qemu-e2k/target-cris/op.c

1288 lines
21 KiB
C

/*
* CRIS emulation micro-operations for qemu.
*
* Copyright (c) 2007 Edgar E. Iglesias, Axis Communications AB.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#include "host-utils.h"
#define REGNAME r0
#define REG (env->regs[0])
#include "op_template.h"
#define REGNAME r1
#define REG (env->regs[1])
#include "op_template.h"
#define REGNAME r2
#define REG (env->regs[2])
#include "op_template.h"
#define REGNAME r3
#define REG (env->regs[3])
#include "op_template.h"
#define REGNAME r4
#define REG (env->regs[4])
#include "op_template.h"
#define REGNAME r5
#define REG (env->regs[5])
#include "op_template.h"
#define REGNAME r6
#define REG (env->regs[6])
#include "op_template.h"
#define REGNAME r7
#define REG (env->regs[7])
#include "op_template.h"
#define REGNAME r8
#define REG (env->regs[8])
#include "op_template.h"
#define REGNAME r9
#define REG (env->regs[9])
#include "op_template.h"
#define REGNAME r10
#define REG (env->regs[10])
#include "op_template.h"
#define REGNAME r11
#define REG (env->regs[11])
#include "op_template.h"
#define REGNAME r12
#define REG (env->regs[12])
#include "op_template.h"
#define REGNAME r13
#define REG (env->regs[13])
#include "op_template.h"
#define REGNAME r14
#define REG (env->regs[14])
#include "op_template.h"
#define REGNAME r15
#define REG (env->regs[15])
#include "op_template.h"
#define REGNAME p0
#define REG (env->pregs[0])
#include "op_template.h"
#define REGNAME p1
#define REG (env->pregs[1])
#include "op_template.h"
#define REGNAME p2
#define REG (env->pregs[2])
#include "op_template.h"
#define REGNAME p3
#define REG (env->pregs[3])
#include "op_template.h"
#define REGNAME p4
#define REG (env->pregs[4])
#include "op_template.h"
#define REGNAME p5
#define REG (env->pregs[5])
#include "op_template.h"
#define REGNAME p6
#define REG (env->pregs[6])
#include "op_template.h"
#define REGNAME p7
#define REG (env->pregs[7])
#include "op_template.h"
#define REGNAME p8
#define REG (env->pregs[8])
#include "op_template.h"
#define REGNAME p9
#define REG (env->pregs[9])
#include "op_template.h"
#define REGNAME p10
#define REG (env->pregs[10])
#include "op_template.h"
#define REGNAME p11
#define REG (env->pregs[11])
#include "op_template.h"
#define REGNAME p12
#define REG (env->pregs[12])
#include "op_template.h"
#define REGNAME p13
#define REG (env->pregs[13])
#include "op_template.h"
#define REGNAME p14
#define REG (env->pregs[14])
#include "op_template.h"
#define REGNAME p15
#define REG (env->pregs[15])
#include "op_template.h"
/* Microcode. */
void OPPROTO op_exit_tb (void)
{
EXIT_TB();
}
void OPPROTO op_goto_tb0 (void)
{
GOTO_TB(op_goto_tb0, PARAM1, 0);
RETURN();
}
void OPPROTO op_goto_tb1 (void)
{
GOTO_TB(op_goto_tb1, PARAM1, 1);
RETURN();
}
void OPPROTO op_break_im(void)
{
env->trapnr = PARAM1;
