4bb19f98d3
Cc: Cameron Esfahani <dirty@apple.com> Signed-off-by: Roman Bolshakov <r.bolshakov@yadro.com> Message-Id: <20200630102824.77604-3-r.bolshakov@yadro.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2318 lines
62 KiB
C
2318 lines
62 KiB
C
/*
|
|
* QEMU System Emulator
|
|
*
|
|
* Copyright (c) 2003-2008 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu-common.h"
|
|
#include "qemu/config-file.h"
|
|
#include "qemu/cutils.h"
|
|
#include "migration/vmstate.h"
|
|
#include "monitor/monitor.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/qapi-commands-misc.h"
|
|
#include "qapi/qapi-events-run-state.h"
|
|
#include "qapi/qmp/qerror.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/qemu-print.h"
|
|
#include "sysemu/tcg.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "sysemu/dma.h"
|
|
#include "sysemu/hw_accel.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/hax.h"
|
|
#include "sysemu/hvf.h"
|
|
#include "sysemu/whpx.h"
|
|
#include "exec/exec-all.h"
|
|
|
|
#include "qemu/thread.h"
|
|
#include "qemu/plugin.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/qtest.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/option.h"
|
|
#include "qemu/bitmap.h"
|
|
#include "qemu/seqlock.h"
|
|
#include "qemu/guest-random.h"
|
|
#include "tcg/tcg.h"
|
|
#include "hw/nmi.h"
|
|
#include "sysemu/replay.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "hw/boards.h"
|
|
#include "hw/hw.h"
|
|
|
|
#ifdef CONFIG_LINUX
|
|
|
|
#include <sys/prctl.h>
|
|
|
|
#ifndef PR_MCE_KILL
|
|
#define PR_MCE_KILL 33
|
|
#endif
|
|
|
|
#ifndef PR_MCE_KILL_SET
|
|
#define PR_MCE_KILL_SET 1
|
|
#endif
|
|
|
|
#ifndef PR_MCE_KILL_EARLY
|
|
#define PR_MCE_KILL_EARLY 1
|
|
#endif
|
|
|
|
#endif /* CONFIG_LINUX */
|
|
|
|
static QemuMutex qemu_global_mutex;
|
|
|
|
int64_t max_delay;
|
|
int64_t max_advance;
|
|
|
|
/* vcpu throttling controls */
|
|
static QEMUTimer *throttle_timer;
|
|
static unsigned int throttle_percentage;
|
|
|
|
#define CPU_THROTTLE_PCT_MIN 1
|
|
#define CPU_THROTTLE_PCT_MAX 99
|
|
#define CPU_THROTTLE_TIMESLICE_NS 10000000
|
|
|
|
bool cpu_is_stopped(CPUState *cpu)
|
|
{
|
|
return cpu->stopped || !runstate_is_running();
|
|
}
|
|
|
|
static inline bool cpu_work_list_empty(CPUState *cpu)
|
|
{
|
|
bool ret;
|
|
|
|
qemu_mutex_lock(&cpu->work_mutex);
|
|
ret = QSIMPLEQ_EMPTY(&cpu->work_list);
|
|
qemu_mutex_unlock(&cpu->work_mutex);
|
|
return ret;
|
|
}
|
|
|
|
static bool cpu_thread_is_idle(CPUState *cpu)
|
|
{
|
|
if (cpu->stop || !cpu_work_list_empty(cpu)) {
|
|
return false;
|
|
}
|
|
if (cpu_is_stopped(cpu)) {
|
|
return true;
|
|
}
|
|
if (!cpu->halted || cpu_has_work(cpu) ||
|
|
kvm_halt_in_kernel()) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static bool all_cpu_threads_idle(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (!cpu_thread_is_idle(cpu)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/***********************************************************/
|
|
/* guest cycle counter */
|
|
|
|
/* Protected by TimersState seqlock */
|
|
|
|
static bool icount_sleep = true;
|
|
/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
|
|
#define MAX_ICOUNT_SHIFT 10
|
|
|
|
typedef struct TimersState {
|
|
/* Protected by BQL. */
|
|
int64_t cpu_ticks_prev;
|
|
int64_t cpu_ticks_offset;
|
|
|
|
/* Protect fields that can be respectively read outside the
|
|
* BQL, and written from multiple threads.
|
|
*/
|
|
QemuSeqLock vm_clock_seqlock;
|
|
QemuSpin vm_clock_lock;
|
|
|
|
int16_t cpu_ticks_enabled;
|
|
|
|
/* Conversion factor from emulated instructions to virtual clock ticks. */
|
|
int16_t icount_time_shift;
|
|
|
|
/* Compensate for varying guest execution speed. */
|
|
int64_t qemu_icount_bias;
|
|
|
|
int64_t vm_clock_warp_start;
|
|
int64_t cpu_clock_offset;
|
|
|
|
/* Only written by TCG thread */
|
|
int64_t qemu_icount;
|
|
|
|
/* for adjusting icount */
|
|
QEMUTimer *icount_rt_timer;
|
|
QEMUTimer *icount_vm_timer;
|
|
QEMUTimer *icount_warp_timer;
|
|
} TimersState;
|
|
|
|
static TimersState timers_state;
|
|
bool mttcg_enabled;
|
|
|
|
|
|
/* The current number of executed instructions is based on what we
|
|
* originally budgeted minus the current state of the decrementing
|
|
* icount counters in extra/u16.low.
|
|
*/
|
|
static int64_t cpu_get_icount_executed(CPUState *cpu)
|
|
{
|
|
return (cpu->icount_budget -
|
|
(cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
|
|
}
|
|
|
|
/*
|
|
* Update the global shared timer_state.qemu_icount to take into
|
|
* account executed instructions. This is done by the TCG vCPU
|
|
* thread so the main-loop can see time has moved forward.
|
|
*/
|
|
static void cpu_update_icount_locked(CPUState *cpu)
|
|
{
|
|
int64_t executed = cpu_get_icount_executed(cpu);
|
|
cpu->icount_budget -= executed;
|
|
|
|
atomic_set_i64(&timers_state.qemu_icount,
|
|
timers_state.qemu_icount + executed);
|
|
}
|
|
|
|
/*
|
|
* Update the global shared timer_state.qemu_icount to take into
|
|
* account executed instructions. This is done by the TCG vCPU
|
|
* thread so the main-loop can see time has moved forward.
|
|
*/
|
|
void cpu_update_icount(CPUState *cpu)
|
|
{
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
cpu_update_icount_locked(cpu);
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
}
|
|
|
|
static int64_t cpu_get_icount_raw_locked(void)
|
|
{
|
|
CPUState *cpu = current_cpu;
|
|
|
|
if (cpu && cpu->running) {
|
|
if (!cpu->can_do_io) {
|
|
error_report("Bad icount read");
|
|
exit(1);
|
|
}
|
|
/* Take into account what has run */
|
|
cpu_update_icount_locked(cpu);
|
|
}
|
|
/* The read is protected by the seqlock, but needs atomic64 to avoid UB */
|
|
return atomic_read_i64(&timers_state.qemu_icount);
|
|
}
|
|
|
|
static int64_t cpu_get_icount_locked(void)
|
|
{
|
|
int64_t icount = cpu_get_icount_raw_locked();
|
|
return atomic_read_i64(&timers_state.qemu_icount_bias) +
|
|
cpu_icount_to_ns(icount);
|
|
}
|
|
|
|
int64_t cpu_get_icount_raw(void)
|
|
{
|
|
int64_t icount;
|
|
unsigned start;
|
|
|
|
do {
|
|
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
|
icount = cpu_get_icount_raw_locked();
|
|
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
|
|
|
return icount;
|
|
}
|
|
|
|
/* Return the virtual CPU time, based on the instruction counter. */
|
|
int64_t cpu_get_icount(void)
|
|
{
|
|
int64_t icount;
|
|
unsigned start;
|
|
|
|
do {
|
|
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
|
icount = cpu_get_icount_locked();
|
|
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
|
|
|
return icount;
|
|
}
|
|
|
|
int64_t cpu_icount_to_ns(int64_t icount)
|
|
{
|
|
return icount << atomic_read(&timers_state.icount_time_shift);
|
|
}
|
|
|
|
static int64_t cpu_get_ticks_locked(void)
|
|
{
|
|
int64_t ticks = timers_state.cpu_ticks_offset;
|
|
if (timers_state.cpu_ticks_enabled) {
|
|
ticks += cpu_get_host_ticks();
|
|
}
|
|
|
|
if (timers_state.cpu_ticks_prev > ticks) {
|
|
/* Non increasing ticks may happen if the host uses software suspend. */
|
|
timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
|
|
ticks = timers_state.cpu_ticks_prev;
|
|
}
|
|
|
|
timers_state.cpu_ticks_prev = ticks;
|
|
return ticks;
|
|
}
|
|
|
|
/* return the time elapsed in VM between vm_start and vm_stop. Unless
|
|
* icount is active, cpu_get_ticks() uses units of the host CPU cycle
|
|
* counter.
