d2623129a7
The only way object_property_add() can fail is when a property with the same name already exists. Since our property names are all hardcoded, failure is a programming error, and the appropriate way to handle it is passing &error_abort. Same for its variants, except for object_property_add_child(), which additionally fails when the child already has a parent. Parentage is also under program control, so this is a programming error, too. We have a bit over 500 callers. Almost half of them pass &error_abort, slightly fewer ignore errors, one test case handles errors, and the remaining few callers pass them to their own callers. The previous few commits demonstrated once again that ignoring programming errors is a bad idea. Of the few ones that pass on errors, several violate the Error API. The Error ** argument must be NULL, &error_abort, &error_fatal, or a pointer to a variable containing NULL. Passing an argument of the latter kind twice without clearing it in between is wrong: if the first call sets an error, it no longer points to NULL for the second call. ich9_pm_add_properties(), sparc32_ledma_realize(), sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize() are wrong that way. When the one appropriate choice of argument is &error_abort, letting users pick the argument is a bad idea. Drop parameter @errp and assert the preconditions instead. There's one exception to "duplicate property name is a programming error": the way object_property_add() implements the magic (and undocumented) "automatic arrayification". Don't drop @errp there. Instead, rename object_property_add() to object_property_try_add(), and add the obvious wrapper object_property_add(). Signed-off-by: Markus Armbruster <armbru@redhat.com> Reviewed-by: Eric Blake <eblake@redhat.com> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Message-Id: <20200505152926.18877-15-armbru@redhat.com> [Two semantic rebase conflicts resolved]
353 lines
12 KiB
C
353 lines
12 KiB
C
/*
|
|
* Raspberry Pi emulation (c) 2012 Gregory Estrade
|
|
* Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
|
|
*
|
|
* Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
|
|
* Written by Andrew Baumann
|
|
*
|
|
* Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
|
|
* Upstream code cleanup (c) 2018 Pekka Enberg
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/cutils.h"
|
|
#include "qapi/error.h"
|
|
#include "cpu.h"
|
|
#include "hw/arm/bcm2836.h"
|
|
#include "hw/registerfields.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/loader.h"
|
|
#include "hw/arm/boot.h"
|
|
#include "sysemu/sysemu.h"
|
|
|
|
#define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */
|
|
#define MVBAR_ADDR 0x400 /* secure vectors */
|
|
#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
|
|
#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
|
|
#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
|
|
#define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */
|
|
|
|
/* Registered machine type (matches RPi Foundation bootloader and U-Boot) */
|
|
#define MACH_TYPE_BCM2708 3138
|
|
|
|
typedef struct RaspiMachineState {
|
|
/*< private >*/
|
|
MachineState parent_obj;
|
|
/*< public >*/
|
|
BCM283XState soc;
|
|
} RaspiMachineState;
|
|
|
|
typedef struct RaspiMachineClass {
|
|
/*< private >*/
|
|
MachineClass parent_obj;
|
|
/*< public >*/
|
|
uint32_t board_rev;
|
|
} RaspiMachineClass;
|
|
|
|
#define TYPE_RASPI_MACHINE MACHINE_TYPE_NAME("raspi-common")
|
|
#define RASPI_MACHINE(obj) \
|
|
OBJECT_CHECK(RaspiMachineState, (obj), TYPE_RASPI_MACHINE)
|
|
|
|
#define RASPI_MACHINE_CLASS(klass) \
|
|
OBJECT_CLASS_CHECK(RaspiMachineClass, (klass), TYPE_RASPI_MACHINE)