env->exception_index = EXCP_BREAK;
cpu_loop_exit();
}
void OPPROTO op_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void OPPROTO op_exec_insn(void)
{
env->stats.exec_insns++;
RETURN();
}
void OPPROTO op_exec_load(void)
{
env->stats.exec_loads++;
RETURN();
}
void OPPROTO op_exec_store(void)
{
env->stats.exec_stores++;
RETURN();
}
void OPPROTO op_ccs_lshift (void)
{
uint32_t ccs;
/* Apply the ccs shift. */
ccs = env->pregs[SR_CCS];
ccs = (ccs & 0xc0000000) | ((ccs << 12) >> 2);
env->pregs[SR_CCS] = ccs;
}
void OPPROTO op_ccs_rshift (void)
{
uint32_t ccs;
/* Apply the ccs shift. */
ccs = env->pregs[SR_CCS];
ccs = (ccs & 0xc0000000) | (ccs >> 10);
env->pregs[SR_CCS] = ccs;
}
void OPPROTO op_setf (void)
{
env->pregs[SR_CCS] |= PARAM1;
RETURN();
}
void OPPROTO op_clrf (void)
{
env->pregs[SR_CCS] &= ~PARAM1;
RETURN();
}
void OPPROTO op_movl_debug1_T0 (void)
{
env->debug1 = T0;
RETURN();
}
void OPPROTO op_movl_debug2_T0 (void)
{
env->debug2 = T0;
RETURN();
}
void OPPROTO op_movl_debug3_T0 (void)
{
env->debug3 = T0;
RETURN();
}
void OPPROTO op_movl_debug1_T1 (void)
{
env->debug1 = T1;
RETURN();
}
void OPPROTO op_movl_debug2_T1 (void)
{
env->debug2 = T1;
RETURN();
}
void OPPROTO op_movl_debug3_T1 (void)
{
env->debug3 = T1;
RETURN();
}
void OPPROTO op_movl_debug3_im (void)
{
env->debug3 = PARAM1;
RETURN();
}
void OPPROTO op_movl_T0_flags (void)
{
T0 = env->pregs[SR_CCS];
RETURN();
}
void OPPROTO op_movl_flags_T0 (void)
{
env->pregs[SR_CCS] = T0;
RETURN();
}
void OPPROTO op_movl_sreg_T0 (void)
{
env->sregs[env->pregs[SR_SRS]][PARAM1] = T0;
RETURN();
}
void OPPROTO op_movl_tlb_lo_T0 (void)
{
int srs;
srs = env->pregs[SR_SRS];
if (srs == 1 || srs == 2)
{
int set;
int idx;
uint32_t lo, hi;
idx = set = env->sregs[SFR_RW_MM_TLB_SEL];
set >>= 4;
set &= 3;
idx &= 31;
/* We've just made a write to tlb_lo. */
lo = env->sregs[SFR_RW_MM_TLB_LO];
hi = env->sregs[SFR_RW_MM_TLB_HI];
env->tlbsets[srs - 1][set][idx].lo = lo;
env->tlbsets[srs - 1][set][idx].hi = hi;
}
RETURN();
}
void OPPROTO op_movl_T0_sreg (void)
{
T0 = env->sregs[env->pregs[SR_SRS]][PARAM1];
RETURN();
}
void OPPROTO op_update_cc (void)
{
env->cc_op = PARAM1;
env->cc_dest = PARAM2;
env->cc_src = PARAM3;
RETURN();
}
void OPPROTO op_update_cc_op (void)
{
env->cc_op = PARAM1;
RETURN();
}
void OPPROTO op_update_cc_mask (void)
{
env->cc_mask = PARAM1;
RETURN();
}
void OPPROTO op_update_cc_dest_T0 (void)
{
env->cc_dest = T0;
RETURN();
}
void OPPROTO op_update_cc_result_T0 (void)
{
env->cc_result = T0;
RETURN();
}
void OPPROTO op_update_cc_size_im (void)
{
env->cc_size = PARAM1;
RETURN();
}
void OPPROTO op_update_cc_src_T1 (void)
{
env->cc_src = T1;
RETURN();
}
void OPPROTO op_update_cc_x (void)
{
env->cc_x_live = PARAM1;
env->cc_x = PARAM2;
RETURN();
}
/* FIXME: is this allowed? */
extern inline void evaluate_flags_writeback(uint32_t flags)