|
|
*/
|
|
int64_t cpu_get_ticks(void)
|
|
{
|
|
int64_t ticks;
|
|
|
|
if (use_icount) {
|
|
return cpu_get_icount();
|
|
}
|
|
|
|
qemu_spin_lock(&timers_state.vm_clock_lock);
|
|
ticks = cpu_get_ticks_locked();
|
|
qemu_spin_unlock(&timers_state.vm_clock_lock);
|
|
return ticks;
|
|
}
|
|
|
|
static int64_t cpu_get_clock_locked(void)
|
|
{
|
|
int64_t time;
|
|
|
|
time = timers_state.cpu_clock_offset;
|
|
if (timers_state.cpu_ticks_enabled) {
|
|
time += get_clock();
|
|
}
|
|
|
|
return time;
|
|
}
|
|
|
|
/* Return the monotonic time elapsed in VM, i.e.,
|
|
* the time between vm_start and vm_stop
|
|
*/
|
|
int64_t cpu_get_clock(void)
|
|
{
|
|
int64_t ti;
|
|
unsigned start;
|
|
|
|
do {
|
|
start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
|
ti = cpu_get_clock_locked();
|
|
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
|
|
|
|
return ti;
|
|
}
|
|
|
|
/* enable cpu_get_ticks()
|
|
* Caller must hold BQL which serves as mutex for vm_clock_seqlock.
|
|
*/
|
|
void cpu_enable_ticks(void)
|
|
{
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
if (!timers_state.cpu_ticks_enabled) {
|
|
timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
|
|
timers_state.cpu_clock_offset -= get_clock();
|
|
timers_state.cpu_ticks_enabled = 1;
|
|
}
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
}
|
|
|
|
/* disable cpu_get_ticks() : the clock is stopped. You must not call
|
|
* cpu_get_ticks() after that.
|
|
* Caller must hold BQL which serves as mutex for vm_clock_seqlock.
|
|
*/
|
|
void cpu_disable_ticks(void)
|
|
{
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
if (timers_state.cpu_ticks_enabled) {
|
|
timers_state.cpu_ticks_offset += cpu_get_host_ticks();
|
|
timers_state.cpu_clock_offset = cpu_get_clock_locked();
|
|
timers_state.cpu_ticks_enabled = 0;
|
|
}
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
}
|
|
|
|
/* Correlation between real and virtual time is always going to be
|
|
fairly approximate, so ignore small variation.
|
|
When the guest is idle real and virtual time will be aligned in
|
|
the IO wait loop. */
|
|
#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
|
|
|
|
static void icount_adjust(void)
|
|
{
|
|
int64_t cur_time;
|
|
int64_t cur_icount;
|
|
int64_t delta;
|
|
|
|
/* Protected by TimersState mutex. */
|
|
static int64_t last_delta;
|
|
|
|
/* If the VM is not running, then do nothing. */
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
|
|
cpu_get_clock_locked());
|
|
cur_icount = cpu_get_icount_locked();
|
|
|
|
delta = cur_icount - cur_time;
|
|
/* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
|
|
if (delta > 0
|
|
&& last_delta + ICOUNT_WOBBLE < delta * 2
|
|
&& timers_state.icount_time_shift > 0) {
|
|
/* The guest is getting too far ahead. Slow time down. */
|
|
atomic_set(&timers_state.icount_time_shift,
|
|
timers_state.icount_time_shift - 1);
|
|
}
|
|
if (delta < 0
|
|
&& last_delta - ICOUNT_WOBBLE > delta * 2
|
|
&& timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
|
|
/* The guest is getting too far behind. Speed time up. */
|
|
atomic_set(&timers_state.icount_time_shift,
|
|
timers_state.icount_time_shift + 1);
|
|
}
|
|
last_delta = delta;
|
|
atomic_set_i64(&timers_state.qemu_icount_bias,
|
|
cur_icount - (timers_state.qemu_icount
|
|
<< timers_state.icount_time_shift));
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
}
|
|
|
|
static void icount_adjust_rt(void *opaque)
|
|
{
|
|
timer_mod(timers_state.icount_rt_timer,
|
|
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
|
|
icount_adjust();
|
|
}
|
|
|
|
static void icount_adjust_vm(void *opaque)
|
|
{
|
|
timer_mod(timers_state.icount_vm_timer,
|
|
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
NANOSECONDS_PER_SECOND / 10);
|
|
icount_adjust();
|
|
}
|
|
|
|
static int64_t qemu_icount_round(int64_t count)
|
|
{
|
|
int shift = atomic_read(&timers_state.icount_time_shift);
|
|
return (count + (1 << shift) - 1) >> shift;
|
|
}
|
|
|
|
static void icount_warp_rt(void)
|
|
{
|
|
unsigned seq;
|
|
int64_t warp_start;
|
|
|
|
/* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
|
|
* changes from -1 to another value, so the race here is okay.
|
|
*/
|
|
do {
|
|
seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
|
|
warp_start = timers_state.vm_clock_warp_start;
|
|
} while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
|
|
|
|
if (warp_start == -1) {
|
|
return;
|
|
}
|
|
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
if (runstate_is_running()) {
|
|
int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
|
|
cpu_get_clock_locked());
|
|
int64_t warp_delta;
|
|
|
|
warp_delta = clock - timers_state.vm_clock_warp_start;
|
|
if (use_icount == 2) {
|
|
/*
|
|
* In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
|
|
* far ahead of real time.
|
|
*/
|
|
int64_t cur_icount = cpu_get_icount_locked();
|
|
int64_t delta = clock - cur_icount;
|
|
warp_delta = MIN(warp_delta, delta);
|
|
}
|
|
atomic_set_i64(&timers_state.qemu_icount_bias,
|
|
timers_state.qemu_icount_bias + warp_delta);
|
|
}
|
|
timers_state.vm_clock_warp_start = -1;
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
|
|
if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
}
|
|
|
|
static void icount_timer_cb(void *opaque)
|
|
{
|
|
/* No need for a checkpoint because the timer already synchronizes
|
|
* with CHECKPOINT_CLOCK_VIRTUAL_RT.
|
|
*/
|
|
icount_warp_rt();
|
|
}
|
|
|
|
void qtest_clock_warp(int64_t dest)
|
|
{
|
|
int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
AioContext *aio_context;
|
|
assert(qtest_enabled());
|
|
aio_context = qemu_get_aio_context();
|
|
while (clock < dest) {
|
|
int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
|
|
QEMU_TIMER_ATTR_ALL);
|
|
int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
|
|
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
atomic_set_i64(&timers_state.qemu_icount_bias,
|
|
timers_state.qemu_icount_bias + warp);
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
|
|
qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
|
|
timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
|
|
clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
|
|
void qemu_start_warp_timer(void)
|
|
{
|
|
int64_t clock;
|
|
int64_t deadline;
|
|
|
|
if (!use_icount) {
|
|
return;
|
|
}
|
|
|
|
/* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
|
|
* do not fire, so computing the deadline does not make sense.
|
|
*/
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
|
|
if (replay_mode != REPLAY_MODE_PLAY) {
|
|
if (!all_cpu_threads_idle()) {
|
|
return;
|
|
}
|
|
|
|
if (qtest_enabled()) {
|
|
/* When testing, qtest commands advance icount. */
|
|
return;
|
|
}
|
|
|
|
replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
|
|
} else {
|
|
/* warp clock deterministically in record/replay mode */
|
|
if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
|
|
/* vCPU is sleeping and warp can't be started.
|
|
It is probably a race condition: notification sent
|
|
to vCPU was processed in advance and vCPU went to sleep.
