
|
* gdb_has_xml:
|
|
* This is an ugly hack to cope with both new and old gdb.
|
|
* If gdb sends qXfer:features:read then assume we're talking to a newish
|
|
* gdb that understands target descriptions.
|
|
*/
|
|
extern bool gdb_has_xml;
|
|
|
|
/* in gdbstub-xml.c, generated by scripts/feature_to_c.sh */
|
|
extern const char *const xml_builtin[][2];
|
|
|
|
#endif
|