decf4f807b
This patch allows the instantiation of the vfio-calxeda-xgmac device from the QEMU command line (-device vfio-calxeda-xgmac,host="<device>"). A specialized device tree node is created for the guest, containing compat, dma-coherent, reg and interrupts properties. Signed-off-by: Eric Auger <eric.auger@linaro.org> Acked-by: Peter Maydell <peter.maydell@linaro.org> Message-id: 1434455898-17895-1-git-send-email-eric.auger@linaro.org Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
976 lines
36 KiB
C
976 lines
36 KiB
C
/*
|
|
* ARM mach-virt emulation
|
|
*
|
|
* Copyright (c) 2013 Linaro Limited
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
* Emulate a virtual board which works by passing Linux all the information
|
|
* it needs about what devices are present via the device tree.
|
|
* There are some restrictions about what we can do here:
|
|
* + we can only present devices whose Linux drivers will work based
|
|
* purely on the device tree with no platform data at all
|
|
* + we want to present a very stripped-down minimalist platform,
|
|
* both because this reduces the security attack surface from the guest
|
|
* and also because it reduces our exposure to being broken when
|
|
* the kernel updates its device tree bindings and requires further
|
|
* information in a device binding that we aren't providing.
|
|
* This is essentially the same approach kvmtool uses.
|
|
*/
|
|
|
|
#include "hw/sysbus.h"
|
|
#include "hw/arm/arm.h"
|
|
#include "hw/arm/primecell.h"
|
|
#include "hw/arm/virt.h"
|
|
#include "hw/devices.h"
|
|
#include "net/net.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "sysemu/device_tree.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/loader.h"
|
|
#include "exec/address-spaces.h"
|
|
#include "qemu/bitops.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/pci-host/gpex.h"
|
|
#include "hw/arm/virt-acpi-build.h"
|
|
#include "hw/arm/sysbus-fdt.h"
|
|
#include "hw/platform-bus.h"
|
|
#include "hw/arm/fdt.h"
|
|
|
|
/* Number of external interrupt lines to configure the GIC with */
|
|
#define NUM_IRQS 256
|
|
|
|
#define PLATFORM_BUS_NUM_IRQS 64
|
|
|
|
static ARMPlatformBusSystemParams platform_bus_params;
|
|
|
|
typedef struct VirtBoardInfo {
|
|
struct arm_boot_info bootinfo;
|
|
const char *cpu_model;
|
|
const MemMapEntry *memmap;
|
|
const int *irqmap;
|
|
int smp_cpus;
|
|
void *fdt;
|
|
int fdt_size;
|
|
uint32_t clock_phandle;
|
|
uint32_t gic_phandle;
|
|
uint32_t v2m_phandle;
|
|
} VirtBoardInfo;
|
|
|
|
typedef struct {
|
|
MachineClass parent;
|
|
VirtBoardInfo *daughterboard;
|
|
} VirtMachineClass;
|
|
|
|
typedef struct {
|
|
MachineState parent;
|
|
bool secure;
|
|
} VirtMachineState;
|
|
|
|
#define TYPE_VIRT_MACHINE "virt"
|
|
#define VIRT_MACHINE(obj) \
|
|
OBJECT_CHECK(VirtMachineState, (obj), TYPE_VIRT_MACHINE)
|
|
#define VIRT_MACHINE_GET_CLASS(obj) \
|
|
OBJECT_GET_CLASS(VirtMachineClass, obj, TYPE_VIRT_MACHINE)
|
|
#define VIRT_MACHINE_CLASS(klass) \
|
|
OBJECT_CLASS_CHECK(VirtMachineClass, klass, TYPE_VIRT_MACHINE)
|
|
|
|
/* Addresses and sizes of our components.
|
|
* 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
|
|
* 128MB..256MB is used for miscellaneous device I/O.
|
|
* 256MB..1GB is reserved for possible future PCI support (ie where the
|
|
* PCI memory window will go if we add a PCI host controller).
|
|
* 1GB and up is RAM (which may happily spill over into the
|
|
* high memory region beyond 4GB).
|
|
* This represents a compromise between how much RAM can be given to
|
|
* a 32 bit VM and leaving space for expansion and in particular for PCI.
|
|
* Note that devices should generally be placed at multiples of 0x10000,
|
|
* to accommodate guests using 64K pages.