{
int x;
/* Extended arithmetics, leave the z flag alone. */
env->debug3 = env->pregs[SR_CCS];
if (env->cc_x_live)
x = env->cc_x;
else
x = env->pregs[SR_CCS] & X_FLAG;
if ((x || env->cc_op == CC_OP_ADDC)
&& flags & Z_FLAG)
env->cc_mask &= ~Z_FLAG;
/* all insn clear the x-flag except setf or clrf. */
env->pregs[SR_CCS] &= ~(env->cc_mask | X_FLAG);
flags &= env->cc_mask;
env->pregs[SR_CCS] |= flags;
RETURN();
}
void OPPROTO op_evaluate_flags_muls(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
/* were gonna have to redo the muls. */
int64_t tmp, t0 ,t1;
int32_t mof;
int dneg;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
/* cast into signed values to make GCC sign extend. */
t0 = (int32_t)src;
t1 = (int32_t)dst;
dneg = ((int32_t)res) < 0;
tmp = t0 * t1;
mof = tmp >> 32;
if (tmp == 0)
flags |= Z_FLAG;
else if (tmp < 0)
flags |= N_FLAG;
if ((dneg && mof != -1)
|| (!dneg && mof != 0))
flags |= V_FLAG;
evaluate_flags_writeback(flags);
RETURN();
}
void OPPROTO op_evaluate_flags_mulu(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
/* were gonna have to redo the muls. */
uint64_t tmp, t0 ,t1;
uint32_t mof;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
/* cast into signed values to make GCC sign extend. */
t0 = src;
t1 = dst;
tmp = t0 * t1;
mof = tmp >> 32;
if (tmp == 0)
flags |= Z_FLAG;
else if (tmp >> 63)
flags |= N_FLAG;
if (mof)
flags |= V_FLAG;
evaluate_flags_writeback(flags);
RETURN();
}
void OPPROTO op_evaluate_flags_mcp(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
if ((res & 0x80000000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L)
&& ((dst & 0x80000000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L))
{
flags |= R_FLAG;
}
}
else
{
if (res == 0L)
flags |= Z_FLAG;
if (((src & 0x80000000L) != 0L)
&& ((dst & 0x80000000L) != 0L))
flags |= V_FLAG;
if ((dst & 0x80000000L) != 0L
|| (src & 0x80000000L) != 0L)
flags |= R_FLAG;
}
evaluate_flags_writeback(flags);
RETURN();
}
void OPPROTO op_evaluate_flags_alu_4(void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
if ((res & 0x80000000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L)
&& ((dst & 0x80000000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if (res == 0L)
flags |= Z_FLAG;
if (((src & 0x80000000L) != 0L)
&& ((dst & 0x80000000L) != 0L))
flags |= V_FLAG;
if ((dst & 0x80000000L) != 0L
|| (src & 0x80000000L) != 0L)
flags |= C_FLAG;
}
if (env->cc_op == CC_OP_SUB
|| env->cc_op == CC_OP_CMP) {
flags ^= C_FLAG;
}
evaluate_flags_writeback(flags);
RETURN();
}
void OPPROTO op_evaluate_flags_move_4 (void)
{
uint32_t src;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
res = env->cc_result;
if ((int32_t)res < 0)
flags |= N_FLAG;
else if (res == 0L)
flags |= Z_FLAG;
evaluate_flags_writeback(flags);
RETURN();
}
void OPPROTO op_evaluate_flags_move_2 (void)
