qemu-e2k/hw/riscv/virt.c
Markus Armbruster d2623129a7 qom: Drop parameter @errp of object_property_add() & friends
The only way object_property_add() can fail is when a property with
the same name already exists.  Since our property names are all
hardcoded, failure is a programming error, and the appropriate way to
handle it is passing &error_abort.

Same for its variants, except for object_property_add_child(), which
additionally fails when the child already has a parent.  Parentage is
also under program control, so this is a programming error, too.

We have a bit over 500 callers.  Almost half of them pass
&error_abort, slightly fewer ignore errors, one test case handles
errors, and the remaining few callers pass them to their own callers.

The previous few commits demonstrated once again that ignoring
programming errors is a bad idea.

Of the few ones that pass on errors, several violate the Error API.
The Error ** argument must be NULL, &error_abort, &error_fatal, or a
pointer to a variable containing NULL.  Passing an argument of the
latter kind twice without clearing it in between is wrong: if the
first call sets an error, it no longer points to NULL for the second
call.  ich9_pm_add_properties(), sparc32_ledma_realize(),
sparc32_dma_realize(), xilinx_axidma_realize(), xilinx_enet_realize()
are wrong that way.

When the one appropriate choice of argument is &error_abort, letting
users pick the argument is a bad idea.

Drop parameter @errp and assert the preconditions instead.

There's one exception to "duplicate property name is a programming
error": the way object_property_add() implements the magic (and
undocumented) "automatic arrayification".  Don't drop @errp there.
Instead, rename object_property_add() to object_property_try_add(),
and add the obvious wrapper object_property_add().

Signed-off-by: Markus Armbruster <armbru@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Paolo Bonzini <pbonzini@redhat.com>
Message-Id: <20200505152926.18877-15-armbru@redhat.com>
[Two semantic rebase conflicts resolved]
2020-05-15 07:07:58 +02:00