|
|
*/
|
|
static const MemMapEntry a15memmap[] = {
|
|
/* Space up to 0x8000000 is reserved for a boot ROM */
|
|
[VIRT_FLASH] = { 0, 0x08000000 },
|
|
[VIRT_CPUPERIPHS] = { 0x08000000, 0x00020000 },
|
|
/* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
|
|
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
|
|
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
|
|
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
|
|
[VIRT_UART] = { 0x09000000, 0x00001000 },
|
|
[VIRT_RTC] = { 0x09010000, 0x00001000 },
|
|
[VIRT_FW_CFG] = { 0x09020000, 0x0000000a },
|
|
[VIRT_MMIO] = { 0x0a000000, 0x00000200 },
|
|
/* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
|
|
[VIRT_PLATFORM_BUS] = { 0x0c000000, 0x02000000 },
|
|
[VIRT_PCIE_MMIO] = { 0x10000000, 0x2eff0000 },
|
|
[VIRT_PCIE_PIO] = { 0x3eff0000, 0x00010000 },
|
|
[VIRT_PCIE_ECAM] = { 0x3f000000, 0x01000000 },
|
|
[VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
|
|
};
|
|
|
|
static const int a15irqmap[] = {
|
|
[VIRT_UART] = 1,
|
|
[VIRT_RTC] = 2,
|
|
[VIRT_PCIE] = 3, /* ... to 6 */
|
|
[VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
|
|
[VIRT_GIC_V2M] = 48, /* ...to 48 + NUM_GICV2M_SPIS - 1 */
|
|
[VIRT_PLATFORM_BUS] = 112, /* ...to 112 + PLATFORM_BUS_NUM_IRQS -1 */
|
|
};
|
|
|
|
static VirtBoardInfo machines[] = {
|
|
{
|
|
.cpu_model = "cortex-a15",
|
|
.memmap = a15memmap,
|
|
.irqmap = a15irqmap,
|
|
},
|
|
{
|
|
.cpu_model = "cortex-a53",
|
|
.memmap = a15memmap,
|
|
.irqmap = a15irqmap,
|
|
},
|
|
{
|
|
.cpu_model = "cortex-a57",
|
|
.memmap = a15memmap,
|
|
.irqmap = a15irqmap,
|
|
},
|
|
{
|
|
.cpu_model = "host",
|
|
.memmap = a15memmap,
|
|
.irqmap = a15irqmap,
|
|
},
|
|
};
|
|
|
|
static VirtBoardInfo *find_machine_info(const char *cpu)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(machines); i++) {
|
|
if (strcmp(cpu, machines[i].cpu_model) == 0) {
|
|
return &machines[i];
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void create_fdt(VirtBoardInfo *vbi)
|
|
{
|
|
void *fdt = create_device_tree(&vbi->fdt_size);
|
|
|
|
if (!fdt) {
|
|
error_report("create_device_tree() failed");
|
|
exit(1);
|
|
}
|
|
|
|
vbi->fdt = fdt;
|
|
|
|
/* Header */
|
|
qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
|
|
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
|
|
|
|
/*
|
|
* /chosen and /memory nodes must exist for load_dtb
|
|
* to fill in necessary properties later
|
|
*/
|
|
qemu_fdt_add_subnode(fdt, "/chosen");
|
|
qemu_fdt_add_subnode(fdt, "/memory");
|
|
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
|
|
|
|
/* Clock node, for the benefit of the UART. The kernel device tree
|
|
* binding documentation claims the PL011 node clock properties are
|
|
* optional but in practice if you omit them the kernel refuses to
|
|
* probe for the device.
|
|
*/
|
|
vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
|
|
qemu_fdt_add_subnode(fdt, "/apb-pclk");
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
|
|
qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
|
|
"clk24mhz");
|
|
qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
|
|
|
|
}
|
|
|
|
static void fdt_add_psci_node(const VirtBoardInfo *vbi)
|
|
{
|
|
uint32_t cpu_suspend_fn;
|
|
uint32_t cpu_off_fn;
|
|
uint32_t cpu_on_fn;
|
|
uint32_t migrate_fn;
|
|
void *fdt = vbi->fdt;
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
|
|
qemu_fdt_add_subnode(fdt, "/psci");
|
|
if (armcpu->psci_version == 2) {
|
|
const char comp[] = "arm,psci-0.2\0arm,psci";
|
|
qemu_fdt_setprop(fdt, "/psci", "compatible", comp, sizeof(comp));
|
|
|
|
cpu_off_fn = QEMU_PSCI_0_2_FN_CPU_OFF;
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_AARCH64)) {
|
|
cpu_suspend_fn = QEMU_PSCI_0_2_FN64_CPU_SUSPEND;
|
|
cpu_on_fn = QEMU_PSCI_0_2_FN64_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_2_FN64_MIGRATE;
|
|
} else {
|
|
cpu_suspend_fn = QEMU_PSCI_0_2_FN_CPU_SUSPEND;
|
|
cpu_on_fn = QEMU_PSCI_0_2_FN_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_2_FN_MIGRATE;
|
|
}
|
|
} else {
|
|
qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
|
|
|
|
cpu_suspend_fn = QEMU_PSCI_0_1_FN_CPU_SUSPEND;
|
|
cpu_off_fn = QEMU_PSCI_0_1_FN_CPU_OFF;
|
|
cpu_on_fn = QEMU_PSCI_0_1_FN_CPU_ON;
|
|
migrate_fn = QEMU_PSCI_0_1_FN_MIGRATE;
|
|
}
|
|
|
|
/* We adopt the PSCI spec's nomenclature, and use 'conduit' to refer
|
|
* to the instruction that should be used to invoke PSCI functions.