{
uint32_t src;
uint32_t flags = 0;
uint16_t res;
src = env->cc_src;
res = env->cc_result;
if ((int16_t)res < 0L)
flags |= N_FLAG;
else if (res == 0)
flags |= Z_FLAG;
evaluate_flags_writeback(flags);
RETURN();
}
/* TODO: This is expensive. We could split things up and only evaluate part of
CCR on a need to know basis. For now, we simply re-evaluate everything. */
void OPPROTO op_evaluate_flags (void)
{
uint32_t src;
uint32_t dst;
uint32_t res;
uint32_t flags = 0;
src = env->cc_src;
dst = env->cc_dest;
res = env->cc_result;
/* Now, evaluate the flags. This stuff is based on
Per Zander's CRISv10 simulator. */
switch (env->cc_size)
{
case 1:
if ((res & 0x80L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80L) == 0L)
&& ((dst & 0x80L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80L) != 0L)
&& ((dst & 0x80L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if ((res & 0xFFL) == 0L)
{
flags |= Z_FLAG;
}
if (((src & 0x80L) != 0L)
&& ((dst & 0x80L) != 0L))
{
flags |= V_FLAG;
}
if ((dst & 0x80L) != 0L
|| (src & 0x80L) != 0L)
{
flags |= C_FLAG;
}
}
break;
case 2:
if ((res & 0x8000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x8000L) == 0L)
&& ((dst & 0x8000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x8000L) != 0L)
&& ((dst & 0x8000L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if ((res & 0xFFFFL) == 0L)
{
flags |= Z_FLAG;
}
if (((src & 0x8000L) != 0L)
&& ((dst & 0x8000L) != 0L))
{
flags |= V_FLAG;
}
if ((dst & 0x8000L) != 0L
|| (src & 0x8000L) != 0L)
{
flags |= C_FLAG;
}
}
break;
case 4:
if ((res & 0x80000000L) != 0L)
{
flags |= N_FLAG;
if (((src & 0x80000000L) == 0L)
&& ((dst & 0x80000000L) == 0L))
{
flags |= V_FLAG;
}
else if (((src & 0x80000000L) != 0L) &&
((dst & 0x80000000L) != 0L))
{
flags |= C_FLAG;
}
}
else
{
if (res == 0L)
flags |= Z_FLAG;
if (((src & 0x80000000L) != 0L)
&& ((dst & 0x80000000L) != 0L))
flags |= V_FLAG;
if ((dst & 0x80000000L) != 0L
|| (src & 0x80000000L) != 0L)
flags |= C_FLAG;
}
break;
default:
break;
}
if (env->cc_op == CC_OP_SUB
|| env->cc_op == CC_OP_CMP) {
flags ^= C_FLAG;
}
evaluate_flags_writeback(flags);
RETURN();
}
void OPPROTO op_extb_T0_T0 (void)
{
T0 = ((int8_t)T0);
RETURN();
}
void OPPROTO op_extb_T1_T0 (void)
{
T1 = ((int8_t)T0);
RETURN();
}
void OPPROTO op_extb_T1_T1 (void)
{
T1 = ((int8_t)T1);
RETURN();
}
void OPPROTO op_zextb_T0_T0 (void)
{
T0 = ((uint8_t)T0);
RETURN();
}
void OPPROTO op_zextb_T1_T0 (void)
{
T1 = ((uint8_t)T0);
RETURN();
}
void OPPROTO op_zextb_T1_T1 (void)
{
T1 = ((uint8_t)T1);
RETURN();
}
void OPPROTO op_extw_T0_T0 (void)
{
T0 = ((int16_t)T0);
RETURN();
}
void OPPROTO op_extw_T1_T0 (void)
{
T1 = ((int16_t)T0);
RETURN();
}
void OPPROTO op_extw_T1_T1 (void)
{
T1 = ((int16_t)T1);
RETURN();
}
void OPPROTO op_zextw_T0_T0 (void)
{
T0 = ((uint16_t)T0);
RETURN();
}
