13c59eb09b
vfmin_res() / vfmax_res() are trying to check whether a and b are both
zeroes, but in reality they check that they are the same kind of zero.
This causes incorrect results when comparing positive and negative
zeroes.
Fixes: da4807527f
("s390x/tcg: Implement VECTOR FP (MAXIMUM|MINIMUM)")
Co-developed-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
Signed-off-by: Ilya Leoshkevich <iii@linux.ibm.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Reviewed-by: David Hildenbrand <david@redhat.com>
Message-Id: <20220713182612.3780050-2-iii@linux.ibm.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
1103 lines
37 KiB
C
1103 lines
37 KiB
C
/*
|
|
* QEMU TCG support -- s390x vector floating point instruction support
|
|
*
|
|
* Copyright (C) 2019 Red Hat Inc
|
|
*
|
|
* Authors:
|
|
* David Hildenbrand <david@redhat.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "s390x-internal.h"
|
|
#include "vec.h"
|
|
#include "tcg_s390x.h"
|
|
#include "tcg/tcg-gvec-desc.h"
|
|
#include "exec/exec-all.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
#define VIC_INVALID 0x1
|
|
#define VIC_DIVBYZERO 0x2
|
|
#define VIC_OVERFLOW 0x3
|
|
#define VIC_UNDERFLOW 0x4
|
|
#define VIC_INEXACT 0x5
|
|
|
|
/* returns the VEX. If the VEX is 0, there is no trap */
|
|
static uint8_t check_ieee_exc(CPUS390XState *env, uint8_t enr, bool XxC,
|
|
uint8_t *vec_exc)
|
|
{
|
|
uint8_t vece_exc = 0, trap_exc;
|
|
unsigned qemu_exc;
|
|
|
|
/* Retrieve and clear the softfloat exceptions */
|
|
qemu_exc = env->fpu_status.float_exception_flags;
|
|
if (qemu_exc == 0) {
|
|
return 0;
|
|
}
|
|
env->fpu_status.float_exception_flags = 0;
|
|
|
|
vece_exc = s390_softfloat_exc_to_ieee(qemu_exc);
|
|
|
|
/* Add them to the vector-wide s390x exception bits */
|
|
*vec_exc |= vece_exc;
|
|
|
|
/* Check for traps and construct the VXC */
|
|
trap_exc = vece_exc & env->fpc >> 24;
|
|
if (trap_exc) {
|
|
if (trap_exc & S390_IEEE_MASK_INVALID) {
|
|
return enr << 4 | VIC_INVALID;
|
|
} else if (trap_exc & S390_IEEE_MASK_DIVBYZERO) {
|
|
return enr << 4 | VIC_DIVBYZERO;
|
|
} else if (trap_exc & S390_IEEE_MASK_OVERFLOW) {
|
|
return enr << 4 | VIC_OVERFLOW;
|
|
} else if (trap_exc & S390_IEEE_MASK_UNDERFLOW) {
|
|
return enr << 4 | VIC_UNDERFLOW;
|
|
} else if (!XxC) {
|
|
g_assert(trap_exc & S390_IEEE_MASK_INEXACT);
|
|
/* inexact has lowest priority on traps */
|
|
return enr << 4 | VIC_INEXACT;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void handle_ieee_exc(CPUS390XState *env, uint8_t vxc, uint8_t vec_exc,
|
|
uintptr_t retaddr)
|
|
{
|
|
if (vxc) {
|
|
/* on traps, the fpc flags are not updated, instruction is suppressed */
|
|
tcg_s390_vector_exception(env, vxc, retaddr);
|
|
}
|
|
if (vec_exc) {
|
|
/* indicate exceptions for all elements combined */
|
|
env->fpc |= vec_exc << 16;
|
|
}
|
|
}
|
|
|
|
static float32 s390_vec_read_float32(const S390Vector *v, uint8_t enr)
|
|
{
|
|
return make_float32(s390_vec_read_element32(v, enr));
|
|
}
|
|
|
|
static float64 s390_vec_read_float64(const S390Vector *v, uint8_t enr)
|
|
{
|
|
return make_float64(s390_vec_read_element64(v, enr));
|
|
}
|
|
|
|
static float128 s390_vec_read_float128(const S390Vector *v)
|
|
{
|
|
return make_float128(s390_vec_read_element64(v, 0),
|
|
s390_vec_read_element64(v, 1));
|
|
}
|
|
|
|
static void s390_vec_write_float32(S390Vector *v, uint8_t enr, float32 data)
|
|
{
|
|
return s390_vec_write_element32(v, enr, data);
|
|
}
|
|
|
|
static void s390_vec_write_float64(S390Vector *v, uint8_t enr, float64 data)
|
|
{
|
|
return s390_vec_write_element64(v, enr, data);
|
|
}
|
|
|
|
static void s390_vec_write_float128(S390Vector *v, float128 data)
|
|
{
|
|
s390_vec_write_element64(v, 0, data.high);
|
|
s390_vec_write_element64(v, 1, data.low);
|
|
}
|
|
|
|
typedef float32 (*vop32_2_fn)(float32 a, float_status *s);
|
|
static void vop32_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
|
|