|
|
Therefore we have to wake it up for doing someting. */
|
|
if (replay_has_checkpoint()) {
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
/* We want to use the earliest deadline from ALL vm_clocks */
|
|
clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
|
|
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
|
|
~QEMU_TIMER_ATTR_EXTERNAL);
|
|
if (deadline < 0) {
|
|
static bool notified;
|
|
if (!icount_sleep && !notified) {
|
|
warn_report("icount sleep disabled and no active timers");
|
|
notified = true;
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (deadline > 0) {
|
|
/*
|
|
* Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
|
|
* sleep. Otherwise, the CPU might be waiting for a future timer
|
|
* interrupt to wake it up, but the interrupt never comes because
|
|
* the vCPU isn't running any insns and thus doesn't advance the
|
|
* QEMU_CLOCK_VIRTUAL.
|
|
*/
|
|
if (!icount_sleep) {
|
|
/*
|
|
* We never let VCPUs sleep in no sleep icount mode.
|
|
* If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
|
|
* to the next QEMU_CLOCK_VIRTUAL event and notify it.
|
|
* It is useful when we want a deterministic execution time,
|
|
* isolated from host latencies.
|
|
*/
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
atomic_set_i64(&timers_state.qemu_icount_bias,
|
|
timers_state.qemu_icount_bias + deadline);
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
} else {
|
|
/*
|
|
* We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
|
|
* "real" time, (related to the time left until the next event) has
|
|
* passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
|
|
* This avoids that the warps are visible externally; for example,
|
|
* you will not be sending network packets continuously instead of
|
|
* every 100ms.
|
|
*/
|
|
seqlock_write_lock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
if (timers_state.vm_clock_warp_start == -1
|
|
|| timers_state.vm_clock_warp_start > clock) {
|
|
timers_state.vm_clock_warp_start = clock;
|
|
}
|
|
seqlock_write_unlock(&timers_state.vm_clock_seqlock,
|
|
&timers_state.vm_clock_lock);
|
|
timer_mod_anticipate(timers_state.icount_warp_timer,
|
|
clock + deadline);
|
|
}
|
|
} else if (deadline == 0) {
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
}
|
|
|
|
static void qemu_account_warp_timer(void)
|
|
{
|
|
if (!use_icount || !icount_sleep) {
|
|
return;
|
|
}
|
|
|
|
/* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
|
|
* do not fire, so computing the deadline does not make sense.
|
|
*/
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
|
|
/* warp clock deterministically in record/replay mode */
|
|
if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
|
|
return;
|
|
}
|
|
|
|
timer_del(timers_state.icount_warp_timer);
|
|
icount_warp_rt();
|
|
}
|
|
|
|
static bool icount_state_needed(void *opaque)
|
|
{
|
|
return use_icount;
|
|
}
|
|
|
|
static bool warp_timer_state_needed(void *opaque)
|
|
{
|
|
TimersState *s = opaque;
|
|
return s->icount_warp_timer != NULL;
|
|
}
|
|
|
|
static bool adjust_timers_state_needed(void *opaque)
|
|
{
|
|
TimersState *s = opaque;
|
|
return s->icount_rt_timer != NULL;
|
|
}
|
|
|
|
static bool shift_state_needed(void *opaque)
|
|
{
|
|
return use_icount == 2;
|
|
}
|
|
|
|
/*
|
|
* Subsection for warp timer migration is optional, because may not be created
|
|
*/
|
|
static const VMStateDescription icount_vmstate_warp_timer = {
|
|
.name = "timer/icount/warp_timer",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = warp_timer_state_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT64(vm_clock_warp_start, TimersState),
|
|
VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription icount_vmstate_adjust_timers = {
|
|
.name = "timer/icount/timers",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = adjust_timers_state_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
|
|
VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription icount_vmstate_shift = {
|
|
.name = "timer/icount/shift",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = shift_state_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT16(icount_time_shift, TimersState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
/*
|
|
* This is a subsection for icount migration.
|
|
*/
|
|
static const VMStateDescription icount_vmstate_timers = {
|
|
.name = "timer/icount",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = icount_state_needed,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT64(qemu_icount_bias, TimersState),
|
|
VMSTATE_INT64(qemu_icount, TimersState),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&icount_vmstate_warp_timer,
|
|
&icount_vmstate_adjust_timers,
|
|
&icount_vmstate_shift,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_timers = {
|
|
.name = "timer",
|
|
.version_id = 2,
|
|
.minimum_version_id = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_INT64(cpu_ticks_offset, TimersState),
|
|
VMSTATE_UNUSED(8),
|
|
VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
|
|
VMSTATE_END_OF_LIST()
|
|
},
|
|
.subsections = (const VMStateDescription*[]) {
|
|
&icount_vmstate_timers,
|
|
NULL
|
|
}
|
|
};
|
|
|
|
static void cpu_throttle_thread(CPUState *cpu, run_on_cpu_data opaque)
|
|
{
|
|
double pct;
|
|
double throttle_ratio;
|
|
int64_t sleeptime_ns, endtime_ns;
|
|
|
|
if (!cpu_throttle_get_percentage()) {
|
|
return;
|
|
}
|
|
|
|
pct = (double)cpu_throttle_get_percentage()/100;
|
|
throttle_ratio = pct / (1 - pct);
|
|
/* Add 1ns to fix double's rounding error (like 0.9999999...) */
|
|
sleeptime_ns = (int64_t)(throttle_ratio * CPU_THROTTLE_TIMESLICE_NS + 1);
|
|
endtime_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME) + sleeptime_ns;
|
|
while (sleeptime_ns > 0 && !cpu->stop) {
|
|
if (sleeptime_ns > SCALE_MS) {
|
|
qemu_cond_timedwait(cpu->halt_cond, &qemu_global_mutex,
|
|
sleeptime_ns / SCALE_MS);
|
|
} else {
|
|
qemu_mutex_unlock_iothread();
|
|
g_usleep(sleeptime_ns / SCALE_US);
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
sleeptime_ns = endtime_ns - qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
|
|
}
|
|
atomic_set(&cpu->throttle_thread_scheduled, 0);
|
|
}
|
|
|
|
static void cpu_throttle_timer_tick(void *opaque)
|
|
{
|
|
CPUState *cpu;
|
|
double pct;
|
|
|
|
/* Stop the timer if needed */
|
|
if (!cpu_throttle_get_percentage()) {
|
|
return;
|
|
}
|
|
CPU_FOREACH(cpu) {
|
|
if (!atomic_xchg(&cpu->throttle_thread_scheduled, 1)) {
|
|
async_run_on_cpu(cpu, cpu_throttle_thread,
|
|
RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
pct = (double)cpu_throttle_get_percentage()/100;
|
|
timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
|
|
CPU_THROTTLE_TIMESLICE_NS / (1-pct));
|
|
}
|
|
|
|
void cpu_throttle_set(int new_throttle_pct)
|
|
{
|
|
/* Ensure throttle percentage is within valid range */
|
|
new_throttle_pct = MIN(new_throttle_pct, CPU_THROTTLE_PCT_MAX);
|
|
new_throttle_pct = MAX(new_throttle_pct, CPU_THROTTLE_PCT_MIN);
|
|
|
|
atomic_set(&throttle_percentage, new_throttle_pct);
|
|
|
|
timer_mod(throttle_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT) +
|
|
CPU_THROTTLE_TIMESLICE_NS);
|
|
}
|
|
|
|
void cpu_throttle_stop(void)
|
|
{
|
|
atomic_set(&throttle_percentage, 0);
|
|
}
|
|
|
|
bool cpu_throttle_active(void)
|
|
{
|
|
return (cpu_throttle_get_percentage() != 0);
|
|
}
|
|
|
|
int cpu_throttle_get_percentage(void)
|
|
{
|
|
return atomic_read(&throttle_percentage);
|
|
}
|
|
|
|
void cpu_ticks_init(void)
|
|
{
|
|
seqlock_init(&timers_state.vm_clock_seqlock);
|
|
qemu_spin_init(&timers_state.vm_clock_lock);
|
|
vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
|
|
throttle_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
|
|
cpu_throttle_timer_tick, NULL);
|
|
}
|
|
|
|
void configure_icount(QemuOpts *opts, Error **errp)
|
|
{
|
|
const char *option = qemu_opt_get(opts, "shift");
|
|
bool sleep = qemu_opt_get_bool(opts, "sleep", true);
|
|
bool align = qemu_opt_get_bool(opts, "align", false);
|
|
long time_shift = -1;
|
|
|
|
if (!option) {
|
|
if (qemu_opt_get(opts, "align") != NULL) {
|
|
error_setg(errp, "Please specify shift option when using align");
|
|
}
|
|
return;
|
|
}
|
|
|
|
if (align && !sleep) {
|
|
error_setg(errp, "align=on and sleep=off are incompatible");
|
|
return;
|
|
}
|
|
|
|
if (strcmp(option, "auto") != 0) {
|
|
if (qemu_strtol(option, NULL, 0, &time_shift) < 0
|
|
|| time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
|
|
error_setg(errp, "icount: Invalid shift value");
|
|
return;
|
|
}
|
|
} else if (icount_align_option) {
|
|
error_setg(errp, "shift=auto and align=on are incompatible");
|
|
return;
|
|
} else if (!icount_sleep) {
|
|
error_setg(errp, "shift=auto and sleep=off are incompatible");
|
|
return;
|
|
}
|
|
|
|
icount_sleep = sleep;
|
|
if (icount_sleep) {
|
|
timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
|
|
icount_timer_cb, NULL);
|
|
}
|
|
|
|
icount_align_option = align;
|
|
|
|
if (time_shift >= 0) {
|
|
timers_state.icount_time_shift = time_shift;
|
|
use_icount = 1;
|
|
return;
|
|
}
|
|
|
|
use_icount = 2;
|
|
|
|
/* 125MIPS seems a reasonable initial guess at the guest speed.