void OPPROTO op_zextw_T1_T0 (void)
{
T1 = ((uint16_t)T0);
RETURN();
}
void OPPROTO op_zextw_T1_T1 (void)
{
T1 = ((uint16_t)T1);
RETURN();
}
void OPPROTO op_movl_T0_im (void)
{
T0 = PARAM1;
RETURN();
}
void OPPROTO op_movl_T1_im (void)
{
T1 = PARAM1;
RETURN();
}
void OPPROTO op_addl_T0_im (void)
{
T0 += PARAM1;
RETURN();
}
void OPPROTO op_addl_T1_im (void)
{
T1 += PARAM1;
RETURN();
}
void OPPROTO op_subl_T0_im (void)
{
T0 -= PARAM1;
RETURN();
}
void OPPROTO op_addxl_T0_C (void)
{
if (env->pregs[SR_CCS] & X_FLAG)
T0 += !!(env->pregs[SR_CCS] & C_FLAG);
RETURN();
}
void OPPROTO op_subxl_T0_C (void)
{
if (env->pregs[SR_CCS] & X_FLAG)
T0 -= !!(env->pregs[SR_CCS] & C_FLAG);
RETURN();
}
void OPPROTO op_addl_T0_C (void)
{
T0 += !!(env->pregs[SR_CCS] & C_FLAG);
RETURN();
}
void OPPROTO op_addl_T0_R (void)
{
T0 += !!(env->pregs[SR_CCS] & R_FLAG);
RETURN();
}
void OPPROTO op_clr_R (void)
{
env->pregs[SR_CCS] &= ~R_FLAG;
RETURN();
}
void OPPROTO op_andl_T0_im (void)
{
T0 &= PARAM1;
RETURN();
}
void OPPROTO op_andl_T1_im (void)
{
T1 &= PARAM1;
RETURN();
}
void OPPROTO op_movl_T0_T1 (void)
{
T0 = T1;
RETURN();
}
void OPPROTO op_swp_T0_T1 (void)
{
T0 ^= T1;
T1 ^= T0;
T0 ^= T1;
RETURN();
}
void OPPROTO op_movl_T1_T0 (void)
{
T1 = T0;
RETURN();
}
void OPPROTO op_movl_pc_T0 (void)
{
env->pc = T0;
RETURN();
}
void OPPROTO op_movl_T0_0 (void)
{
T0 = 0;
RETURN();
}
void OPPROTO op_addl_T0_T1 (void)
{
T0 += T1;
RETURN();
}
void OPPROTO op_subl_T0_T1 (void)
{
T0 -= T1;
RETURN();
}
void OPPROTO op_absl_T1_T1 (void)
{
int32_t st = T1;
T1 = st < 0 ? -st : st;
RETURN();
}
void OPPROTO op_muls_T0_T1 (void)
{
int64_t tmp, t0 ,t1;
/* cast into signed values to make GCC sign extend these babies. */
t0 = (int32_t)T0;
t1 = (int32_t)T1;
tmp = t0 * t1;
T0 = tmp & 0xffffffff;
env->pregs[REG_MOF] = tmp >> 32;
RETURN();
}
void OPPROTO op_mulu_T0_T1 (void)
{
uint64_t tmp, t0 ,t1;
t0 = T0;
t1 = T1;
tmp = t0 * t1;
T0 = tmp & 0xffffffff;
env->pregs[REG_MOF] = tmp >> 32;
RETURN();
}
void OPPROTO op_dstep_T0_T1 (void)
{
T0 <<= 1;
if (T0 >= T1)
T0 -= T1;
RETURN();
}
void OPPROTO op_orl_T0_T1 (void)
{
T0 |= T1;
RETURN();
}
void OPPROTO op_andl_T0_T1 (void)
{
T0 &= T1;
RETURN();
}
void OPPROTO op_xorl_T0_T1 (void)
{
T0 ^= T1;
RETURN();
}
void OPPROTO op_lsll_T0_T1 (void)
{
int s = T1;
if (s > 31)
T0 = 0;
else
T0 <<= s;
RETURN();
}
void OPPROTO op_lsll_T0_im (void)
{
T0 <<= PARAM1;
RETURN();
}
void OPPROTO op_lsrl_T0_T1 (void)
{
int s = T1;
if (s > 31)
T0 = 0;
else
T0 >>= s;
RETURN();
}
/* Rely on GCC emitting an arithmetic shift for signed right shifts. */
void OPPROTO op_asrl_T0_T1 (void)
{
int s = T1;
if (s > 31)
T0 = T0 & 0x80000000 ? -1 : 0;
else
T0 = (int32_t)T0 >> s;
RETURN();
}
void OPPROTO op_btst_T0_T1 (void)
{
/* FIXME: clean this up. */
/* des ref:
The N flag is set according to the selected bit in the dest reg.