bool s, bool XxC, uint8_t erm, vop32_2_fn fn,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i, old_mode;
|
|
|
|
old_mode = s390_swap_bfp_rounding_mode(env, erm);
|
|
for (i = 0; i < 4; i++) {
|
|
const float32 a = s390_vec_read_float32(v2, i);
|
|
|
|
s390_vec_write_float32(&tmp, i, fn(a, &env->fpu_status));
|
|
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
s390_restore_bfp_rounding_mode(env, old_mode);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
typedef float64 (*vop64_2_fn)(float64 a, float_status *s);
|
|
static void vop64_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
|
|
bool s, bool XxC, uint8_t erm, vop64_2_fn fn,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i, old_mode;
|
|
|
|
old_mode = s390_swap_bfp_rounding_mode(env, erm);
|
|
for (i = 0; i < 2; i++) {
|
|
const float64 a = s390_vec_read_float64(v2, i);
|
|
|
|
s390_vec_write_float64(&tmp, i, fn(a, &env->fpu_status));
|
|
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
s390_restore_bfp_rounding_mode(env, old_mode);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
typedef float128 (*vop128_2_fn)(float128 a, float_status *s);
|
|
static void vop128_2(S390Vector *v1, const S390Vector *v2, CPUS390XState *env,
|
|
bool s, bool XxC, uint8_t erm, vop128_2_fn fn,
|
|
uintptr_t retaddr)
|
|
{
|
|
const float128 a = s390_vec_read_float128(v2);
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int old_mode;
|
|
|
|
old_mode = s390_swap_bfp_rounding_mode(env, erm);
|
|
s390_vec_write_float128(&tmp, fn(a, &env->fpu_status));
|
|
vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
|
|
s390_restore_bfp_rounding_mode(env, old_mode);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
static float32 vcdg32(float32 a, float_status *s)
|
|
{
|
|
return int32_to_float32(a, s);
|
|
}
|
|
|
|
static float32 vcdlg32(float32 a, float_status *s)
|
|
{
|
|
return uint32_to_float32(a, s);
|
|
}
|
|
|
|
static float32 vcgd32(float32 a, float_status *s)
|
|
{
|
|
const float32 tmp = float32_to_int32(a, s);
|
|
|
|
return float32_is_any_nan(a) ? INT32_MIN : tmp;
|
|
}
|
|
|
|
static float32 vclgd32(float32 a, float_status *s)
|
|
{
|
|
const float32 tmp = float32_to_uint32(a, s);
|
|
|
|
return float32_is_any_nan(a) ? 0 : tmp;
|
|
}
|
|
|
|
static float64 vcdg64(float64 a, float_status *s)
|
|
{
|
|
return int64_to_float64(a, s);
|
|
}
|
|
|
|
static float64 vcdlg64(float64 a, float_status *s)
|
|
{
|
|
return uint64_to_float64(a, s);
|
|
}
|
|
|
|
static float64 vcgd64(float64 a, float_status *s)
|
|
{
|
|
const float64 tmp = float64_to_int64(a, s);
|
|
|
|
return float64_is_any_nan(a) ? INT64_MIN : tmp;
|
|
}
|
|
|
|
static float64 vclgd64(float64 a, float_status *s)
|
|
{
|
|
const float64 tmp = float64_to_uint64(a, s);
|
|
|
|
return float64_is_any_nan(a) ? 0 : tmp;
|
|
}
|
|
|
|
#define DEF_GVEC_VOP2_FN(NAME, FN, BITS) \
|
|
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, CPUS390XState *env, \
|
|
uint32_t desc) \
|
|
{ \
|
|
const uint8_t erm = extract32(simd_data(desc), 4, 4); \
|
|
const bool se = extract32(simd_data(desc), 3, 1); \
|
|
const bool XxC = extract32(simd_data(desc), 2, 1); \
|
|
\
|
|
vop##BITS##_2(v1, v2, env, se, XxC, erm, FN, GETPC()); \
|
|
}
|
|
|
|
#define DEF_GVEC_VOP2_32(NAME) \
|
|
DEF_GVEC_VOP2_FN(NAME, NAME##32, 32)
|
|
|
|
#define DEF_GVEC_VOP2_64(NAME) \
|
|
DEF_GVEC_VOP2_FN(NAME, NAME##64, 64)
|
|
|
|
#define DEF_GVEC_VOP2(NAME, OP) \
|
|
DEF_GVEC_VOP2_FN(NAME, float32_##OP, 32) \
|
|
DEF_GVEC_VOP2_FN(NAME, float64_##OP, 64) \
|
|
DEF_GVEC_VOP2_FN(NAME, float128_##OP, 128)
|
|
|
|
DEF_GVEC_VOP2_32(vcdg)
|
|
DEF_GVEC_VOP2_32(vcdlg)
|
|
DEF_GVEC_VOP2_32(vcgd)
|
|
DEF_GVEC_VOP2_32(vclgd)
|
|
DEF_GVEC_VOP2_64(vcdg)
|
|
DEF_GVEC_VOP2_64(vcdlg)
|
|
DEF_GVEC_VOP2_64(vcgd)
|
|
DEF_GVEC_VOP2_64(vclgd)
|
|
DEF_GVEC_VOP2(vfi, round_to_int)
|
|
DEF_GVEC_VOP2(vfsq, sqrt)
|
|
|
|
typedef float32 (*vop32_3_fn)(float32 a, float32 b, float_status *s);