664 lines
26 KiB
C

/*
* QEMU RISC-V VirtIO Board
*
* Copyright (c) 2017 SiFive, Inc.
*
* RISC-V machine with 16550a UART and VirtIO MMIO
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2 or later, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/sysbus.h"
#include "hw/qdev-properties.h"
#include "hw/char/serial.h"
#include "target/riscv/cpu.h"
#include "hw/riscv/riscv_hart.h"
#include "hw/riscv/sifive_plic.h"
#include "hw/riscv/sifive_clint.h"
#include "hw/riscv/sifive_test.h"
#include "hw/riscv/virt.h"
#include "hw/riscv/boot.h"
#include "chardev/char.h"
#include "sysemu/arch_init.h"
#include "sysemu/device_tree.h"
#include "sysemu/sysemu.h"
#include "exec/address-spaces.h"
#include "hw/pci/pci.h"
#include "hw/pci-host/gpex.h"
#include <libfdt.h>
#if defined(TARGET_RISCV32)
# define BIOS_FILENAME "opensbi-riscv32-virt-fw_jump.bin"
#else
# define BIOS_FILENAME "opensbi-riscv64-virt-fw_jump.bin"
#endif
static const struct MemmapEntry {
hwaddr base;
hwaddr size;
} virt_memmap[] = {
[VIRT_DEBUG] = { 0x0, 0x100 },
[VIRT_MROM] = { 0x1000, 0x11000 },
[VIRT_TEST] = { 0x100000, 0x1000 },
[VIRT_RTC] = { 0x101000, 0x1000 },
[VIRT_CLINT] = { 0x2000000, 0x10000 },
[VIRT_PLIC] = { 0xc000000, 0x4000000 },
[VIRT_UART0] = { 0x10000000, 0x100 },
[VIRT_VIRTIO] = { 0x10001000, 0x1000 },
[VIRT_FLASH] = { 0x20000000, 0x4000000 },
[VIRT_DRAM] = { 0x80000000, 0x0 },
[VIRT_PCIE_MMIO] = { 0x40000000, 0x40000000 },
[VIRT_PCIE_PIO] = { 0x03000000, 0x00010000 },
[VIRT_PCIE_ECAM] = { 0x30000000, 0x10000000 },
};
#define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
const char *name,
const char *alias_prop_name)
{
/*
* Create a single flash device. We use the same parameters as
* the flash devices on the ARM virt board.
*/
DeviceState *dev = qdev_create(NULL, TYPE_PFLASH_CFI01);
qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
qdev_prop_set_uint8(dev, "width", 4);
qdev_prop_set_uint8(dev, "device-width", 2);
qdev_prop_set_bit(dev, "big-endian", false);
qdev_prop_set_uint16(dev, "id0", 0x89);
qdev_prop_set_uint16(dev, "id1", 0x18);
qdev_prop_set_uint16(dev, "id2", 0x00);
qdev_prop_set_uint16(dev, "id3", 0x00);
qdev_prop_set_string(dev, "name", name);
object_property_add_child(OBJECT(s), name, OBJECT(dev));
object_property_add_alias(OBJECT(s), alias_prop_name,
OBJECT(dev), "drive");
return PFLASH_CFI01(dev);
}
static void virt_flash_create(RISCVVirtState *s)
{
s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
}
static void virt_flash_map1(PFlashCFI01 *flash,
hwaddr base, hwaddr size,
MemoryRegion *sysmem)
{
DeviceState *dev = DEVICE(flash);
assert(size % VIRT_FLASH_SECTOR_SIZE == 0);
assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
qdev_init_nofail(dev);
memory_region_add_subregion(sysmem, base,
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
}
static void virt_flash_map(RISCVVirtState *s,
MemoryRegion *sysmem)
{
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
virt_flash_map1(s->flash[0], flashbase, flashsize,
sysmem);
virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
sysmem);
}
static void create_pcie_irq_map(void *fdt, char *nodename,
uint32_t plic_phandle)
{
int pin, dev;
uint32_t
full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
uint32_t *irq_map = full_irq_map;
/* This code creates a standard swizzle of interrupts such that
* each device's first interrupt is based on it's PCI_SLOT number.
* (See pci_swizzle_map_irq_fn())
*
* We only need one entry per interrupt in the table (not one per
* possible slot) seeing the interrupt-map-mask will allow the table
* to wrap to any number of devices.
*/
for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
int devfn = dev * 0x8;
for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
int i = 0;
irq_map[i] = cpu_to_be32(devfn << 8);
i += FDT_PCI_ADDR_CELLS;
irq_map[i] = cpu_to_be32(pin + 1);
i += FDT_PCI_INT_CELLS;
irq_map[i++] = cpu_to_be32(plic_phandle);
i += FDT_PLIC_ADDR_CELLS;
irq_map[i] = cpu_to_be32(irq_nr);
irq_map += FDT_INT_MAP_WIDTH;
}
}
qemu_fdt_setprop(fdt, nodename, "interrupt-map",
full_irq_map, sizeof(full_irq_map));
qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
0x1800, 0, 0, 0x7);
}