|
|
* However, the device tree binding uses 'method' instead, so that is
|
|
* what we should use here.
|
|
*/
|
|
qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
|
|
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend", cpu_suspend_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", cpu_off_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", cpu_on_fn);
|
|
qemu_fdt_setprop_cell(fdt, "/psci", "migrate", migrate_fn);
|
|
}
|
|
|
|
static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
|
|
{
|
|
/* Note that on A15 h/w these interrupts are level-triggered,
|
|
* but for the GIC implementation provided by both QEMU and KVM
|
|
* they are edge-triggered.
|
|
*/
|
|
ARMCPU *armcpu;
|
|
uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
|
|
|
|
irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
|
|
GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, "/timer");
|
|
|
|
armcpu = ARM_CPU(qemu_get_cpu(0));
|
|
if (arm_feature(&armcpu->env, ARM_FEATURE_V8)) {
|
|
const char compat[] = "arm,armv8-timer\0arm,armv7-timer";
|
|
qemu_fdt_setprop(vbi->fdt, "/timer", "compatible",
|
|
compat, sizeof(compat));
|
|
} else {
|
|
qemu_fdt_setprop_string(vbi->fdt, "/timer", "compatible",
|
|
"arm,armv7-timer");
|
|
}
|
|
qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_S_EL1_IRQ, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL1_IRQ, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_VIRT_IRQ, irqflags,
|
|
GIC_FDT_IRQ_TYPE_PPI, ARCH_TIMER_NS_EL2_IRQ, irqflags);
|
|
}
|
|
|
|
static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
|
|
{
|
|
int cpu;
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, "/cpus");
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
|
|
|
|
for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
|
|
char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
|
|
ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
|
|
armcpu->dtb_compatible);
|
|
|
|
if (vbi->smp_cpus > 1) {
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename,
|
|
"enable-method", "psci");
|
|
}
|
|
|
|
qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", armcpu->mp_affinity);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static void fdt_add_v2m_gic_node(VirtBoardInfo *vbi)
|
|
{
|
|
vbi->v2m_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
|
|
qemu_fdt_add_subnode(vbi->fdt, "/intc/v2m");
|
|
qemu_fdt_setprop_string(vbi->fdt, "/intc/v2m", "compatible",
|
|
"arm,gic-v2m-frame");
|
|
qemu_fdt_setprop(vbi->fdt, "/intc/v2m", "msi-controller", NULL, 0);
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc/v2m", "reg",
|
|
2, vbi->memmap[VIRT_GIC_V2M].base,
|
|
2, vbi->memmap[VIRT_GIC_V2M].size);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/intc/v2m", "phandle", vbi->v2m_phandle);
|
|
}
|
|
|
|
static void fdt_add_gic_node(VirtBoardInfo *vbi)
|
|
{
|
|
vbi->gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", vbi->gic_phandle);
|
|
|
|
qemu_fdt_add_subnode(vbi->fdt, "/intc");
|
|
/* 'cortex-a15-gic' means 'GIC v2' */
|
|
qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
|
|
"arm,cortex-a15-gic");
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
|
|
qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
|
|
2, vbi->memmap[VIRT_GIC_DIST].base,
|
|
2, vbi->memmap[VIRT_GIC_DIST].size,
|
|
2, vbi->memmap[VIRT_GIC_CPU].base,
|
|
2, vbi->memmap[VIRT_GIC_CPU].size);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#address-cells", 0x2);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#size-cells", 0x2);
|
|
qemu_fdt_setprop(vbi->fdt, "/intc", "ranges", NULL, 0);
|
|
qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", vbi->gic_phandle);
|
|
}
|
|
|
|
static void create_v2m(VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
int i;
|
|
int irq = vbi->irqmap[VIRT_GIC_V2M];
|
|
DeviceState *dev;
|
|
|
|
dev = qdev_create(NULL, "arm-gicv2m");
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, vbi->memmap[VIRT_GIC_V2M].base);
|
|
qdev_prop_set_uint32(dev, "base-spi", irq);
|
|
qdev_prop_set_uint32(dev, "num-spi", NUM_GICV2M_SPIS);
|
|
qdev_init_nofail(dev);
|
|
|
|
for (i = 0; i < NUM_GICV2M_SPIS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
|
|
}
|
|
|
|
fdt_add_v2m_gic_node(vbi);
|
|
}
|
|
|
|
static void create_gic(VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
/* We create a standalone GIC v2 */
|
|
DeviceState *gicdev;
|
|
SysBusDevice *gicbusdev;
|
|
const char *gictype = "arm_gic";
|
|
int i;
|
|
|
|
if (kvm_irqchip_in_kernel()) {
|
|
gictype = "kvm-arm-gic";
|
|
}
|
|
|
|
gicdev = qdev_create(NULL, gictype);
|
|
qdev_prop_set_uint32(gicdev, "revision", 2);
|
|
qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
|
|
/* Note that the num-irq property counts both internal and external
|
|
* interrupts; there are always 32 of the former (mandated by GIC spec).