|
|
static void vop32_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
CPUS390XState *env, bool s, vop32_3_fn fn,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
const float32 a = s390_vec_read_float32(v2, i);
|
|
const float32 b = s390_vec_read_float32(v3, i);
|
|
|
|
s390_vec_write_float32(&tmp, i, fn(a, b, &env->fpu_status));
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
typedef float64 (*vop64_3_fn)(float64 a, float64 b, float_status *s);
|
|
static void vop64_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
CPUS390XState *env, bool s, vop64_3_fn fn,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
const float64 a = s390_vec_read_float64(v2, i);
|
|
const float64 b = s390_vec_read_float64(v3, i);
|
|
|
|
s390_vec_write_float64(&tmp, i, fn(a, b, &env->fpu_status));
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
typedef float128 (*vop128_3_fn)(float128 a, float128 b, float_status *s);
|
|
static void vop128_3(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
CPUS390XState *env, bool s, vop128_3_fn fn,
|
|
uintptr_t retaddr)
|
|
{
|
|
const float128 a = s390_vec_read_float128(v2);
|
|
const float128 b = s390_vec_read_float128(v3);
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
|
|
s390_vec_write_float128(&tmp, fn(a, b, &env->fpu_status));
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
#define DEF_GVEC_VOP3_B(NAME, OP, BITS) \
|
|
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
|
|
CPUS390XState *env, uint32_t desc) \
|
|
{ \
|
|
const bool se = extract32(simd_data(desc), 3, 1); \
|
|
\
|
|
vop##BITS##_3(v1, v2, v3, env, se, float##BITS##_##OP, GETPC()); \
|
|
}
|
|
|
|
#define DEF_GVEC_VOP3(NAME, OP) \
|
|
DEF_GVEC_VOP3_B(NAME, OP, 32) \
|
|
DEF_GVEC_VOP3_B(NAME, OP, 64) \
|
|
DEF_GVEC_VOP3_B(NAME, OP, 128)
|
|
|
|
DEF_GVEC_VOP3(vfa, add)
|
|
DEF_GVEC_VOP3(vfs, sub)
|
|
DEF_GVEC_VOP3(vfd, div)
|
|
DEF_GVEC_VOP3(vfm, mul)
|
|
|
|
static int wfc32(const S390Vector *v1, const S390Vector *v2,
|
|
CPUS390XState *env, bool signal, uintptr_t retaddr)
|
|
{
|
|
/* only the zero-indexed elements are compared */
|
|
const float32 a = s390_vec_read_float32(v1, 0);
|
|
const float32 b = s390_vec_read_float32(v2, 0);
|
|
uint8_t vxc, vec_exc = 0;
|
|
int cmp;
|
|
|
|
if (signal) {
|
|
cmp = float32_compare(a, b, &env->fpu_status);
|
|
} else {
|
|
cmp = float32_compare_quiet(a, b, &env->fpu_status);
|
|
}
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
|
|
return float_comp_to_cc(env, cmp);
|
|
}
|
|
|
|
static int wfc64(const S390Vector *v1, const S390Vector *v2,
|
|
CPUS390XState *env, bool signal, uintptr_t retaddr)
|
|
{
|
|
/* only the zero-indexed elements are compared */
|
|
const float64 a = s390_vec_read_float64(v1, 0);
|
|
const float64 b = s390_vec_read_float64(v2, 0);
|
|
uint8_t vxc, vec_exc = 0;
|
|
int cmp;
|
|
|
|
if (signal) {
|
|
cmp = float64_compare(a, b, &env->fpu_status);
|
|
} else {
|
|
cmp = float64_compare_quiet(a, b, &env->fpu_status);
|
|
}
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
|
|
return float_comp_to_cc(env, cmp);
|
|
}
|
|
|
|
static int wfc128(const S390Vector *v1, const S390Vector *v2,
|
|
CPUS390XState *env, bool signal, uintptr_t retaddr)
|
|
{
|
|
/* only the zero-indexed elements are compared */
|
|
const float128 a = s390_vec_read_float128(v1);
|
|
const float128 b = s390_vec_read_float128(v2);
|
|
uint8_t vxc, vec_exc = 0;
|
|
int cmp;
|
|
|
|
if (signal) {
|
|
cmp = float128_compare(a, b, &env->fpu_status);
|
|
} else {
|
|
cmp = float128_compare_quiet(a, b, &env->fpu_status);
|
|
}
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
|
|
return float_comp_to_cc(env, cmp);
|
|
}
|
|
|
|
#define DEF_GVEC_WFC_B(NAME, SIGNAL, BITS) \
|
|
void HELPER(gvec_##NAME##BITS)(const void *v1, const void *v2, \
|
|
CPUS390XState *env, uint32_t desc) \
|
|
{ \
|
|
env->cc_op = wfc##BITS(v1, v2, env, SIGNAL, GETPC()); \
|
|
}
|
|
|
|
#define DEF_GVEC_WFC(NAME, SIGNAL) \