static void create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap,
uint64_t mem_size, const char *cmdline)
{
void *fdt;
int cpu, i;
uint32_t *cells;
char *nodename;
uint32_t plic_phandle, test_phandle, phandle = 1;
hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
fdt = s->fdt = create_device_tree(&s->fdt_size);
if (!fdt) {
error_report("create_device_tree() failed");
exit(1);
}
qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu");
qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio");
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
qemu_fdt_add_subnode(fdt, "/soc");
qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
nodename = g_strdup_printf("/memory@%lx",
(long)memmap[VIRT_DRAM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
memmap[VIRT_DRAM].base >> 32, memmap[VIRT_DRAM].base,
mem_size >> 32, mem_size);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "memory");
g_free(nodename);
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
SIFIVE_CLINT_TIMEBASE_FREQ);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
int cpu_phandle = phandle++;
int intc_phandle;
nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
char *intc = g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
char *isa = riscv_isa_string(&s->soc.harts[cpu]);
qemu_fdt_add_subnode(fdt, nodename);
#if defined(TARGET_RISCV32)
qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv32");
#else
qemu_fdt_setprop_string(fdt, nodename, "mmu-type", "riscv,sv48");
#endif
qemu_fdt_setprop_string(fdt, nodename, "riscv,isa", isa);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv");
qemu_fdt_setprop_string(fdt, nodename, "status", "okay");
qemu_fdt_setprop_cell(fdt, nodename, "reg", cpu);
qemu_fdt_setprop_string(fdt, nodename, "device_type", "cpu");
qemu_fdt_setprop_cell(fdt, nodename, "phandle", cpu_phandle);
intc_phandle = phandle++;
qemu_fdt_add_subnode(fdt, intc);
qemu_fdt_setprop_cell(fdt, intc, "phandle", intc_phandle);
qemu_fdt_setprop_string(fdt, intc, "compatible", "riscv,cpu-intc");
qemu_fdt_setprop(fdt, intc, "interrupt-controller", NULL, 0);
qemu_fdt_setprop_cell(fdt, intc, "#interrupt-cells", 1);
g_free(isa);
g_free(intc);
g_free(nodename);
}
/* Add cpu-topology node */
qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
qemu_fdt_add_subnode(fdt, "/cpus/cpu-map/cluster0");
for (cpu = s->soc.num_harts - 1; cpu >= 0; cpu--) {
char *core_nodename = g_strdup_printf("/cpus/cpu-map/cluster0/core%d",
cpu);
char *cpu_nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, cpu_nodename);
qemu_fdt_add_subnode(fdt, core_nodename);
qemu_fdt_setprop_cell(fdt, core_nodename, "cpu", intc_phandle);
g_free(core_nodename);
g_free(cpu_nodename);
}
cells = g_new0(uint32_t, s->soc.num_harts * 4);
for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
nodename =
g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
g_free(nodename);
}
nodename = g_strdup_printf("/soc/clint@%lx",
(long)memmap[VIRT_CLINT].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,clint0");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[VIRT_CLINT].base,
0x0, memmap[VIRT_CLINT].size);
qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
cells, s->soc.num_harts * sizeof(uint32_t) * 4);
g_free(cells);
g_free(nodename);
plic_phandle = phandle++;
cells = g_new0(uint32_t, s->soc.num_harts * 4);
for (cpu = 0; cpu < s->soc.num_harts; cpu++) {
nodename =
g_strdup_printf("/cpus/cpu@%d/interrupt-controller", cpu);
uint32_t intc_phandle = qemu_fdt_get_phandle(fdt, nodename);
cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
g_free(nodename);
}
nodename = g_strdup_printf("/soc/interrupt-controller@%lx",
(long)memmap[VIRT_PLIC].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "#address-cells",
FDT_PLIC_ADDR_CELLS);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells",
FDT_PLIC_INT_CELLS);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "riscv,plic0");
qemu_fdt_setprop(fdt, nodename, "interrupt-controller", NULL, 0);
qemu_fdt_setprop(fdt, nodename, "interrupts-extended",
cells, s->soc.num_harts * sizeof(uint32_t) * 4);
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[VIRT_PLIC].base,
0x0, memmap[VIRT_PLIC].size);