|
|
#define RASPI_MACHINE_GET_CLASS(obj) \
|
|
OBJECT_GET_CLASS(RaspiMachineClass, (obj), TYPE_RASPI_MACHINE)
|
|
|
|
/*
|
|
* Board revision codes:
|
|
* www.raspberrypi.org/documentation/hardware/raspberrypi/revision-codes/
|
|
*/
|
|
FIELD(REV_CODE, REVISION, 0, 4);
|
|
FIELD(REV_CODE, TYPE, 4, 8);
|
|
FIELD(REV_CODE, PROCESSOR, 12, 4);
|
|
FIELD(REV_CODE, MANUFACTURER, 16, 4);
|
|
FIELD(REV_CODE, MEMORY_SIZE, 20, 3);
|
|
FIELD(REV_CODE, STYLE, 23, 1);
|
|
|
|
static uint64_t board_ram_size(uint32_t board_rev)
|
|
{
|
|
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
|
|
return 256 * MiB << FIELD_EX32(board_rev, REV_CODE, MEMORY_SIZE);
|
|
}
|
|
|
|
static int board_processor_id(uint32_t board_rev)
|
|
{
|
|
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
|
|
return FIELD_EX32(board_rev, REV_CODE, PROCESSOR);
|
|
}
|
|
|
|
static int board_version(uint32_t board_rev)
|
|
{
|
|
return board_processor_id(board_rev) + 1;
|
|
}
|
|
|
|
static const char *board_soc_type(uint32_t board_rev)
|
|
{
|
|
static const char *soc_types[] = {
|
|
NULL, TYPE_BCM2836, TYPE_BCM2837,
|
|
};
|
|
int proc_id = board_processor_id(board_rev);
|
|
|
|
if (proc_id >= ARRAY_SIZE(soc_types) || !soc_types[proc_id]) {
|
|
error_report("Unsupported processor id '%d' (board revision: 0x%x)",
|
|
proc_id, board_rev);
|
|
exit(1);
|
|
}
|
|
return soc_types[proc_id];
|
|
}
|
|
|
|
static int cores_count(uint32_t board_rev)
|
|
{
|
|
static const int soc_cores_count[] = {
|
|
0, BCM283X_NCPUS, BCM283X_NCPUS,
|
|
};
|
|
int proc_id = board_processor_id(board_rev);
|
|
|
|
if (proc_id >= ARRAY_SIZE(soc_cores_count) || !soc_cores_count[proc_id]) {
|
|
error_report("Unsupported processor id '%d' (board revision: 0x%x)",
|
|
proc_id, board_rev);
|
|
exit(1);
|
|
}
|
|
return soc_cores_count[proc_id];
|
|
}
|
|
|
|
static const char *board_type(uint32_t board_rev)
|
|
{
|
|
static const char *types[] = {
|
|
"A", "B", "A+", "B+", "2B", "Alpha", "CM1", NULL, "3B", "Zero",
|
|
"CM3", NULL, "Zero W", "3B+", "3A+", NULL, "CM3+", "4B",
|
|
};
|
|
assert(FIELD_EX32(board_rev, REV_CODE, STYLE)); /* Only new style */
|
|
int bt = FIELD_EX32(board_rev, REV_CODE, TYPE);
|
|
if (bt >= ARRAY_SIZE(types) || !types[bt]) {
|
|
return "Unknown";
|
|
}
|
|
return types[bt];
|
|
}
|
|
|
|
static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
|
|
{
|
|
static const uint32_t smpboot[] = {
|
|
0xe1a0e00f, /* mov lr, pc */
|
|
0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
|
|
0xee100fb0, /* mrc p15, 0, r0, c0, c0, 5;get core ID */
|
|
0xe7e10050, /* ubfx r0, r0, #0, #2 ;extract LSB */
|
|
0xe59f5014, /* ldr r5, =0x400000CC ;load mbox base */
|
|
0xe320f001, /* 1: yield */
|
|
0xe7953200, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core*/
|
|
0xe3530000, /* cmp r3, #0 ;spin while zero */
|
|
0x0afffffb, /* beq 1b */
|
|
0xe7853200, /* str r3, [r5, r0, lsl #4] ;clear mbox */
|
|
0xe12fff13, /* bx r3 ;jump to target */
|
|
0x400000cc, /* (constant: mailbox 3 read/clear base) */
|
|
};
|
|
|
|
/* check that we don't overrun board setup vectors */
|
|
QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
|
|
/* check that board setup address is correctly relocated */
|
|
QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
|
|
|| (BOARDSETUP_ADDR >> 4) >= 0x100);
|
|
|
|
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
|
|
info->smp_loader_start,
|
|
arm_boot_address_space(cpu, info));
|
|
}
|
|
|
|
static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
|
|
{
|
|
AddressSpace *as = arm_boot_address_space(cpu, info);
|
|
/* Unlike the AArch32 version we don't need to call the board setup hook.