|
|
DEF_GVEC_WFC_B(NAME, SIGNAL, 32) \
|
|
DEF_GVEC_WFC_B(NAME, SIGNAL, 64) \
|
|
DEF_GVEC_WFC_B(NAME, SIGNAL, 128)
|
|
|
|
DEF_GVEC_WFC(wfc, false)
|
|
DEF_GVEC_WFC(wfk, true)
|
|
|
|
typedef bool (*vfc32_fn)(float32 a, float32 b, float_status *status);
|
|
static int vfc32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
CPUS390XState *env, bool s, vfc32_fn fn, uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int match = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
const float32 a = s390_vec_read_float32(v2, i);
|
|
const float32 b = s390_vec_read_float32(v3, i);
|
|
|
|
/* swap the order of the parameters, so we can use existing functions */
|
|
if (fn(b, a, &env->fpu_status)) {
|
|
match++;
|
|
s390_vec_write_element32(&tmp, i, -1u);
|
|
}
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
if (match) {
|
|
return s || match == 4 ? 0 : 1;
|
|
}
|
|
return 3;
|
|
}
|
|
|
|
typedef bool (*vfc64_fn)(float64 a, float64 b, float_status *status);
|
|
static int vfc64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
CPUS390XState *env, bool s, vfc64_fn fn, uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int match = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
const float64 a = s390_vec_read_float64(v2, i);
|
|
const float64 b = s390_vec_read_float64(v3, i);
|
|
|
|
/* swap the order of the parameters, so we can use existing functions */
|
|
if (fn(b, a, &env->fpu_status)) {
|
|
match++;
|
|
s390_vec_write_element64(&tmp, i, -1ull);
|
|
}
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
if (match) {
|
|
return s || match == 2 ? 0 : 1;
|
|
}
|
|
return 3;
|
|
}
|
|
|
|
typedef bool (*vfc128_fn)(float128 a, float128 b, float_status *status);
|
|
static int vfc128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
CPUS390XState *env, bool s, vfc128_fn fn, uintptr_t retaddr)
|
|
{
|
|
const float128 a = s390_vec_read_float128(v2);
|
|
const float128 b = s390_vec_read_float128(v3);
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
bool match = false;
|
|
|
|
/* swap the order of the parameters, so we can use existing functions */
|
|
if (fn(b, a, &env->fpu_status)) {
|
|
match = true;
|
|
s390_vec_write_element64(&tmp, 0, -1ull);
|
|
s390_vec_write_element64(&tmp, 1, -1ull);
|
|
}
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
return match ? 0 : 3;
|
|
}
|
|
|
|
#define DEF_GVEC_VFC_B(NAME, OP, BITS) \
|
|
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
|
|
CPUS390XState *env, uint32_t desc) \
|
|
{ \
|
|
const bool se = extract32(simd_data(desc), 3, 1); \
|
|
const bool sq = extract32(simd_data(desc), 2, 1); \
|
|
vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \
|
|
\
|
|
vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \
|
|
} \
|
|
\
|
|
void HELPER(gvec_##NAME##BITS##_cc)(void *v1, const void *v2, const void *v3, \
|
|
CPUS390XState *env, uint32_t desc) \
|
|
{ \
|
|
const bool se = extract32(simd_data(desc), 3, 1); \
|
|
const bool sq = extract32(simd_data(desc), 2, 1); \
|
|
vfc##BITS##_fn fn = sq ? float##BITS##_##OP : float##BITS##_##OP##_quiet; \
|
|
\
|
|
env->cc_op = vfc##BITS(v1, v2, v3, env, se, fn, GETPC()); \
|
|
}
|
|
|
|
#define DEF_GVEC_VFC(NAME, OP) \
|
|
DEF_GVEC_VFC_B(NAME, OP, 32) \
|
|
DEF_GVEC_VFC_B(NAME, OP, 64) \
|
|
DEF_GVEC_VFC_B(NAME, OP, 128) \
|
|
|
|
DEF_GVEC_VFC(vfce, eq)
|
|
DEF_GVEC_VFC(vfch, lt)
|
|
DEF_GVEC_VFC(vfche, le)
|
|
|
|
void HELPER(gvec_vfll32)(void *v1, const void *v2, CPUS390XState *env,
|
|
uint32_t desc)
|
|
{
|
|
const bool s = extract32(simd_data(desc), 3, 1);
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
/* load from even element */
|
|
const float32 a = s390_vec_read_element32(v2, i * 2);
|
|
const uint64_t ret = float32_to_float64(a, &env->fpu_status);
|
|
|
|
s390_vec_write_element64(&tmp, i, ret);
|
|
/* indicate the source element */
|
|
vxc = check_ieee_exc(env, i * 2, false, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