|
|
*/
|
|
qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
|
|
qdev_init_nofail(gicdev);
|
|
gicbusdev = SYS_BUS_DEVICE(gicdev);
|
|
sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
|
|
sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
|
|
|
|
/* Wire the outputs from each CPU's generic timer to the
|
|
* appropriate GIC PPI inputs, and the GIC's IRQ output to
|
|
* the CPU's IRQ input.
|
|
*/
|
|
for (i = 0; i < smp_cpus; i++) {
|
|
DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
|
|
int ppibase = NUM_IRQS + i * 32;
|
|
/* physical timer; we wire it up to the non-secure timer's ID,
|
|
* since a real A15 always has TrustZone but QEMU doesn't.
|
|
*/
|
|
qdev_connect_gpio_out(cpudev, 0,
|
|
qdev_get_gpio_in(gicdev, ppibase + 30));
|
|
/* virtual timer */
|
|
qdev_connect_gpio_out(cpudev, 1,
|
|
qdev_get_gpio_in(gicdev, ppibase + 27));
|
|
|
|
sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
|
|
sysbus_connect_irq(gicbusdev, i + smp_cpus,
|
|
qdev_get_gpio_in(cpudev, ARM_CPU_FIQ));
|
|
}
|
|
|
|
for (i = 0; i < NUM_IRQS; i++) {
|
|
pic[i] = qdev_get_gpio_in(gicdev, i);
|
|
}
|
|
|
|
fdt_add_gic_node(vbi);
|
|
|
|
create_v2m(vbi, pic);
|
|
}
|
|
|
|
static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vbi->memmap[VIRT_UART].base;
|
|
hwaddr size = vbi->memmap[VIRT_UART].size;
|
|
int irq = vbi->irqmap[VIRT_UART];
|
|
const char compat[] = "arm,pl011\0arm,primecell";
|
|
const char clocknames[] = "uartclk\0apb_pclk";
|
|
|
|
sysbus_create_simple("pl011", base, pic[irq]);
|
|
|
|
nodename = g_strdup_printf("/pl011@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
/* Note that we can't use setprop_string because of the embedded NUL */
|
|
qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
|
|
compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
|
|
vbi->clock_phandle, vbi->clock_phandle);
|
|
qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
|
|
clocknames, sizeof(clocknames));
|
|
|
|
qemu_fdt_setprop_string(vbi->fdt, "/chosen", "stdout-path", nodename);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_rtc(const VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
char *nodename;
|
|
hwaddr base = vbi->memmap[VIRT_RTC].base;
|
|
hwaddr size = vbi->memmap[VIRT_RTC].size;
|
|
int irq = vbi->irqmap[VIRT_RTC];
|
|
const char compat[] = "arm,pl031\0arm,primecell";
|
|
|
|
sysbus_create_simple("pl031", base, pic[irq]);
|
|
|
|
nodename = g_strdup_printf("/pl031@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop(vbi->fdt, nodename, "compatible", compat, sizeof(compat));
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
|
|
qemu_fdt_setprop_cell(vbi->fdt, nodename, "clocks", vbi->clock_phandle);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename, "clock-names", "apb_pclk");
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
int i;
|
|
hwaddr size = vbi->memmap[VIRT_MMIO].size;
|
|
|
|
/* We create the transports in forwards order. Since qbus_realize()
|
|
* prepends (not appends) new child buses, the incrementing loop below will
|
|
* create a list of virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When a -device option is processed from the command line,
|
|
* qbus_find_recursive() picks the next free virtio-mmio bus in forwards
|
|
* order. The upshot is that -device options in increasing command line
|
|
* order are mapped to virtio-mmio buses with decreasing base addresses.
|
|
*
|
|
* When this code was originally written, that arrangement ensured that the
|
|
* guest Linux kernel would give the lowest "name" (/dev/vda, eth0, etc) to
|
|
* the first -device on the command line. (The end-to-end order is a
|
|
* function of this loop, qbus_realize(), qbus_find_recursive(), and the
|
|
* guest kernel's name-to-address assignment strategy.)
|
|
*
|
|
* Meanwhile, the kernel's traversal seems to have been reversed; see eg.
|
|
* the message, if not necessarily the code, of commit 70161ff336.
|
|
* Therefore the loop now establishes the inverse of the original intent.
|
|
*
|
|
* Unfortunately, we can't counteract the kernel change by reversing the
|
|
* loop; it would break existing command lines.