The Z flag is set if the selected bit and all bits to the right are
zero.
The destination reg is not affected.*/
unsigned int fz, sbit, bset, mask, masked_t0;
sbit = T1 & 31;
bset = !!(T0 & (1 << sbit));
mask = sbit == 31 ? -1 : (1 << (sbit + 1)) - 1;
masked_t0 = T0 & mask;
fz = !(masked_t0 | bset);
/* Set the N and Z flags accordingly. */
T0 = (bset << 3) | (fz << 2);
RETURN();
}
void OPPROTO op_bound_T0_T1 (void)
{
if (T0 > T1)
T0 = T1;
RETURN();
}
void OPPROTO op_lz_T0_T1 (void)
{
T0 = clz32(T1);
RETURN();
}
void OPPROTO op_negl_T0_T1 (void)
{
T0 = -T1;
RETURN();
}
void OPPROTO op_negl_T1_T1 (void)
{
T1 = -T1;
RETURN();
}
void OPPROTO op_not_T0_T0 (void)
{
T0 = ~(T0);
RETURN();
}
void OPPROTO op_not_T1_T1 (void)
{
T1 = ~(T1);
RETURN();
}
void OPPROTO op_swapw_T0_T0 (void)
{
T0 = (T0 << 16) | ((T0 >> 16));
RETURN();
}
void OPPROTO op_swapb_T0_T0 (void)
{
T0 = ((T0 << 8) & 0xff00ff00) | ((T0 >> 8) & 0x00ff00ff);
RETURN();
}
void OPPROTO op_swapr_T0_T0 (void)
{
T0 = (((T0 << 7) & 0x80808080) |
((T0 << 5) & 0x40404040) |
((T0 << 3) & 0x20202020) |
((T0 << 1) & 0x10101010) |
((T0 >> 1) & 0x08080808) |
((T0 >> 3) & 0x04040404) |
((T0 >> 5) & 0x02020202) |
((T0 >> 7) & 0x01010101));
RETURN();
}
void OPPROTO op_tst_cc_eq (void) {
uint32_t flags = env->pregs[SR_CCS];
int z_set;
z_set = !!(flags & Z_FLAG);
T0 = z_set;
RETURN();
}
void OPPROTO op_tst_cc_eq_fast (void) {
T0 = !(env->cc_result);
RETURN();
}
void OPPROTO op_tst_cc_ne (void) {
uint32_t flags = env->pregs[SR_CCS];
int z_set;
z_set = !!(flags & Z_FLAG);
T0 = !z_set;
RETURN();
}
void OPPROTO op_tst_cc_ne_fast (void) {
T0 = !!(env->cc_result);
RETURN();
}
void OPPROTO op_tst_cc_cc (void) {
uint32_t flags = env->pregs[SR_CCS];
int c_set;
c_set = !!(flags & C_FLAG);
T0 = !c_set;
RETURN();
}
void OPPROTO op_tst_cc_cs (void) {
uint32_t flags = env->pregs[SR_CCS];
int c_set;
c_set = !!(flags & C_FLAG);
T0 = c_set;
RETURN();
}
void OPPROTO op_tst_cc_vc (void) {
uint32_t flags = env->pregs[SR_CCS];
int v_set;
v_set = !!(flags & V_FLAG);
T0 = !v_set;
RETURN();
}
void OPPROTO op_tst_cc_vs (void) {
uint32_t flags = env->pregs[SR_CCS];
int v_set;
v_set = !!(flags & V_FLAG);
T0 = v_set;
RETURN();
}
void OPPROTO op_tst_cc_pl (void) {
uint32_t flags = env->pregs[SR_CCS];
int n_set;
n_set = !!(flags & N_FLAG);
T0 = !n_set;
RETURN();
}
void OPPROTO op_tst_cc_pl_fast (void) {
T0 = ((int32_t)env->cc_result) >= 0;
RETURN();
}
void OPPROTO op_tst_cc_mi (void) {
uint32_t flags = env->pregs[SR_CCS];
int n_set;
n_set = !!(flags & N_FLAG);
T0 = n_set;
RETURN();
}