handle_ieee_exc(env, vxc, vec_exc, GETPC());
|
|
*(S390Vector *)v1 = tmp;
|
|
}
|
|
|
|
void HELPER(gvec_vfll64)(void *v1, const void *v2, CPUS390XState *env,
|
|
uint32_t desc)
|
|
{
|
|
/* load from even element */
|
|
const float128 ret = float64_to_float128(s390_vec_read_float64(v2, 0),
|
|
&env->fpu_status);
|
|
uint8_t vxc, vec_exc = 0;
|
|
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, GETPC());
|
|
s390_vec_write_float128(v1, ret);
|
|
}
|
|
|
|
void HELPER(gvec_vflr64)(void *v1, const void *v2, CPUS390XState *env,
|
|
uint32_t desc)
|
|
{
|
|
const uint8_t erm = extract32(simd_data(desc), 4, 4);
|
|
const bool s = extract32(simd_data(desc), 3, 1);
|
|
const bool XxC = extract32(simd_data(desc), 2, 1);
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i, old_mode;
|
|
|
|
old_mode = s390_swap_bfp_rounding_mode(env, erm);
|
|
for (i = 0; i < 2; i++) {
|
|
float64 a = s390_vec_read_element64(v2, i);
|
|
uint32_t ret = float64_to_float32(a, &env->fpu_status);
|
|
|
|
/* place at even element */
|
|
s390_vec_write_element32(&tmp, i * 2, ret);
|
|
/* indicate the source element */
|
|
vxc = check_ieee_exc(env, i, XxC, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
s390_restore_bfp_rounding_mode(env, old_mode);
|
|
handle_ieee_exc(env, vxc, vec_exc, GETPC());
|
|
*(S390Vector *)v1 = tmp;
|
|
}
|
|
|
|
void HELPER(gvec_vflr128)(void *v1, const void *v2, CPUS390XState *env,
|
|
uint32_t desc)
|
|
{
|
|
const uint8_t erm = extract32(simd_data(desc), 4, 4);
|
|
const bool XxC = extract32(simd_data(desc), 2, 1);
|
|
uint8_t vxc, vec_exc = 0;
|
|
int old_mode;
|
|
float64 ret;
|
|
|
|
old_mode = s390_swap_bfp_rounding_mode(env, erm);
|
|
ret = float128_to_float64(s390_vec_read_float128(v2), &env->fpu_status);
|
|
vxc = check_ieee_exc(env, 0, XxC, &vec_exc);
|
|
s390_restore_bfp_rounding_mode(env, old_mode);
|
|
handle_ieee_exc(env, vxc, vec_exc, GETPC());
|
|
|
|
/* place at even element, odd element is unpredictable */
|
|
s390_vec_write_float64(v1, 0, ret);
|
|
}
|
|
|
|
static void vfma32(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
const S390Vector *v4, CPUS390XState *env, bool s, int flags,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
const float32 a = s390_vec_read_float32(v2, i);
|
|
const float32 b = s390_vec_read_float32(v3, i);
|
|
const float32 c = s390_vec_read_float32(v4, i);
|
|
float32 ret = float32_muladd(a, b, c, flags, &env->fpu_status);
|
|
|
|
s390_vec_write_float32(&tmp, i, ret);
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
static void vfma64(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
const S390Vector *v4, CPUS390XState *env, bool s, int flags,
|
|
uintptr_t retaddr)
|
|
{
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
const float64 a = s390_vec_read_float64(v2, i);
|
|
const float64 b = s390_vec_read_float64(v3, i);
|
|
const float64 c = s390_vec_read_float64(v4, i);
|
|
const float64 ret = float64_muladd(a, b, c, flags, &env->fpu_status);
|
|
|
|
s390_vec_write_float64(&tmp, i, ret);
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (s || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
static void vfma128(S390Vector *v1, const S390Vector *v2, const S390Vector *v3,
|
|
const S390Vector *v4, CPUS390XState *env, bool s, int flags,
|
|
uintptr_t retaddr)
|
|
{
|
|
const float128 a = s390_vec_read_float128(v2);
|
|
const float128 b = s390_vec_read_float128(v3);
|
|
const float128 c = s390_vec_read_float128(v4);
|
|
uint8_t vxc, vec_exc = 0;
|
|
float128 ret;
|
|
|
|
ret = float128_muladd(a, b, c, flags, &env->fpu_status);
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
s390_vec_write_float128(v1, ret);
|
|
}
|
|
|
|
#define DEF_GVEC_VFMA_B(NAME, FLAGS, BITS) \
|
|
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
|
|
const void *v4, CPUS390XState *env, \
|
|
uint32_t desc) \
|
|
{ \
|
|
const bool se = extract32(simd_data(desc), 3, 1); \
|
|