|
|
*
|
|
* In any case, the kernel makes no guarantee about the stability of
|
|
* enumeration order of virtio devices (as demonstrated by it changing
|
|
* between kernel versions). For reliable and stable identification
|
|
* of disks users must use UUIDs or similar mechanisms.
|
|
*/
|
|
for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
|
|
int irq = vbi->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
sysbus_create_simple("virtio-mmio", base, pic[irq]);
|
|
}
|
|
|
|
/* We add dtb nodes in reverse order so that they appear in the finished
|
|
* device tree lowest address first.
|
|
*
|
|
* Note that this mapping is independent of the loop above. The previous
|
|
* loop influences virtio device to virtio transport assignment, whereas
|
|
* this loop controls how virtio transports are laid out in the dtb.
|
|
*/
|
|
for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
|
|
char *nodename;
|
|
int irq = vbi->irqmap[VIRT_MMIO] + i;
|
|
hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
|
|
|
|
nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename,
|
|
"compatible", "virtio,mmio");
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
|
|
GIC_FDT_IRQ_TYPE_SPI, irq,
|
|
GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
|
|
g_free(nodename);
|
|
}
|
|
}
|
|
|
|
static void create_one_flash(const char *name, hwaddr flashbase,
|
|
hwaddr flashsize)
|
|
{
|
|
/* Create and map a single flash device. We use the same
|
|
* parameters as the flash devices on the Versatile Express board.
|
|
*/
|
|
DriveInfo *dinfo = drive_get_next(IF_PFLASH);
|
|
DeviceState *dev = qdev_create(NULL, "cfi.pflash01");
|
|
const uint64_t sectorlength = 256 * 1024;
|
|
|
|
if (dinfo) {
|
|
qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
|
|
&error_abort);
|
|
}
|
|
|
|
qdev_prop_set_uint32(dev, "num-blocks", flashsize / sectorlength);
|
|
qdev_prop_set_uint64(dev, "sector-length", sectorlength);
|
|
qdev_prop_set_uint8(dev, "width", 4);
|
|
qdev_prop_set_uint8(dev, "device-width", 2);
|
|
qdev_prop_set_bit(dev, "big-endian", false);
|
|
qdev_prop_set_uint16(dev, "id0", 0x89);
|
|
qdev_prop_set_uint16(dev, "id1", 0x18);
|
|
qdev_prop_set_uint16(dev, "id2", 0x00);
|
|
qdev_prop_set_uint16(dev, "id3", 0x00);
|
|
qdev_prop_set_string(dev, "name", name);
|
|
qdev_init_nofail(dev);
|
|
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, flashbase);
|
|
}
|
|
|
|
static void create_flash(const VirtBoardInfo *vbi)
|
|
{
|
|
/* Create two flash devices to fill the VIRT_FLASH space in the memmap.
|
|
* Any file passed via -bios goes in the first of these.
|
|
*/
|
|
hwaddr flashsize = vbi->memmap[VIRT_FLASH].size / 2;
|
|
hwaddr flashbase = vbi->memmap[VIRT_FLASH].base;
|
|
char *nodename;
|
|
|
|
if (bios_name) {
|
|
char *fn;
|
|
int image_size;
|
|
|
|
if (drive_get(IF_PFLASH, 0, 0)) {
|
|
error_report("The contents of the first flash device may be "
|
|
"specified with -bios or with -drive if=pflash... "
|
|
"but you cannot use both options at once");
|
|
exit(1);
|
|
}
|
|
fn = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
|
|
if (!fn) {
|
|
error_report("Could not find ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
image_size = load_image_targphys(fn, flashbase, flashsize);
|
|
g_free(fn);
|
|
if (image_size < 0) {
|
|
error_report("Could not load ROM image '%s'", bios_name);
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
create_one_flash("virt.flash0", flashbase, flashsize);
|
|
create_one_flash("virt.flash1", flashbase + flashsize, flashsize);
|
|
|
|
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible", "cfi-flash");
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, flashbase, 2, flashsize,
|
|
2, flashbase + flashsize, 2, flashsize);
|
|
qemu_fdt_setprop_cell(vbi->fdt, nodename, "bank-width", 4);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_fw_cfg(const VirtBoardInfo *vbi)
|
|
{
|
|
hwaddr base = vbi->memmap[VIRT_FW_CFG].base;