|
|
It will be corrected fairly quickly anyway. */
|
|
timers_state.icount_time_shift = 3;
|
|
|
|
/* Have both realtime and virtual time triggers for speed adjustment.
|
|
The realtime trigger catches emulated time passing too slowly,
|
|
the virtual time trigger catches emulated time passing too fast.
|
|
Realtime triggers occur even when idle, so use them less frequently
|
|
than VM triggers. */
|
|
timers_state.vm_clock_warp_start = -1;
|
|
timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
|
|
icount_adjust_rt, NULL);
|
|
timer_mod(timers_state.icount_rt_timer,
|
|
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
|
|
timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
icount_adjust_vm, NULL);
|
|
timer_mod(timers_state.icount_vm_timer,
|
|
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
|
|
NANOSECONDS_PER_SECOND / 10);
|
|
}
|
|
|
|
/***********************************************************/
|
|
/* TCG vCPU kick timer
|
|
*
|
|
* The kick timer is responsible for moving single threaded vCPU
|
|
* emulation on to the next vCPU. If more than one vCPU is running a
|
|
* timer event with force a cpu->exit so the next vCPU can get
|
|
* scheduled.
|
|
*
|
|
* The timer is removed if all vCPUs are idle and restarted again once
|
|
* idleness is complete.
|
|
*/
|
|
|
|
static QEMUTimer *tcg_kick_vcpu_timer;
|
|
static CPUState *tcg_current_rr_cpu;
|
|
|
|
#define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
|
|
|
|
static inline int64_t qemu_tcg_next_kick(void)
|
|
{
|
|
return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
|
|
}
|
|
|
|
/* Kick the currently round-robin scheduled vCPU to next */
|
|
static void qemu_cpu_kick_rr_next_cpu(void)
|
|
{
|
|
CPUState *cpu;
|
|
do {
|
|
cpu = atomic_mb_read(&tcg_current_rr_cpu);
|
|
if (cpu) {
|
|
cpu_exit(cpu);
|
|
}
|
|
} while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
|
|
}
|
|
|
|
/* Kick all RR vCPUs */
|
|
static void qemu_cpu_kick_rr_cpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_exit(cpu);
|
|
};
|
|
}
|
|
|
|
static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
|
|
{
|
|
}
|
|
|
|
void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
|
|
{
|
|
if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
|
|
qemu_notify_event();
|
|
return;
|
|
}
|
|
|
|
if (qemu_in_vcpu_thread()) {
|
|
/* A CPU is currently running; kick it back out to the
|
|
* tcg_cpu_exec() loop so it will recalculate its
|
|
* icount deadline immediately.
|
|
*/
|
|
qemu_cpu_kick(current_cpu);
|
|
} else if (first_cpu) {
|
|
/* qemu_cpu_kick is not enough to kick a halted CPU out of
|
|
* qemu_tcg_wait_io_event. async_run_on_cpu, instead,
|
|
* causes cpu_thread_is_idle to return false. This way,
|
|
* handle_icount_deadline can run.
|
|
* If we have no CPUs at all for some reason, we don't
|
|
* need to do anything.
|
|
*/
|
|
async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
|
|
}
|
|
}
|
|
|
|
static void kick_tcg_thread(void *opaque)
|
|
{
|
|
timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
|
|
qemu_cpu_kick_rr_next_cpu();
|
|
}
|
|
|
|
static void start_tcg_kick_timer(void)
|
|
{
|
|
assert(!mttcg_enabled);
|
|
if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
|
|
tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
|
|
kick_tcg_thread, NULL);
|
|
}
|
|
if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
|
|
timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
|
|
}
|
|
}
|
|
|
|
static void stop_tcg_kick_timer(void)
|
|
{
|
|
assert(!mttcg_enabled);
|
|
if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
|
|
timer_del(tcg_kick_vcpu_timer);
|
|
}
|
|
}
|
|
|
|
/***********************************************************/
|
|
void hw_error(const char *fmt, ...)
|
|
{
|
|
va_list ap;
|
|
CPUState *cpu;
|
|
|
|
va_start(ap, fmt);
|
|
fprintf(stderr, "qemu: hardware error: ");
|
|
vfprintf(stderr, fmt, ap);
|
|
fprintf(stderr, "\n");
|
|
CPU_FOREACH(cpu) {
|
|
fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
|
|
cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
|
|
}
|
|
va_end(ap);
|
|
abort();
|
|
}
|
|
|
|
void cpu_synchronize_all_states(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_synchronize_state(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_synchronize_all_post_reset(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_synchronize_post_reset(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_synchronize_all_post_init(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_synchronize_post_init(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_synchronize_all_pre_loadvm(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
cpu_synchronize_pre_loadvm(cpu);
|
|
}
|
|
}
|
|
|
|
static int do_vm_stop(RunState state, bool send_stop)
|
|
{
|
|
int ret = 0;
|
|
|
|
if (runstate_is_running()) {
|
|
runstate_set(state);
|
|
cpu_disable_ticks();
|
|
pause_all_vcpus();
|
|
vm_state_notify(0, state);
|
|
if (send_stop) {
|
|
qapi_event_send_stop();
|
|
}
|
|
}
|
|
|
|
bdrv_drain_all();
|
|
ret = bdrv_flush_all();
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Special vm_stop() variant for terminating the process. Historically clients
|
|
* did not expect a QMP STOP event and so we need to retain compatibility.