\
|
|
vfma##BITS(v1, v2, v3, v4, env, se, FLAGS, GETPC()); \
|
|
}
|
|
|
|
#define DEF_GVEC_VFMA(NAME, FLAGS) \
|
|
DEF_GVEC_VFMA_B(NAME, FLAGS, 32) \
|
|
DEF_GVEC_VFMA_B(NAME, FLAGS, 64) \
|
|
DEF_GVEC_VFMA_B(NAME, FLAGS, 128)
|
|
|
|
DEF_GVEC_VFMA(vfma, 0)
|
|
DEF_GVEC_VFMA(vfms, float_muladd_negate_c)
|
|
DEF_GVEC_VFMA(vfnma, float_muladd_negate_result)
|
|
DEF_GVEC_VFMA(vfnms, float_muladd_negate_c | float_muladd_negate_result)
|
|
|
|
void HELPER(gvec_vftci32)(void *v1, const void *v2, CPUS390XState *env,
|
|
uint32_t desc)
|
|
{
|
|
uint16_t i3 = extract32(simd_data(desc), 4, 12);
|
|
bool s = extract32(simd_data(desc), 3, 1);
|
|
int i, match = 0;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
float32 a = s390_vec_read_float32(v2, i);
|
|
|
|
if (float32_dcmask(env, a) & i3) {
|
|
match++;
|
|
s390_vec_write_element32(v1, i, -1u);
|
|
} else {
|
|
s390_vec_write_element32(v1, i, 0);
|
|
}
|
|
if (s) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (match == 4 || (s && match)) {
|
|
env->cc_op = 0;
|
|
} else if (match) {
|
|
env->cc_op = 1;
|
|
} else {
|
|
env->cc_op = 3;
|
|
}
|
|
}
|
|
|
|
void HELPER(gvec_vftci64)(void *v1, const void *v2, CPUS390XState *env,
|
|
uint32_t desc)
|
|
{
|
|
const uint16_t i3 = extract32(simd_data(desc), 4, 12);
|
|
const bool s = extract32(simd_data(desc), 3, 1);
|
|
int i, match = 0;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
const float64 a = s390_vec_read_float64(v2, i);
|
|
|
|
if (float64_dcmask(env, a) & i3) {
|
|
match++;
|
|
s390_vec_write_element64(v1, i, -1ull);
|
|
} else {
|
|
s390_vec_write_element64(v1, i, 0);
|
|
}
|
|
if (s) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (match == 2 || (s && match)) {
|
|
env->cc_op = 0;
|
|
} else if (match) {
|
|
env->cc_op = 1;
|
|
} else {
|
|
env->cc_op = 3;
|
|
}
|
|
}
|
|
|
|
void HELPER(gvec_vftci128)(void *v1, const void *v2, CPUS390XState *env,
|
|
uint32_t desc)
|
|
{
|
|
const float128 a = s390_vec_read_float128(v2);
|
|
uint16_t i3 = extract32(simd_data(desc), 4, 12);
|
|
|
|
if (float128_dcmask(env, a) & i3) {
|
|
env->cc_op = 0;
|
|
s390_vec_write_element64(v1, 0, -1ull);
|
|
s390_vec_write_element64(v1, 1, -1ull);
|
|
} else {
|
|
env->cc_op = 3;
|
|
s390_vec_write_element64(v1, 0, 0);
|
|
s390_vec_write_element64(v1, 1, 0);
|
|
}
|
|
}
|
|
|
|
typedef enum S390MinMaxType {
|
|
S390_MINMAX_TYPE_IEEE = 0,
|
|
S390_MINMAX_TYPE_JAVA,
|
|
S390_MINMAX_TYPE_C_MACRO,
|
|
S390_MINMAX_TYPE_CPP,
|
|
S390_MINMAX_TYPE_F,
|
|
} S390MinMaxType;
|
|
|
|
typedef enum S390MinMaxRes {
|
|
S390_MINMAX_RES_MINMAX = 0,
|
|
S390_MINMAX_RES_A,
|
|
S390_MINMAX_RES_B,
|
|
S390_MINMAX_RES_SILENCE_A,
|
|
S390_MINMAX_RES_SILENCE_B,
|
|
} S390MinMaxRes;
|
|
|
|
static S390MinMaxRes vfmin_res(uint16_t dcmask_a, uint16_t dcmask_b,
|
|
S390MinMaxType type, float_status *s)
|
|
{
|
|
const bool neg_a = dcmask_a & DCMASK_NEGATIVE;
|
|
const bool nan_a = dcmask_a & DCMASK_NAN;
|
|
const bool nan_b = dcmask_b & DCMASK_NAN;
|
|
|
|
g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F);
|
|
|
|
if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) {
|
|
const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN;
|
|
const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN;
|
|
|
|
if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
}
|
|
switch (type) {
|
|
case S390_MINMAX_TYPE_JAVA:
|
|
if (sig_a) {
|
|
return S390_MINMAX_RES_SILENCE_A;
|
|
} else if (sig_b) {
|
|
return S390_MINMAX_RES_SILENCE_B;
|
|
}
|
|
return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_F:
|
|
return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_C_MACRO:
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
return S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_CPP:
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
return S390_MINMAX_RES_A;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else if (unlikely((dcmask_a & DCMASK_ZERO) && (dcmask_b & DCMASK_ZERO))) {