void OPPROTO op_tst_cc_mi_fast (void) {
T0 = ((int32_t)env->cc_result) < 0;
RETURN();
}
void OPPROTO op_tst_cc_ls (void) {
uint32_t flags = env->pregs[SR_CCS];
int c_set;
int z_set;
c_set = !!(flags & C_FLAG);
z_set = !!(flags & Z_FLAG);
T0 = c_set || z_set;
RETURN();
}
void OPPROTO op_tst_cc_hi (void) {
uint32_t flags = env->pregs[SR_CCS];
int z_set;
int c_set;
z_set = !!(flags & Z_FLAG);
c_set = !!(flags & C_FLAG);
T0 = !c_set && !z_set;
RETURN();
}
void OPPROTO op_tst_cc_ge (void) {
uint32_t flags = env->pregs[SR_CCS];
int n_set;
int v_set;
n_set = !!(flags & N_FLAG);
v_set = !!(flags & V_FLAG);
T0 = (n_set && v_set) || (!n_set && !v_set);
RETURN();
}
void OPPROTO op_tst_cc_ge_fast (void) {
T0 = ((int32_t)env->cc_src < (int32_t)env->cc_dest);
RETURN();
}
void OPPROTO op_tst_cc_lt (void) {
uint32_t flags = env->pregs[SR_CCS];
int n_set;
int v_set;
n_set = !!(flags & N_FLAG);
v_set = !!(flags & V_FLAG);
T0 = (n_set && !v_set) || (!n_set && v_set);
RETURN();
}
void OPPROTO op_tst_cc_gt (void) {
uint32_t flags = env->pregs[SR_CCS];
int n_set;
int v_set;
int z_set;
n_set = !!(flags & N_FLAG);
v_set = !!(flags & V_FLAG);
z_set = !!(flags & Z_FLAG);
T0 = (n_set && v_set && !z_set)
|| (!n_set && !v_set && !z_set);
RETURN();
}
void OPPROTO op_tst_cc_le (void) {
uint32_t flags = env->pregs[SR_CCS];
int n_set;
int v_set;
int z_set;
n_set = !!(flags & N_FLAG);
v_set = !!(flags & V_FLAG);
z_set = !!(flags & Z_FLAG);
T0 = z_set || (n_set && !v_set) || (!n_set && v_set);
RETURN();
}
void OPPROTO op_tst_cc_p (void) {
uint32_t flags = env->pregs[SR_CCS];
int p_set;
p_set = !!(flags & P_FLAG);
T0 = p_set;
RETURN();
}
/* Evaluate the if the branch should be taken or not. Needs to be done in
the original sequence. The acutal branch is rescheduled to right after the
delay-slot. */
void OPPROTO op_evaluate_bcc (void)
{
env->btaken = T0;
RETURN();
}
/* this one is used on every alu op, optimize it!. */
void OPPROTO op_goto_if_not_x (void)
{
if (env->pregs[SR_CCS] & X_FLAG)
GOTO_LABEL_PARAM(1);
RETURN();
}
void OPPROTO op_cc_jmp (void)
{
if (env->btaken)
env->pc = PARAM1;
else
env->pc = PARAM2;
RETURN();
}
void OPPROTO op_cc_ngoto (void)
{
if (!env->btaken)
GOTO_LABEL_PARAM(1);
RETURN();
}
void OPPROTO op_movl_btarget_T0 (void)
{
env->btarget = T0;
RETURN();
}
void OPPROTO op_jmp (void)
{
env->pc = env->btarget;
RETURN();
}
/* Load and store */
#define MEMSUFFIX _raw
#include "op_mem.c"
#undef MEMSUFFIX
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.c"
#undef MEMSUFFIX
#define MEMSUFFIX _kernel
#include "op_mem.c"
#undef MEMSUFFIX
#endif