|
|
*/
|
|
int vm_shutdown(void)
|
|
{
|
|
return do_vm_stop(RUN_STATE_SHUTDOWN, false);
|
|
}
|
|
|
|
static bool cpu_can_run(CPUState *cpu)
|
|
{
|
|
if (cpu->stop) {
|
|
return false;
|
|
}
|
|
if (cpu_is_stopped(cpu)) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static void cpu_handle_guest_debug(CPUState *cpu)
|
|
{
|
|
gdb_set_stop_cpu(cpu);
|
|
qemu_system_debug_request();
|
|
cpu->stopped = true;
|
|
}
|
|
|
|
#ifdef CONFIG_LINUX
|
|
static void sigbus_reraise(void)
|
|
{
|
|
sigset_t set;
|
|
struct sigaction action;
|
|
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_handler = SIG_DFL;
|
|
if (!sigaction(SIGBUS, &action, NULL)) {
|
|
raise(SIGBUS);
|
|
sigemptyset(&set);
|
|
sigaddset(&set, SIGBUS);
|
|
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
|
|
}
|
|
perror("Failed to re-raise SIGBUS!\n");
|
|
abort();
|
|
}
|
|
|
|
static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
|
|
{
|
|
if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
|
|
sigbus_reraise();
|
|
}
|
|
|
|
if (current_cpu) {
|
|
/* Called asynchronously in VCPU thread. */
|
|
if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
|
|
sigbus_reraise();
|
|
}
|
|
} else {
|
|
/* Called synchronously (via signalfd) in main thread. */
|
|
if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
|
|
sigbus_reraise();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void qemu_init_sigbus(void)
|
|
{
|
|
struct sigaction action;
|
|
|
|
memset(&action, 0, sizeof(action));
|
|
action.sa_flags = SA_SIGINFO;
|
|
action.sa_sigaction = sigbus_handler;
|
|
sigaction(SIGBUS, &action, NULL);
|
|
|
|
prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
|
|
}
|
|
#else /* !CONFIG_LINUX */
|
|
static void qemu_init_sigbus(void)
|
|
{
|
|
}
|
|
#endif /* !CONFIG_LINUX */
|
|
|
|
static QemuThread io_thread;
|
|
|
|
/* cpu creation */
|
|
static QemuCond qemu_cpu_cond;
|
|
/* system init */
|
|
static QemuCond qemu_pause_cond;
|
|
|
|
void qemu_init_cpu_loop(void)
|
|
{
|
|
qemu_init_sigbus();
|
|
qemu_cond_init(&qemu_cpu_cond);
|
|
qemu_cond_init(&qemu_pause_cond);
|
|
qemu_mutex_init(&qemu_global_mutex);
|
|
|
|
qemu_thread_get_self(&io_thread);
|
|
}
|
|
|
|
void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
|
|
{
|
|
do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
|
|
}
|
|
|
|
static void qemu_kvm_destroy_vcpu(CPUState *cpu)
|
|
{
|
|
if (kvm_destroy_vcpu(cpu) < 0) {
|
|
error_report("kvm_destroy_vcpu failed");
|
|
exit(EXIT_FAILURE);
|
|
}
|
|
}
|
|
|
|
static void qemu_tcg_destroy_vcpu(CPUState *cpu)
|
|
{
|
|
}
|
|
|
|
static void qemu_cpu_stop(CPUState *cpu, bool exit)
|
|
{
|
|
g_assert(qemu_cpu_is_self(cpu));
|
|
cpu->stop = false;
|
|
cpu->stopped = true;
|
|
if (exit) {
|
|
cpu_exit(cpu);
|
|
}
|
|
qemu_cond_broadcast(&qemu_pause_cond);
|
|
}
|
|
|
|
static void qemu_wait_io_event_common(CPUState *cpu)
|
|
{
|
|
atomic_mb_set(&cpu->thread_kicked, false);
|
|
if (cpu->stop) {
|
|
qemu_cpu_stop(cpu, false);
|
|
}
|
|
process_queued_cpu_work(cpu);
|
|
}
|
|
|
|
static void qemu_tcg_rr_wait_io_event(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
while (all_cpu_threads_idle()) {
|
|
stop_tcg_kick_timer();
|
|
qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
|
|
}
|
|
|
|
start_tcg_kick_timer();
|
|
|
|
CPU_FOREACH(cpu) {
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
}
|
|
|
|
static void qemu_wait_io_event(CPUState *cpu)
|
|
{
|
|
bool slept = false;
|
|
|
|
while (cpu_thread_is_idle(cpu)) {
|
|
if (!slept) {
|
|
slept = true;
|
|
qemu_plugin_vcpu_idle_cb(cpu);
|
|
}
|
|
qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
|
|
}
|
|
if (slept) {
|
|
qemu_plugin_vcpu_resume_cb(cpu);
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
/* Eat dummy APC queued by qemu_cpu_kick_thread. */
|
|
if (!tcg_enabled()) {
|
|
SleepEx(0, TRUE);
|
|
}
|
|
#endif
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
|
|
static void *qemu_kvm_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
int r;
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->can_do_io = 1;
|
|
current_cpu = cpu;
|
|
|
|
r = kvm_init_vcpu(cpu);
|
|
if (r < 0) {
|
|
error_report("kvm_init_vcpu failed: %s", strerror(-r));
|
|
exit(1);
|
|
}
|
|
|
|
kvm_init_cpu_signals(cpu);
|
|
|
|
/* signal CPU creation */
|
|
cpu->created = true;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
do {
|
|
if (cpu_can_run(cpu)) {
|
|
r = kvm_cpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
}
|
|
}
|
|
qemu_wait_io_event(cpu);
|
|
} while (!cpu->unplug || cpu_can_run(cpu));
|
|
|
|
qemu_kvm_destroy_vcpu(cpu);
|
|
cpu->created = false;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_mutex_unlock_iothread();
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
}
|
|
|
|
static void *qemu_dummy_cpu_thread_fn(void *arg)
|
|
{
|
|
#ifdef _WIN32
|
|
error_report("qtest is not supported under Windows");
|
|
exit(1);
|
|
#else
|
|
CPUState *cpu = arg;
|
|
sigset_t waitset;
|
|
int r;
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->can_do_io = 1;
|
|
current_cpu = cpu;
|
|
|
|
sigemptyset(&waitset);
|
|
sigaddset(&waitset, SIG_IPI);
|
|
|
|
/* signal CPU creation */
|
|
cpu->created = true;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
do {
|
|
qemu_mutex_unlock_iothread();
|
|
do {
|
|
int sig;
|
|
r = sigwait(&waitset, &sig);
|
|
} while (r == -1 && (errno == EAGAIN || errno == EINTR));
|
|
if (r == -1) {
|
|
perror("sigwait");
|
|
exit(1);
|
|
}
|
|
qemu_mutex_lock_iothread();
|
|
qemu_wait_io_event(cpu);
|
|
} while (!cpu->unplug);
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
#endif
|
|
}
|
|
|
|
static int64_t tcg_get_icount_limit(void)
|
|
{
|
|
int64_t deadline;
|
|
|
|
if (replay_mode != REPLAY_MODE_PLAY) {
|
|
/*
|
|
* Include all the timers, because they may need an attention.
|
|
* Too long CPU execution may create unnecessary delay in UI.
|
|
*/
|
|
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
|
|
QEMU_TIMER_ATTR_ALL);
|
|
/* Check realtime timers, because they help with input processing */
|
|
deadline = qemu_soonest_timeout(deadline,
|
|
qemu_clock_deadline_ns_all(QEMU_CLOCK_REALTIME,
|
|
QEMU_TIMER_ATTR_ALL));
|
|
|
|
/* Maintain prior (possibly buggy) behaviour where if no deadline
|
|
* was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
|
|
* INT32_MAX nanoseconds ahead, we still use INT32_MAX
|
|
* nanoseconds.
|
|
*/
|
|
if ((deadline < 0) || (deadline > INT32_MAX)) {
|
|
deadline = INT32_MAX;
|
|
}
|
|
|
|
return qemu_icount_round(deadline);
|
|
} else {
|
|
return replay_get_instructions();
|
|
}
|
|
}
|
|
|
|
static void notify_aio_contexts(void)
|
|
{
|
|
/* Wake up other AioContexts. */
|
|
qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
|
|
qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
|
|
static void handle_icount_deadline(void)
|
|
{
|
|
assert(qemu_in_vcpu_thread());
|
|
if (use_icount) {
|
|
int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
|
|
QEMU_TIMER_ATTR_ALL);
|
|
|
|
if (deadline == 0) {
|
|
notify_aio_contexts();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void prepare_icount_for_run(CPUState *cpu)
|
|
{
|
|
if (use_icount) {
|
|
int insns_left;
|
|
|
|
/* These should always be cleared by process_icount_data after
|
|
* each vCPU execution. However u16.high can be raised
|
|
* asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
|
|
*/
|
|
g_assert(cpu_neg(cpu)->icount_decr.u16.low == 0);
|
|
g_assert(cpu->icount_extra == 0);
|
|
|
|
cpu->icount_budget = tcg_get_icount_limit();
|
|
insns_left = MIN(0xffff, cpu->icount_budget);
|
|
cpu_neg(cpu)->icount_decr.u16.low = insns_left;
|
|
cpu->icount_extra = cpu->icount_budget - insns_left;
|
|
|
|
replay_mutex_lock();
|
|
|
|
if (cpu->icount_budget == 0 && replay_has_checkpoint()) {
|
|
notify_aio_contexts();
|
|
}
|
|
}
|
|
}
|
|
|
|
static void process_icount_data(CPUState *cpu)
|
|
{
|
|
if (use_icount) {
|
|
/* Account for executed instructions */
|
|
cpu_update_icount(cpu);
|
|
|
|
/* Reset the counters */
|
|
cpu_neg(cpu)->icount_decr.u16.low = 0;
|
|
cpu->icount_extra = 0;
|
|
cpu->icount_budget = 0;
|
|
|
|
replay_account_executed_instructions();
|
|
|
|
replay_mutex_unlock();
|
|
}
|
|
}
|
|
|
|
|
|
static int tcg_cpu_exec(CPUState *cpu)
|
|
{
|
|
int ret;
|
|
#ifdef CONFIG_PROFILER
|
|
int64_t ti;
|
|
#endif
|
|
|
|
assert(tcg_enabled());
|
|
#ifdef CONFIG_PROFILER
|
|
ti = profile_getclock();
|
|
#endif
|
|
cpu_exec_start(cpu);
|
|
ret = cpu_exec(cpu);
|
|
cpu_exec_end(cpu);
|
|
#ifdef CONFIG_PROFILER
|
|
atomic_set(&tcg_ctx->prof.cpu_exec_time,
|
|
tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
|
|
#endif
|
|
return ret;
|
|
}
|
|
|
|
/* Destroy any remaining vCPUs which have been unplugged and have
|
|
* finished running
|
|
*/
|
|
static void deal_with_unplugged_cpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (cpu->unplug && !cpu_can_run(cpu)) {
|
|
qemu_tcg_destroy_vcpu(cpu);
|
|
cpu->created = false;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Single-threaded TCG
|
|
*
|
|
* In the single-threaded case each vCPU is simulated in turn. If
|
|
* there is more than a single vCPU we create a simple timer to kick
|
|
* the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
|
|
* This is done explicitly rather than relying on side-effects
|
|
* elsewhere.