|
|
switch (type) {
|
|
case S390_MINMAX_TYPE_JAVA:
|
|
return neg_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_C_MACRO:
|
|
return S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_F:
|
|
return !neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A;
|
|
case S390_MINMAX_TYPE_CPP:
|
|
return S390_MINMAX_RES_A;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return S390_MINMAX_RES_MINMAX;
|
|
}
|
|
|
|
static S390MinMaxRes vfmax_res(uint16_t dcmask_a, uint16_t dcmask_b,
|
|
S390MinMaxType type, float_status *s)
|
|
{
|
|
g_assert(type > S390_MINMAX_TYPE_IEEE && type <= S390_MINMAX_TYPE_F);
|
|
|
|
if (unlikely((dcmask_a | dcmask_b) & DCMASK_NAN)) {
|
|
const bool sig_a = dcmask_a & DCMASK_SIGNALING_NAN;
|
|
const bool sig_b = dcmask_b & DCMASK_SIGNALING_NAN;
|
|
const bool nan_a = dcmask_a & DCMASK_NAN;
|
|
const bool nan_b = dcmask_b & DCMASK_NAN;
|
|
|
|
if ((dcmask_a | dcmask_b) & DCMASK_SIGNALING_NAN) {
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
}
|
|
switch (type) {
|
|
case S390_MINMAX_TYPE_JAVA:
|
|
if (sig_a) {
|
|
return S390_MINMAX_RES_SILENCE_A;
|
|
} else if (sig_b) {
|
|
return S390_MINMAX_RES_SILENCE_B;
|
|
}
|
|
return nan_a ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_F:
|
|
return nan_b ? S390_MINMAX_RES_A : S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_C_MACRO:
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
return S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_CPP:
|
|
s->float_exception_flags |= float_flag_invalid;
|
|
return S390_MINMAX_RES_A;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else if (unlikely((dcmask_a & DCMASK_ZERO) && (dcmask_b & DCMASK_ZERO))) {
|
|
const bool neg_a = dcmask_a & DCMASK_NEGATIVE;
|
|
|
|
switch (type) {
|
|
case S390_MINMAX_TYPE_JAVA:
|
|
case S390_MINMAX_TYPE_F:
|
|
return neg_a ? S390_MINMAX_RES_B : S390_MINMAX_RES_A;
|
|
case S390_MINMAX_TYPE_C_MACRO:
|
|
return S390_MINMAX_RES_B;
|
|
case S390_MINMAX_TYPE_CPP:
|
|
return S390_MINMAX_RES_A;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
return S390_MINMAX_RES_MINMAX;
|
|
}
|
|
|
|
static S390MinMaxRes vfminmax_res(uint16_t dcmask_a, uint16_t dcmask_b,
|
|
S390MinMaxType type, bool is_min,
|
|
float_status *s)
|
|
{
|
|
return is_min ? vfmin_res(dcmask_a, dcmask_b, type, s) :
|
|
vfmax_res(dcmask_a, dcmask_b, type, s);
|
|
}
|
|
|
|
static void vfminmax32(S390Vector *v1, const S390Vector *v2,
|
|
const S390Vector *v3, CPUS390XState *env,
|
|
S390MinMaxType type, bool is_min, bool is_abs, bool se,
|
|
uintptr_t retaddr)
|
|
{
|
|
float_status *s = &env->fpu_status;
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i;
|
|
|
|
for (i = 0; i < 4; i++) {
|
|
float32 a = s390_vec_read_float32(v2, i);
|
|
float32 b = s390_vec_read_float32(v3, i);
|
|
float32 result;
|
|
|
|
if (type != S390_MINMAX_TYPE_IEEE) {
|
|
S390MinMaxRes res;
|
|
|
|
if (is_abs) {
|
|
a = float32_abs(a);
|
|
b = float32_abs(b);
|
|
}
|
|
|
|
res = vfminmax_res(float32_dcmask(env, a), float32_dcmask(env, b),
|
|
type, is_min, s);
|
|
switch (res) {
|
|
case S390_MINMAX_RES_MINMAX:
|
|
result = is_min ? float32_min(a, b, s) : float32_max(a, b, s);
|
|
break;
|
|
case S390_MINMAX_RES_A:
|
|
result = a;
|
|
break;
|
|
case S390_MINMAX_RES_B:
|
|
result = b;
|
|
break;
|
|
case S390_MINMAX_RES_SILENCE_A:
|
|
result = float32_silence_nan(a, s);
|
|
break;
|
|
case S390_MINMAX_RES_SILENCE_B:
|
|
result = float32_silence_nan(b, s);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else if (!is_abs) {
|
|
result = is_min ? float32_minnum(a, b, &env->fpu_status) :
|
|
float32_maxnum(a, b, &env->fpu_status);
|
|
} else {
|
|
result = is_min ? float32_minnummag(a, b, &env->fpu_status) :
|
|
float32_maxnummag(a, b, &env->fpu_status);
|
|
}
|
|
|
|
s390_vec_write_float32(&tmp, i, result);
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (se || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