|
|
* The mechanism for doing the spin-table is also entirely different.
|
|
* We must have four 64-bit fields at absolute addresses
|
|
* 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
|
|
* our CPUs, and which we must ensure are zero initialized before
|
|
* the primary CPU goes into the kernel. We put these variables inside
|
|
* a rom blob, so that the reset for ROM contents zeroes them for us.
|
|
*/
|
|
static const uint32_t smpboot[] = {
|
|
0xd2801b05, /* mov x5, 0xd8 */
|
|
0xd53800a6, /* mrs x6, mpidr_el1 */
|
|
0x924004c6, /* and x6, x6, #0x3 */
|
|
0xd503205f, /* spin: wfe */
|
|
0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */
|
|
0xb4ffffc4, /* cbz x4, spin */
|
|
0xd2800000, /* mov x0, #0x0 */
|
|
0xd2800001, /* mov x1, #0x0 */
|
|
0xd2800002, /* mov x2, #0x0 */
|
|
0xd2800003, /* mov x3, #0x0 */
|
|
0xd61f0080, /* br x4 */
|
|
};
|
|
|
|
static const uint64_t spintables[] = {
|
|
0, 0, 0, 0
|
|
};
|
|
|
|
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
|
|
info->smp_loader_start, as);
|
|
rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
|
|
SPINTABLE_ADDR, as);
|
|
}
|
|
|
|
static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
|
|
{
|
|
arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
|
|
}
|
|
|
|
static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
|
|
{
|
|
CPUState *cs = CPU(cpu);
|
|
cpu_set_pc(cs, info->smp_loader_start);
|
|
}
|
|
|
|
static void setup_boot(MachineState *machine, int version, size_t ram_size)
|
|
{
|
|
static struct arm_boot_info binfo;
|
|
int r;
|
|
|
|
binfo.board_id = MACH_TYPE_BCM2708;
|
|
binfo.ram_size = ram_size;
|
|
binfo.nb_cpus = machine->smp.cpus;
|
|
|
|
if (version <= 2) {
|
|
/* The rpi1 and 2 require some custom setup code to run in Secure
|
|
* mode before booting a kernel (to set up the SMC vectors so
|
|
* that we get a no-op SMC; this is used by Linux to call the
|
|
* firmware for some cache maintenance operations.
|
|
* The rpi3 doesn't need this.
|
|
*/
|
|
binfo.board_setup_addr = BOARDSETUP_ADDR;
|
|
binfo.write_board_setup = write_board_setup;
|
|
binfo.secure_board_setup = true;
|
|
binfo.secure_boot = true;
|
|
}
|
|
|
|
/* Pi2 and Pi3 requires SMP setup */
|
|
if (version >= 2) {
|
|
binfo.smp_loader_start = SMPBOOT_ADDR;
|
|
if (version == 2) {
|
|
binfo.write_secondary_boot = write_smpboot;
|
|
} else {
|
|
binfo.write_secondary_boot = write_smpboot64;
|
|
}
|
|
binfo.secondary_cpu_reset_hook = reset_secondary;
|
|
}
|
|
|
|
/* If the user specified a "firmware" image (e.g. UEFI), we bypass
|
|
* the normal Linux boot process
|
|
*/
|
|
if (machine->firmware) {
|
|
hwaddr firmware_addr = version == 3 ? FIRMWARE_ADDR_3 : FIRMWARE_ADDR_2;
|
|
/* load the firmware image (typically kernel.img) */
|
|
r = load_image_targphys(machine->firmware, firmware_addr,
|
|
ram_size - firmware_addr);
|
|
if (r < 0) {
|
|
error_report("Failed to load firmware from %s", machine->firmware);
|
|
exit(1);
|
|
}
|
|
|
|
binfo.entry = firmware_addr;
|
|
binfo.firmware_loaded = true;
|
|
}
|
|
|
|
arm_load_kernel(ARM_CPU(first_cpu), machine, &binfo);
|
|
}
|
|
|
|
static void raspi_machine_init(MachineState *machine)