|
|
*/
|
|
|
|
static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
|
|
assert(tcg_enabled());
|
|
rcu_register_thread();
|
|
tcg_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->created = true;
|
|
cpu->can_do_io = 1;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
/* wait for initial kick-off after machine start */
|
|
while (first_cpu->stopped) {
|
|
qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
|
|
|
|
/* process any pending work */
|
|
CPU_FOREACH(cpu) {
|
|
current_cpu = cpu;
|
|
qemu_wait_io_event_common(cpu);
|
|
}
|
|
}
|
|
|
|
start_tcg_kick_timer();
|
|
|
|
cpu = first_cpu;
|
|
|
|
/* process any pending work */
|
|
cpu->exit_request = 1;
|
|
|
|
while (1) {
|
|
qemu_mutex_unlock_iothread();
|
|
replay_mutex_lock();
|
|
qemu_mutex_lock_iothread();
|
|
/* Account partial waits to QEMU_CLOCK_VIRTUAL. */
|
|
qemu_account_warp_timer();
|
|
|
|
/* Run the timers here. This is much more efficient than
|
|
* waking up the I/O thread and waiting for completion.
|
|
*/
|
|
handle_icount_deadline();
|
|
|
|
replay_mutex_unlock();
|
|
|
|
if (!cpu) {
|
|
cpu = first_cpu;
|
|
}
|
|
|
|
while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
|
|
|
|
atomic_mb_set(&tcg_current_rr_cpu, cpu);
|
|
current_cpu = cpu;
|
|
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
|
|
(cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
|
|
|
|
if (cpu_can_run(cpu)) {
|
|
int r;
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
prepare_icount_for_run(cpu);
|
|
|
|
r = tcg_cpu_exec(cpu);
|
|
|
|
process_icount_data(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
break;
|
|
} else if (r == EXCP_ATOMIC) {
|
|
qemu_mutex_unlock_iothread();
|
|
cpu_exec_step_atomic(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
break;
|
|
}
|
|
} else if (cpu->stop) {
|
|
if (cpu->unplug) {
|
|
cpu = CPU_NEXT(cpu);
|
|
}
|
|
break;
|
|
}
|
|
|
|
cpu = CPU_NEXT(cpu);
|
|
} /* while (cpu && !cpu->exit_request).. */
|
|
|
|
/* Does not need atomic_mb_set because a spurious wakeup is okay. */
|
|
atomic_set(&tcg_current_rr_cpu, NULL);
|
|
|
|
if (cpu && cpu->exit_request) {
|
|
atomic_mb_set(&cpu->exit_request, 0);
|
|
}
|
|
|
|
if (use_icount && all_cpu_threads_idle()) {
|
|
/*
|
|
* When all cpus are sleeping (e.g in WFI), to avoid a deadlock
|
|
* in the main_loop, wake it up in order to start the warp timer.
|
|
*/
|
|
qemu_notify_event();
|
|
}
|
|
|
|
qemu_tcg_rr_wait_io_event();
|
|
deal_with_unplugged_cpus();
|
|
}
|
|
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
}
|
|
|
|
static void *qemu_hax_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
int r;
|
|
|
|
rcu_register_thread();
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->created = true;
|
|
current_cpu = cpu;
|
|
|
|
hax_init_vcpu(cpu);
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
do {
|
|
if (cpu_can_run(cpu)) {
|
|
r = hax_smp_cpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
}
|
|
}
|
|
|
|
qemu_wait_io_event(cpu);
|
|
} while (!cpu->unplug || cpu_can_run(cpu));
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
}
|
|
|
|
/* The HVF-specific vCPU thread function. This one should only run when the host
|
|
* CPU supports the VMX "unrestricted guest" feature. */
|
|
static void *qemu_hvf_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
|
|
int r;
|
|
|
|
assert(hvf_enabled());
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->can_do_io = 1;
|
|
current_cpu = cpu;
|
|
|
|
hvf_init_vcpu(cpu);
|
|
|
|
/* signal CPU creation */
|
|
cpu->created = true;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
do {
|
|
if (cpu_can_run(cpu)) {
|
|
r = hvf_vcpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
}
|
|
}
|
|
qemu_wait_io_event(cpu);
|
|
} while (!cpu->unplug || cpu_can_run(cpu));
|
|
|
|
hvf_vcpu_destroy(cpu);
|
|
cpu->created = false;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_mutex_unlock_iothread();
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
}
|
|
|
|
static void *qemu_whpx_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
int r;
|
|
|
|
rcu_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
current_cpu = cpu;
|
|
|
|
r = whpx_init_vcpu(cpu);
|
|
if (r < 0) {
|
|
fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
|
|
exit(1);
|
|
}
|
|
|
|
/* signal CPU creation */
|
|
cpu->created = true;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
do {
|
|
if (cpu_can_run(cpu)) {
|
|
r = whpx_vcpu_exec(cpu);
|
|
if (r == EXCP_DEBUG) {
|
|
cpu_handle_guest_debug(cpu);
|
|
}
|
|
}
|
|
while (cpu_thread_is_idle(cpu)) {
|
|
qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
|
|
}
|
|
qemu_wait_io_event_common(cpu);
|
|
} while (!cpu->unplug || cpu_can_run(cpu));
|
|
|
|
whpx_destroy_vcpu(cpu);
|
|
cpu->created = false;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_mutex_unlock_iothread();
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
}
|
|
|
|
#ifdef _WIN32
|
|
static void CALLBACK dummy_apc_func(ULONG_PTR unused)
|
|
{
|
|
}
|
|
#endif
|
|
|
|
/* Multi-threaded TCG
|
|
*
|
|
* In the multi-threaded case each vCPU has its own thread. The TLS
|
|
* variable current_cpu can be used deep in the code to find the
|
|
* current CPUState for a given thread.
|
|
*/
|
|
|
|
static void *qemu_tcg_cpu_thread_fn(void *arg)
|
|
{
|
|
CPUState *cpu = arg;
|
|
|
|
assert(tcg_enabled());
|
|
g_assert(!use_icount);
|
|
|
|
rcu_register_thread();
|
|
tcg_register_thread();
|
|
|
|
qemu_mutex_lock_iothread();
|
|
qemu_thread_get_self(cpu->thread);
|
|
|
|
cpu->thread_id = qemu_get_thread_id();
|
|
cpu->created = true;
|
|
cpu->can_do_io = 1;
|
|
current_cpu = cpu;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_guest_random_seed_thread_part2(cpu->random_seed);
|
|
|
|
/* process any pending work */
|
|
cpu->exit_request = 1;
|
|
|
|
do {
|
|
if (cpu_can_run(cpu)) {
|
|
int r;
|
|
qemu_mutex_unlock_iothread();
|
|
r = tcg_cpu_exec(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
switch (r) {
|
|
case EXCP_DEBUG:
|
|
cpu_handle_guest_debug(cpu);
|
|
break;
|
|
case EXCP_HALTED:
|
|
/* during start-up the vCPU is reset and the thread is
|
|
* kicked several times. If we don't ensure we go back
|
|
* to sleep in the halted state we won't cleanly
|
|
* start-up when the vCPU is enabled.