static void vfminmax64(S390Vector *v1, const S390Vector *v2,
|
|
const S390Vector *v3, CPUS390XState *env,
|
|
S390MinMaxType type, bool is_min, bool is_abs, bool se,
|
|
uintptr_t retaddr)
|
|
{
|
|
float_status *s = &env->fpu_status;
|
|
uint8_t vxc, vec_exc = 0;
|
|
S390Vector tmp = {};
|
|
int i;
|
|
|
|
for (i = 0; i < 2; i++) {
|
|
float64 a = s390_vec_read_float64(v2, i);
|
|
float64 b = s390_vec_read_float64(v3, i);
|
|
float64 result;
|
|
|
|
if (type != S390_MINMAX_TYPE_IEEE) {
|
|
S390MinMaxRes res;
|
|
|
|
if (is_abs) {
|
|
a = float64_abs(a);
|
|
b = float64_abs(b);
|
|
}
|
|
|
|
res = vfminmax_res(float64_dcmask(env, a), float64_dcmask(env, b),
|
|
type, is_min, s);
|
|
switch (res) {
|
|
case S390_MINMAX_RES_MINMAX:
|
|
result = is_min ? float64_min(a, b, s) : float64_max(a, b, s);
|
|
break;
|
|
case S390_MINMAX_RES_A:
|
|
result = a;
|
|
break;
|
|
case S390_MINMAX_RES_B:
|
|
result = b;
|
|
break;
|
|
case S390_MINMAX_RES_SILENCE_A:
|
|
result = float64_silence_nan(a, s);
|
|
break;
|
|
case S390_MINMAX_RES_SILENCE_B:
|
|
result = float64_silence_nan(b, s);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else if (!is_abs) {
|
|
result = is_min ? float64_minnum(a, b, &env->fpu_status) :
|
|
float64_maxnum(a, b, &env->fpu_status);
|
|
} else {
|
|
result = is_min ? float64_minnummag(a, b, &env->fpu_status) :
|
|
float64_maxnummag(a, b, &env->fpu_status);
|
|
}
|
|
|
|
s390_vec_write_float64(&tmp, i, result);
|
|
vxc = check_ieee_exc(env, i, false, &vec_exc);
|
|
if (se || vxc) {
|
|
break;
|
|
}
|
|
}
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
*v1 = tmp;
|
|
}
|
|
|
|
static void vfminmax128(S390Vector *v1, const S390Vector *v2,
|
|
const S390Vector *v3, CPUS390XState *env,
|
|
S390MinMaxType type, bool is_min, bool is_abs, bool se,
|
|
uintptr_t retaddr)
|
|
{
|
|
float128 a = s390_vec_read_float128(v2);
|
|
float128 b = s390_vec_read_float128(v3);
|
|
float_status *s = &env->fpu_status;
|
|
uint8_t vxc, vec_exc = 0;
|
|
float128 result;
|
|
|
|
if (type != S390_MINMAX_TYPE_IEEE) {
|
|
S390MinMaxRes res;
|
|
|
|
if (is_abs) {
|
|
a = float128_abs(a);
|
|
b = float128_abs(b);
|
|
}
|
|
|
|
res = vfminmax_res(float128_dcmask(env, a), float128_dcmask(env, b),
|
|
type, is_min, s);
|
|
switch (res) {
|
|
case S390_MINMAX_RES_MINMAX:
|
|
result = is_min ? float128_min(a, b, s) : float128_max(a, b, s);
|
|
break;
|
|
case S390_MINMAX_RES_A:
|
|
result = a;
|
|
break;
|
|
case S390_MINMAX_RES_B:
|
|
result = b;
|
|
break;
|
|
case S390_MINMAX_RES_SILENCE_A:
|
|
result = float128_silence_nan(a, s);
|
|
break;
|
|
case S390_MINMAX_RES_SILENCE_B:
|
|
result = float128_silence_nan(b, s);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else if (!is_abs) {
|
|
result = is_min ? float128_minnum(a, b, &env->fpu_status) :
|
|
float128_maxnum(a, b, &env->fpu_status);
|
|
} else {
|
|
result = is_min ? float128_minnummag(a, b, &env->fpu_status) :
|
|
float128_maxnummag(a, b, &env->fpu_status);
|
|
}
|
|
|
|
vxc = check_ieee_exc(env, 0, false, &vec_exc);
|
|
handle_ieee_exc(env, vxc, vec_exc, retaddr);
|
|
s390_vec_write_float128(v1, result);
|
|
}
|
|
|
|
#define DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, BITS) \
|
|
void HELPER(gvec_##NAME##BITS)(void *v1, const void *v2, const void *v3, \
|
|
CPUS390XState *env, uint32_t desc) \
|
|
{ \
|
|
const bool se = extract32(simd_data(desc), 3, 1); \
|
|
uint8_t type = extract32(simd_data(desc), 4, 4); \
|
|
bool is_abs = false; \
|
|
\
|
|
if (type >= 8) { \
|
|
is_abs = true; \
|
|
type -= 8; \
|
|
} \
|
|
\
|
|
vfminmax##BITS(v1, v2, v3, env, type, IS_MIN, is_abs, se, GETPC()); \
|
|
}
|
|
|
|
#define DEF_GVEC_VFMINMAX(NAME, IS_MIN) \
|
|
DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 32) \
|
|
DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 64) \
|
|
DEF_GVEC_VFMINMAX_B(NAME, IS_MIN, 128)
|
|
|
|
DEF_GVEC_VFMINMAX(vfmax, false)
|
|
DEF_GVEC_VFMINMAX(vfmin, true)
|