|
|
hwaddr size = vbi->memmap[VIRT_FW_CFG].size;
|
|
char *nodename;
|
|
|
|
fw_cfg_init_mem_wide(base + 8, base, 8);
|
|
|
|
nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename,
|
|
"compatible", "qemu,fw-cfg-mmio");
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, base, 2, size);
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_pcie_irq_map(const VirtBoardInfo *vbi, uint32_t gic_phandle,
|
|
int first_irq, const char *nodename)
|
|
{
|
|
int devfn, pin;
|
|
uint32_t full_irq_map[4 * 4 * 10] = { 0 };
|
|
uint32_t *irq_map = full_irq_map;
|
|
|
|
for (devfn = 0; devfn <= 0x18; devfn += 0x8) {
|
|
for (pin = 0; pin < 4; pin++) {
|
|
int irq_type = GIC_FDT_IRQ_TYPE_SPI;
|
|
int irq_nr = first_irq + ((pin + PCI_SLOT(devfn)) % PCI_NUM_PINS);
|
|
int irq_level = GIC_FDT_IRQ_FLAGS_LEVEL_HI;
|
|
int i;
|
|
|
|
uint32_t map[] = {
|
|
devfn << 8, 0, 0, /* devfn */
|
|
pin + 1, /* PCI pin */
|
|
gic_phandle, 0, 0, irq_type, irq_nr, irq_level }; /* GIC irq */
|
|
|
|
/* Convert map to big endian */
|
|
for (i = 0; i < 10; i++) {
|
|
irq_map[i] = cpu_to_be32(map[i]);
|
|
}
|
|
irq_map += 10;
|
|
}
|
|
}
|
|
|
|
qemu_fdt_setprop(vbi->fdt, nodename, "interrupt-map",
|
|
full_irq_map, sizeof(full_irq_map));
|
|
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupt-map-mask",
|
|
0x1800, 0, 0, /* devfn (PCI_SLOT(3)) */
|
|
0x7 /* PCI irq */);
|
|
}
|
|
|
|
static void create_pcie(const VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
hwaddr base_mmio = vbi->memmap[VIRT_PCIE_MMIO].base;
|
|
hwaddr size_mmio = vbi->memmap[VIRT_PCIE_MMIO].size;
|
|
hwaddr base_pio = vbi->memmap[VIRT_PCIE_PIO].base;
|
|
hwaddr size_pio = vbi->memmap[VIRT_PCIE_PIO].size;
|
|
hwaddr base_ecam = vbi->memmap[VIRT_PCIE_ECAM].base;
|
|
hwaddr size_ecam = vbi->memmap[VIRT_PCIE_ECAM].size;
|
|
hwaddr base = base_mmio;
|
|
int nr_pcie_buses = size_ecam / PCIE_MMCFG_SIZE_MIN;
|
|
int irq = vbi->irqmap[VIRT_PCIE];
|
|
MemoryRegion *mmio_alias;
|
|
MemoryRegion *mmio_reg;
|
|
MemoryRegion *ecam_alias;
|
|
MemoryRegion *ecam_reg;
|
|
DeviceState *dev;
|
|
char *nodename;
|
|
int i;
|
|
|
|
dev = qdev_create(NULL, TYPE_GPEX_HOST);
|
|
qdev_init_nofail(dev);
|
|
|
|
/* Map only the first size_ecam bytes of ECAM space */
|
|
ecam_alias = g_new0(MemoryRegion, 1);
|
|
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
|
|
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
|
|
ecam_reg, 0, size_ecam);
|
|
memory_region_add_subregion(get_system_memory(), base_ecam, ecam_alias);
|
|
|
|
/* Map the MMIO window into system address space so as to expose
|
|
* the section of PCI MMIO space which starts at the same base address
|
|
* (ie 1:1 mapping for that part of PCI MMIO space visible through
|
|
* the window).
|
|
*/
|
|
mmio_alias = g_new0(MemoryRegion, 1);
|
|
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
|
|
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
|
|
mmio_reg, base_mmio, size_mmio);
|
|
memory_region_add_subregion(get_system_memory(), base_mmio, mmio_alias);
|
|
|
|
/* Map IO port space */
|
|
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, base_pio);
|
|
|
|
for (i = 0; i < GPEX_NUM_IRQS; i++) {
|
|
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, pic[irq + i]);
|
|
}
|
|
|
|
nodename = g_strdup_printf("/pcie@%" PRIx64, base);
|
|
qemu_fdt_add_subnode(vbi->fdt, nodename);
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename,
|
|
"compatible", "pci-host-ecam-generic");
|
|
qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "pci");
|
|
qemu_fdt_setprop_cell(vbi->fdt, nodename, "#address-cells", 3);
|
|
qemu_fdt_setprop_cell(vbi->fdt, nodename, "#size-cells", 2);
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "bus-range", 0,
|
|
nr_pcie_buses - 1);
|
|
|
|
qemu_fdt_setprop_cells(vbi->fdt, nodename, "msi-parent", vbi->v2m_phandle);
|
|
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
|
|
2, base_ecam, 2, size_ecam);