|
|
*
|
|
* cpu->halted should ensure we sleep in wait_io_event
|
|
*/
|
|
g_assert(cpu->halted);
|
|
break;
|
|
case EXCP_ATOMIC:
|
|
qemu_mutex_unlock_iothread();
|
|
cpu_exec_step_atomic(cpu);
|
|
qemu_mutex_lock_iothread();
|
|
default:
|
|
/* Ignore everything else? */
|
|
break;
|
|
}
|
|
}
|
|
|
|
atomic_mb_set(&cpu->exit_request, 0);
|
|
qemu_wait_io_event(cpu);
|
|
} while (!cpu->unplug || cpu_can_run(cpu));
|
|
|
|
qemu_tcg_destroy_vcpu(cpu);
|
|
cpu->created = false;
|
|
qemu_cond_signal(&qemu_cpu_cond);
|
|
qemu_mutex_unlock_iothread();
|
|
rcu_unregister_thread();
|
|
return NULL;
|
|
}
|
|
|
|
static void qemu_cpu_kick_thread(CPUState *cpu)
|
|
{
|
|
#ifndef _WIN32
|
|
int err;
|
|
|
|
if (cpu->thread_kicked) {
|
|
return;
|
|
}
|
|
cpu->thread_kicked = true;
|
|
err = pthread_kill(cpu->thread->thread, SIG_IPI);
|
|
if (err && err != ESRCH) {
|
|
fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
|
|
exit(1);
|
|
}
|
|
#else /* _WIN32 */
|
|
if (!qemu_cpu_is_self(cpu)) {
|
|
if (whpx_enabled()) {
|
|
whpx_vcpu_kick(cpu);
|
|
} else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
|
|
fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
|
|
__func__, GetLastError());
|
|
exit(1);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void qemu_cpu_kick(CPUState *cpu)
|
|
{
|
|
qemu_cond_broadcast(cpu->halt_cond);
|
|
if (tcg_enabled()) {
|
|
if (qemu_tcg_mttcg_enabled()) {
|
|
cpu_exit(cpu);
|
|
} else {
|
|
qemu_cpu_kick_rr_cpus();
|
|
}
|
|
} else {
|
|
if (hax_enabled()) {
|
|
/*
|
|
* FIXME: race condition with the exit_request check in
|
|
* hax_vcpu_hax_exec
|
|
*/
|
|
cpu->exit_request = 1;
|
|
}
|
|
qemu_cpu_kick_thread(cpu);
|
|
}
|
|
}
|
|
|
|
void qemu_cpu_kick_self(void)
|
|
{
|
|
assert(current_cpu);
|
|
qemu_cpu_kick_thread(current_cpu);
|
|
}
|
|
|
|
bool qemu_cpu_is_self(CPUState *cpu)
|
|
{
|
|
return qemu_thread_is_self(cpu->thread);
|
|
}
|
|
|
|
bool qemu_in_vcpu_thread(void)
|
|
{
|
|
return current_cpu && qemu_cpu_is_self(current_cpu);
|
|
}
|
|
|
|
static __thread bool iothread_locked = false;
|
|
|
|
bool qemu_mutex_iothread_locked(void)
|
|
{
|
|
return iothread_locked;
|
|
}
|
|
|
|
/*
|
|
* The BQL is taken from so many places that it is worth profiling the
|
|
* callers directly, instead of funneling them all through a single function.
|
|
*/
|
|
void qemu_mutex_lock_iothread_impl(const char *file, int line)
|
|
{
|
|
QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
|
|
|
|
g_assert(!qemu_mutex_iothread_locked());
|
|
bql_lock(&qemu_global_mutex, file, line);
|
|
iothread_locked = true;
|
|
}
|
|
|
|
void qemu_mutex_unlock_iothread(void)
|
|
{
|
|
g_assert(qemu_mutex_iothread_locked());
|
|
iothread_locked = false;
|
|
qemu_mutex_unlock(&qemu_global_mutex);
|
|
}
|
|
|
|
void qemu_cond_wait_iothread(QemuCond *cond)
|
|
{
|
|
qemu_cond_wait(cond, &qemu_global_mutex);
|
|
}
|
|
|
|
static bool all_vcpus_paused(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
CPU_FOREACH(cpu) {
|
|
if (!cpu->stopped) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void pause_all_vcpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
|
|
CPU_FOREACH(cpu) {
|
|
if (qemu_cpu_is_self(cpu)) {
|
|
qemu_cpu_stop(cpu, true);
|
|
} else {
|
|
cpu->stop = true;
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
}
|
|
|
|
/* We need to drop the replay_lock so any vCPU threads woken up
|
|
* can finish their replay tasks
|
|
*/
|
|
replay_mutex_unlock();
|
|
|
|
while (!all_vcpus_paused()) {
|
|
qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
|
|
CPU_FOREACH(cpu) {
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
}
|
|
|
|
qemu_mutex_unlock_iothread();
|
|
replay_mutex_lock();
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
void cpu_resume(CPUState *cpu)
|
|
{
|
|
cpu->stop = false;
|
|
cpu->stopped = false;
|
|
qemu_cpu_kick(cpu);
|
|
}
|
|
|
|
void resume_all_vcpus(void)
|
|
{
|
|
CPUState *cpu;
|
|
|
|
if (!runstate_is_running()) {
|
|
return;
|
|
}
|
|
|
|
qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
|
|
CPU_FOREACH(cpu) {
|
|
cpu_resume(cpu);
|
|
}
|
|
}
|
|
|
|
void cpu_remove_sync(CPUState *cpu)
|
|
{
|
|
cpu->stop = true;
|
|
cpu->unplug = true;
|
|
qemu_cpu_kick(cpu);
|
|
qemu_mutex_unlock_iothread();
|
|
qemu_thread_join(cpu->thread);
|
|
qemu_mutex_lock_iothread();
|
|
}
|
|
|
|
/* For temporary buffers for forming a name */
|
|
#define VCPU_THREAD_NAME_SIZE 16
|
|
|
|
static void qemu_tcg_init_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
static QemuCond *single_tcg_halt_cond;
|
|
static QemuThread *single_tcg_cpu_thread;
|
|
static int tcg_region_inited;
|
|
|
|
assert(tcg_enabled());
|
|
/*
|
|
* Initialize TCG regions--once. Now is a good time, because:
|
|
* (1) TCG's init context, prologue and target globals have been set up.
|
|
* (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
|
|
* -accel flag is processed, so the check doesn't work then).