|
|
{
|
|
RaspiMachineClass *mc = RASPI_MACHINE_GET_CLASS(machine);
|
|
RaspiMachineState *s = RASPI_MACHINE(machine);
|
|
uint32_t board_rev = mc->board_rev;
|
|
int version = board_version(board_rev);
|
|
uint64_t ram_size = board_ram_size(board_rev);
|
|
uint32_t vcram_size;
|
|
DriveInfo *di;
|
|
BlockBackend *blk;
|
|
BusState *bus;
|
|
DeviceState *carddev;
|
|
|
|
if (machine->ram_size != ram_size) {
|
|
char *size_str = size_to_str(ram_size);
|
|
error_report("Invalid RAM size, should be %s", size_str);
|
|
g_free(size_str);
|
|
exit(1);
|
|
}
|
|
|
|
/* FIXME: Remove when we have custom CPU address space support */
|
|
memory_region_add_subregion_overlap(get_system_memory(), 0,
|
|
machine->ram, 0);
|
|
|
|
/* Setup the SOC */
|
|
object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
|
|
board_soc_type(board_rev), &error_abort, NULL);
|
|
object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(machine->ram));
|
|
object_property_set_int(OBJECT(&s->soc), board_rev, "board-rev",
|
|
&error_abort);
|
|
object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_abort);
|
|
|
|
/* Create and plug in the SD cards */
|
|
di = drive_get_next(IF_SD);
|
|
blk = di ? blk_by_legacy_dinfo(di) : NULL;
|
|
bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
|
|
if (bus == NULL) {
|
|
error_report("No SD bus found in SOC object");
|
|
exit(1);
|
|
}
|
|
carddev = qdev_create(bus, TYPE_SD_CARD);
|
|
qdev_prop_set_drive(carddev, "drive", blk, &error_fatal);
|
|
object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal);
|
|
|
|
vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
|
|
&error_abort);
|
|
setup_boot(machine, version, machine->ram_size - vcram_size);
|
|
}
|
|
|
|
static void raspi_machine_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
MachineClass *mc = MACHINE_CLASS(oc);
|
|
RaspiMachineClass *rmc = RASPI_MACHINE_CLASS(oc);
|
|
uint32_t board_rev = (uint32_t)(uintptr_t)data;
|
|
|
|
rmc->board_rev = board_rev;
|
|
mc->desc = g_strdup_printf("Raspberry Pi %s", board_type(board_rev));
|
|
mc->init = raspi_machine_init;
|
|
mc->block_default_type = IF_SD;
|
|
mc->no_parallel = 1;
|
|
mc->no_floppy = 1;
|
|
mc->no_cdrom = 1;
|
|
mc->default_cpus = mc->min_cpus = mc->max_cpus = cores_count(board_rev);
|
|
mc->default_ram_size = board_ram_size(board_rev);
|
|
mc->default_ram_id = "ram";
|
|
if (board_version(board_rev) == 2) {
|
|
mc->ignore_memory_transaction_failures = true;
|
|
}
|
|
};
|
|
|
|
static const TypeInfo raspi_machine_types[] = {
|
|
{
|
|
.name = MACHINE_TYPE_NAME("raspi2"),
|
|
.parent = TYPE_RASPI_MACHINE,
|
|
.class_init = raspi_machine_class_init,
|
|
.class_data = (void *)0xa21041,
|
|
#ifdef TARGET_AARCH64
|
|
}, {
|
|
.name = MACHINE_TYPE_NAME("raspi3"),
|
|
.parent = TYPE_RASPI_MACHINE,
|
|
.class_init = raspi_machine_class_init,
|
|
.class_data = (void *)0xa02082,
|
|
#endif
|
|
}, {
|
|
.name = TYPE_RASPI_MACHINE,
|
|
.parent = TYPE_MACHINE,
|
|
.instance_size = sizeof(RaspiMachineState),
|
|
.class_size = sizeof(RaspiMachineClass),
|
|
.abstract = true,
|
|
}
|
|
};
|
|
|
|
DEFINE_TYPES(raspi_machine_types)
|