|
|
qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "ranges",
|
|
1, FDT_PCI_RANGE_IOPORT, 2, 0,
|
|
2, base_pio, 2, size_pio,
|
|
1, FDT_PCI_RANGE_MMIO, 2, base_mmio,
|
|
2, base_mmio, 2, size_mmio);
|
|
|
|
qemu_fdt_setprop_cell(vbi->fdt, nodename, "#interrupt-cells", 1);
|
|
create_pcie_irq_map(vbi, vbi->gic_phandle, irq, nodename);
|
|
|
|
g_free(nodename);
|
|
}
|
|
|
|
static void create_platform_bus(VirtBoardInfo *vbi, qemu_irq *pic)
|
|
{
|
|
DeviceState *dev;
|
|
SysBusDevice *s;
|
|
int i;
|
|
ARMPlatformBusFDTParams *fdt_params = g_new(ARMPlatformBusFDTParams, 1);
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
|
|
platform_bus_params.platform_bus_base = vbi->memmap[VIRT_PLATFORM_BUS].base;
|
|
platform_bus_params.platform_bus_size = vbi->memmap[VIRT_PLATFORM_BUS].size;
|
|
platform_bus_params.platform_bus_first_irq = vbi->irqmap[VIRT_PLATFORM_BUS];
|
|
platform_bus_params.platform_bus_num_irqs = PLATFORM_BUS_NUM_IRQS;
|
|
|
|
fdt_params->system_params = &platform_bus_params;
|
|
fdt_params->binfo = &vbi->bootinfo;
|
|
fdt_params->intc = "/intc";
|
|
/*
|
|
* register a machine init done notifier that creates the device tree
|
|
* nodes of the platform bus and its children dynamic sysbus devices
|
|
*/
|
|
arm_register_platform_bus_fdt_creator(fdt_params);
|
|
|
|
dev = qdev_create(NULL, TYPE_PLATFORM_BUS_DEVICE);
|
|
dev->id = TYPE_PLATFORM_BUS_DEVICE;
|
|
qdev_prop_set_uint32(dev, "num_irqs",
|
|
platform_bus_params.platform_bus_num_irqs);
|
|
qdev_prop_set_uint32(dev, "mmio_size",
|
|
platform_bus_params.platform_bus_size);
|
|
qdev_init_nofail(dev);
|
|
s = SYS_BUS_DEVICE(dev);
|
|
|
|
for (i = 0; i < platform_bus_params.platform_bus_num_irqs; i++) {
|
|
int irqn = platform_bus_params.platform_bus_first_irq + i;
|
|
sysbus_connect_irq(s, i, pic[irqn]);
|
|
}
|
|
|
|
memory_region_add_subregion(sysmem,
|
|
platform_bus_params.platform_bus_base,
|
|
sysbus_mmio_get_region(s, 0));
|
|
}
|
|
|
|
static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
|
|
{
|
|
const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
|
|
|
|
*fdt_size = board->fdt_size;
|
|
return board->fdt;
|
|
}
|
|
|
|
static
|
|
void virt_guest_info_machine_done(Notifier *notifier, void *data)
|
|
{
|
|
VirtGuestInfoState *guest_info_state = container_of(notifier,
|
|
VirtGuestInfoState, machine_done);
|
|
virt_acpi_setup(&guest_info_state->info);
|
|
}
|
|
|
|
static void machvirt_init(MachineState *machine)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(machine);
|
|
qemu_irq pic[NUM_IRQS];
|
|
MemoryRegion *sysmem = get_system_memory();
|
|
int n;
|
|
MemoryRegion *ram = g_new(MemoryRegion, 1);
|
|
const char *cpu_model = machine->cpu_model;
|
|
VirtBoardInfo *vbi;
|
|
VirtGuestInfoState *guest_info_state = g_malloc0(sizeof *guest_info_state);
|
|
VirtGuestInfo *guest_info = &guest_info_state->info;
|
|
char **cpustr;
|
|
|
|
if (!cpu_model) {
|
|
cpu_model = "cortex-a15";
|
|
}
|
|
|
|
/* Separate the actual CPU model name from any appended features */
|
|
cpustr = g_strsplit(cpu_model, ",", 2);
|
|
|
|
vbi = find_machine_info(cpustr[0]);
|
|
|
|
if (!vbi) {
|
|
error_report("mach-virt: CPU %s not supported", cpustr[0]);
|
|
exit(1);
|
|
}
|
|
|
|
vbi->smp_cpus = smp_cpus;
|
|
|
|
if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
|
|
error_report("mach-virt: cannot model more than 30GB RAM");
|
|
exit(1);
|
|
}
|
|
|
|
create_fdt(vbi);
|
|
|
|
for (n = 0; n < smp_cpus; n++) {
|
|
ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpustr[0]);
|
|
CPUClass *cc = CPU_CLASS(oc);
|
|
Object *cpuobj;
|
|
Error *err = NULL;
|
|
char *cpuopts = g_strdup(cpustr[1]);
|
|
|
|
if (!oc) {
|
|
fprintf(stderr, "Unable to find CPU definition\n");
|
|
exit(1);
|
|
}
|
|
cpuobj = object_new(object_class_get_name(oc));
|
|
|
|
/* Handle any CPU options specified by the user */
|
|
cc->parse_features(CPU(cpuobj), cpuopts, &err);
|
|
g_free(cpuopts);