|
|
*/
|
|
if (!tcg_region_inited) {
|
|
tcg_region_inited = 1;
|
|
tcg_region_init();
|
|
}
|
|
|
|
if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
|
|
if (qemu_tcg_mttcg_enabled()) {
|
|
/* create a thread per vCPU with TCG (MTTCG) */
|
|
parallel_cpus = true;
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
|
|
cpu->cpu_index);
|
|
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
|
|
} else {
|
|
/* share a single thread for all cpus with TCG */
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
|
|
qemu_thread_create(cpu->thread, thread_name,
|
|
qemu_tcg_rr_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
|
|
single_tcg_halt_cond = cpu->halt_cond;
|
|
single_tcg_cpu_thread = cpu->thread;
|
|
}
|
|
#ifdef _WIN32
|
|
cpu->hThread = qemu_thread_get_handle(cpu->thread);
|
|
#endif
|
|
} else {
|
|
/* For non-MTTCG cases we share the thread */
|
|
cpu->thread = single_tcg_cpu_thread;
|
|
cpu->halt_cond = single_tcg_halt_cond;
|
|
cpu->thread_id = first_cpu->thread_id;
|
|
cpu->can_do_io = 1;
|
|
cpu->created = true;
|
|
}
|
|
}
|
|
|
|
static void qemu_hax_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
#ifdef _WIN32
|
|
cpu->hThread = qemu_thread_get_handle(cpu->thread);
|
|
#endif
|
|
}
|
|
|
|
static void qemu_kvm_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
}
|
|
|
|
static void qemu_hvf_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
/* HVF currently does not support TCG, and only runs in
|
|
* unrestricted-guest mode. */
|
|
assert(hvf_enabled());
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
}
|
|
|
|
static void qemu_whpx_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
|
|
cpu, QEMU_THREAD_JOINABLE);
|
|
#ifdef _WIN32
|
|
cpu->hThread = qemu_thread_get_handle(cpu->thread);
|
|
#endif
|
|
}
|
|
|
|
static void qemu_dummy_start_vcpu(CPUState *cpu)
|
|
{
|
|
char thread_name[VCPU_THREAD_NAME_SIZE];
|
|
|
|
cpu->thread = g_malloc0(sizeof(QemuThread));
|
|
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
|
|
qemu_cond_init(cpu->halt_cond);
|
|
snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
|
|
cpu->cpu_index);
|
|
qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
|
|
QEMU_THREAD_JOINABLE);
|
|
}
|
|
|
|
void qemu_init_vcpu(CPUState *cpu)
|
|
{
|
|
MachineState *ms = MACHINE(qdev_get_machine());
|
|
|
|
cpu->nr_cores = ms->smp.cores;
|
|
cpu->nr_threads = ms->smp.threads;
|
|
cpu->stopped = true;
|
|
cpu->random_seed = qemu_guest_random_seed_thread_part1();
|
|
|
|
if (!cpu->as) {
|
|
/* If the target cpu hasn't set up any address spaces itself,
|
|
* give it the default one.
|
|
*/
|
|
cpu->num_ases = 1;
|
|
cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
|
|
}
|
|
|
|
if (kvm_enabled()) {
|
|
qemu_kvm_start_vcpu(cpu);
|
|
} else if (hax_enabled()) {
|
|
qemu_hax_start_vcpu(cpu);
|
|
} else if (hvf_enabled()) {
|
|
qemu_hvf_start_vcpu(cpu);
|
|
} else if (tcg_enabled()) {
|
|
qemu_tcg_init_vcpu(cpu);
|
|
} else if (whpx_enabled()) {
|
|
qemu_whpx_start_vcpu(cpu);
|
|
} else {
|
|
qemu_dummy_start_vcpu(cpu);
|
|
}
|
|
|
|
while (!cpu->created) {
|
|
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
|
|
}
|
|
}
|
|
|
|
void cpu_stop_current(void)
|
|
{
|
|
if (current_cpu) {
|
|
current_cpu->stop = true;
|
|
cpu_exit(current_cpu);
|
|
}
|
|
}
|
|
|
|
int vm_stop(RunState state)
|
|
{
|
|
if (qemu_in_vcpu_thread()) {
|
|
qemu_system_vmstop_request_prepare();
|
|
qemu_system_vmstop_request(state);
|
|
/*
|
|
* FIXME: should not return to device code in case
|
|
* vm_stop() has been requested.
|
|
*/
|
|
cpu_stop_current();
|
|
return 0;
|
|
}
|
|
|
|
return do_vm_stop(state, true);
|
|
}
|
|
|
|
/**
|
|
* Prepare for (re)starting the VM.
|
|
* Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
|
|
* running or in case of an error condition), 0 otherwise.
|
|
*/
|
|
int vm_prepare_start(void)
|
|
{
|
|
RunState requested;
|
|
|
|
qemu_vmstop_requested(&requested);
|
|
if (runstate_is_running() && requested == RUN_STATE__MAX) {
|
|
return -1;
|
|
}
|
|
|
|
/* Ensure that a STOP/RESUME pair of events is emitted if a
|
|
* vmstop request was pending. The BLOCK_IO_ERROR event, for
|
|
* example, according to documentation is always followed by
|
|
* the STOP event.
|
|
*/
|
|
if (runstate_is_running()) {
|
|
qapi_event_send_stop();
|
|
qapi_event_send_resume();
|
|
return -1;
|
|
}
|
|
|
|
/* We are sending this now, but the CPUs will be resumed shortly later */
|
|
qapi_event_send_resume();
|
|
|
|
cpu_enable_ticks();
|
|
runstate_set(RUN_STATE_RUNNING);
|
|
vm_state_notify(1, RUN_STATE_RUNNING);
|
|
return 0;
|
|
}
|
|
|
|
void vm_start(void)
|
|
{
|
|
if (!vm_prepare_start()) {
|
|
resume_all_vcpus();
|
|
}
|
|
}
|
|
|
|
/* does a state transition even if the VM is already stopped,
|
|
current state is forgotten forever */
|
|
int vm_stop_force_state(RunState state)
|
|
{
|
|
if (runstate_is_running()) {
|
|
return vm_stop(state);
|
|
} else {
|
|
runstate_set(state);
|
|
|
|
bdrv_drain_all();
|
|
/* Make sure to return an error if the flush in a previous vm_stop()
|
|
* failed. */
|
|
return bdrv_flush_all();
|
|
}
|
|
}
|
|
|
|
void list_cpus(const char *optarg)
|
|
{
|
|
/* XXX: implement xxx_cpu_list for targets that still miss it */
|
|
#if defined(cpu_list)
|
|
cpu_list();
|
|
#endif
|
|
}
|
|
|
|
void qmp_memsave(int64_t addr, int64_t size, const char *filename,
|
|
bool has_cpu, int64_t cpu_index, Error **errp)
|
|
{
|
|
FILE *f;
|
|
uint32_t l;
|
|
CPUState *cpu;
|
|
uint8_t buf[1024];
|
|
int64_t orig_addr = addr, orig_size = size;
|
|
|
|
if (!has_cpu) {
|
|
cpu_index = 0;
|
|
}
|
|
|
|
cpu = qemu_get_cpu(cpu_index);
|
|
if (cpu == NULL) {
|
|
error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
|
|
"a CPU number");
|
|
return;
|
|
}
|
|
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
error_setg_file_open(errp, errno, filename);
|
|
return;
|
|
}
|
|
|
|
while (size != 0) {
|
|
l = sizeof(buf);
|
|
if (l > size)
|
|
l = size;
|
|
if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
|
|
error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
|
|
" specified", orig_addr, orig_size);
|
|
goto exit;
|
|
}
|
|
if (fwrite(buf, 1, l, f) != l) {
|
|
error_setg(errp, QERR_IO_ERROR);
|
|
goto exit;
|
|
}
|
|
addr += l;
|
|
size -= l;
|
|
}
|
|
|
|
exit:
|
|
fclose(f);
|
|
}
|
|
|
|
void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
|
|
Error **errp)
|
|
{
|
|
FILE *f;
|
|
uint32_t l;
|
|
uint8_t buf[1024];
|
|
|
|
f = fopen(filename, "wb");
|
|
if (!f) {
|
|
error_setg_file_open(errp, errno, filename);
|
|
return;
|
|
}
|
|
|
|
while (size != 0) {
|
|
l = sizeof(buf);
|
|
if (l > size)
|
|
l = size;
|
|
cpu_physical_memory_read(addr, buf, l);
|
|
if (fwrite(buf, 1, l, f) != l) {
|
|
error_setg(errp, QERR_IO_ERROR);
|
|
goto exit;
|
|
}
|
|
addr += l;
|
|
size -= l;
|
|
}
|
|
|
|
exit:
|
|
fclose(f);
|
|
}
|
|
|
|
void qmp_inject_nmi(Error **errp)
|
|
{
|
|
nmi_monitor_handle(monitor_get_cpu_index(), errp);
|
|
}
|
|
|
|
void dump_drift_info(void)
|
|
{
|
|
if (!use_icount) {
|
|
return;
|
|
}
|
|
|
|
qemu_printf("Host - Guest clock %"PRIi64" ms\n",
|
|
(cpu_get_clock() - cpu_get_icount())/SCALE_MS);
|
|
if (icount_align_option) {
|
|
qemu_printf("Max guest delay %"PRIi64" ms\n",
|
|
-max_delay / SCALE_MS);
|
|
qemu_printf("Max guest advance %"PRIi64" ms\n",
|
|
max_advance / SCALE_MS);
|
|
} else {
|
|
qemu_printf("Max guest delay NA\n");
|
|
qemu_printf("Max guest advance NA\n");
|
|
}
|
|
}
|