|
|
if (err) {
|
|
error_report_err(err);
|
|
exit(1);
|
|
}
|
|
|
|
if (!vms->secure) {
|
|
object_property_set_bool(cpuobj, false, "has_el3", NULL);
|
|
}
|
|
|
|
object_property_set_int(cpuobj, QEMU_PSCI_CONDUIT_HVC, "psci-conduit",
|
|
NULL);
|
|
|
|
/* Secondary CPUs start in PSCI powered-down state */
|
|
if (n > 0) {
|
|
object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
|
|
}
|
|
|
|
if (object_property_find(cpuobj, "reset-cbar", NULL)) {
|
|
object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
|
|
"reset-cbar", &error_abort);
|
|
}
|
|
|
|
object_property_set_bool(cpuobj, true, "realized", NULL);
|
|
}
|
|
g_strfreev(cpustr);
|
|
fdt_add_timer_nodes(vbi);
|
|
fdt_add_cpu_nodes(vbi);
|
|
fdt_add_psci_node(vbi);
|
|
|
|
memory_region_allocate_system_memory(ram, NULL, "mach-virt.ram",
|
|
machine->ram_size);
|
|
memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
|
|
|
|
create_flash(vbi);
|
|
|
|
create_gic(vbi, pic);
|
|
|
|
create_uart(vbi, pic);
|
|
|
|
create_rtc(vbi, pic);
|
|
|
|
create_pcie(vbi, pic);
|
|
|
|
/* Create mmio transports, so the user can create virtio backends
|
|
* (which will be automatically plugged in to the transports). If
|
|
* no backend is created the transport will just sit harmlessly idle.
|
|
*/
|
|
create_virtio_devices(vbi, pic);
|
|
|
|
create_fw_cfg(vbi);
|
|
rom_set_fw(fw_cfg_find());
|
|
|
|
guest_info->smp_cpus = smp_cpus;
|
|
guest_info->fw_cfg = fw_cfg_find();
|
|
guest_info->memmap = vbi->memmap;
|
|
guest_info->irqmap = vbi->irqmap;
|
|
guest_info_state->machine_done.notify = virt_guest_info_machine_done;
|
|
qemu_add_machine_init_done_notifier(&guest_info_state->machine_done);
|
|
|
|
vbi->bootinfo.ram_size = machine->ram_size;
|
|
vbi->bootinfo.kernel_filename = machine->kernel_filename;
|
|
vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
|
|
vbi->bootinfo.initrd_filename = machine->initrd_filename;
|
|
vbi->bootinfo.nb_cpus = smp_cpus;
|
|
vbi->bootinfo.board_id = -1;
|
|
vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
|
|
vbi->bootinfo.get_dtb = machvirt_dtb;
|
|
vbi->bootinfo.firmware_loaded = bios_name || drive_get(IF_PFLASH, 0, 0);
|
|
arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
|
|
|
|
/*
|
|
* arm_load_kernel machine init done notifier registration must
|
|
* happen before the platform_bus_create call. In this latter,
|
|
* another notifier is registered which adds platform bus nodes.
|
|
* Notifiers are executed in registration reverse order.
|
|
*/
|
|
create_platform_bus(vbi, pic);
|
|
}
|
|
|
|
static bool virt_get_secure(Object *obj, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
return vms->secure;
|
|
}
|
|
|
|
static void virt_set_secure(Object *obj, bool value, Error **errp)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
vms->secure = value;
|
|
}
|
|
|
|
static void virt_instance_init(Object *obj)
|
|
{
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
|
|
/* EL3 is enabled by default on virt */
|
|
vms->secure = true;
|
|
object_property_add_bool(obj, "secure", virt_get_secure,
|
|
virt_set_secure, NULL);
|
|
object_property_set_description(obj, "secure",
|
|
"Set on/off to enable/disable the ARM "
|
|
"Security Extensions (TrustZone)",
|
|
NULL);
|
|
}
|
|
|
|
static void virt_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
|
|
mc->name = TYPE_VIRT_MACHINE;
|
|
mc->desc = "ARM Virtual Machine",
|
|
mc->init = machvirt_init;
|
|
mc->max_cpus = 8;
|
|
mc->has_dynamic_sysbus = true;
|
|
}
|
|
|
|
static const TypeInfo machvirt_info = {
|
|
.name = TYPE_VIRT_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.instance_size = sizeof(VirtMachineState),
|
|
.instance_init = virt_instance_init,
|
|
.class_size = sizeof(VirtMachineClass),
|
|
.class_init = virt_class_init,
|
|
};
|
|
|
|
static void machvirt_machine_init(void)
|
|
{
|
|
type_register_static(&machvirt_info);
|
|
}
|
|
|
|
machine_init(machvirt_machine_init);
|