qemu_fdt_setprop_cell(fdt, nodename, "riscv,ndev", VIRTIO_NDEV);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", plic_phandle);
plic_phandle = qemu_fdt_get_phandle(fdt, nodename);
g_free(cells);
g_free(nodename);
for (i = 0; i < VIRTIO_COUNT; i++) {
nodename = g_strdup_printf("/virtio_mmio@%lx",
(long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "virtio,mmio");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
0x0, memmap[VIRT_VIRTIO].size);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", VIRTIO_IRQ + i);
g_free(nodename);
}
nodename = g_strdup_printf("/soc/pci@%lx",
(long) memmap[VIRT_PCIE_ECAM].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_cell(fdt, nodename, "#address-cells",
FDT_PCI_ADDR_CELLS);
qemu_fdt_setprop_cell(fdt, nodename, "#interrupt-cells",
FDT_PCI_INT_CELLS);
qemu_fdt_setprop_cell(fdt, nodename, "#size-cells", 0x2);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"pci-host-ecam-generic");
qemu_fdt_setprop_string(fdt, nodename, "device_type", "pci");
qemu_fdt_setprop_cell(fdt, nodename, "linux,pci-domain", 0);
qemu_fdt_setprop_cells(fdt, nodename, "bus-range", 0,
memmap[VIRT_PCIE_ECAM].size /
PCIE_MMCFG_SIZE_MIN - 1);
qemu_fdt_setprop(fdt, nodename, "dma-coherent", NULL, 0);
qemu_fdt_setprop_cells(fdt, nodename, "reg", 0, memmap[VIRT_PCIE_ECAM].base,
0, memmap[VIRT_PCIE_ECAM].size);
qemu_fdt_setprop_sized_cells(fdt, nodename, "ranges",
1, FDT_PCI_RANGE_IOPORT, 2, 0,
2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
1, FDT_PCI_RANGE_MMIO,
2, memmap[VIRT_PCIE_MMIO].base,
2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size);
create_pcie_irq_map(fdt, nodename, plic_phandle);
g_free(nodename);
test_phandle = phandle++;
nodename = g_strdup_printf("/test@%lx",
(long)memmap[VIRT_TEST].base);
qemu_fdt_add_subnode(fdt, nodename);
{
const char compat[] = "sifive,test1\0sifive,test0\0syscon";
qemu_fdt_setprop(fdt, nodename, "compatible", compat, sizeof(compat));
}
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[VIRT_TEST].base,
0x0, memmap[VIRT_TEST].size);
qemu_fdt_setprop_cell(fdt, nodename, "phandle", test_phandle);
test_phandle = qemu_fdt_get_phandle(fdt, nodename);
g_free(nodename);
nodename = g_strdup_printf("/reboot");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-reboot");
qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_RESET);
g_free(nodename);
nodename = g_strdup_printf("/poweroff");
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "syscon-poweroff");
qemu_fdt_setprop_cell(fdt, nodename, "regmap", test_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "offset", 0x0);
qemu_fdt_setprop_cell(fdt, nodename, "value", FINISHER_PASS);
g_free(nodename);
nodename = g_strdup_printf("/uart@%lx",
(long)memmap[VIRT_UART0].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible", "ns16550a");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[VIRT_UART0].base,
0x0, memmap[VIRT_UART0].size);
qemu_fdt_setprop_cell(fdt, nodename, "clock-frequency", 3686400);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", UART0_IRQ);
qemu_fdt_add_subnode(fdt, "/chosen");
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", nodename);
if (cmdline) {
qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
}
g_free(nodename);
nodename = g_strdup_printf("/rtc@%lx",
(long)memmap[VIRT_RTC].base);
qemu_fdt_add_subnode(fdt, nodename);
qemu_fdt_setprop_string(fdt, nodename, "compatible",
"google,goldfish-rtc");
qemu_fdt_setprop_cells(fdt, nodename, "reg",
0x0, memmap[VIRT_RTC].base,
0x0, memmap[VIRT_RTC].size);
qemu_fdt_setprop_cell(fdt, nodename, "interrupt-parent", plic_phandle);
qemu_fdt_setprop_cell(fdt, nodename, "interrupts", RTC_IRQ);
g_free(nodename);
nodename = g_strdup_printf("/flash@%" PRIx64, flashbase);
qemu_fdt_add_subnode(s->fdt, nodename);
qemu_fdt_setprop_string(s->fdt, nodename, "compatible", "cfi-flash");
qemu_fdt_setprop_sized_cells(s->fdt, nodename, "reg",
2, flashbase, 2, flashsize,
2, flashbase + flashsize, 2, flashsize);
qemu_fdt_setprop_cell(s->fdt, nodename, "bank-width", 4);
g_free(nodename);
}
static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
hwaddr ecam_base, hwaddr ecam_size,
hwaddr mmio_base, hwaddr mmio_size,
hwaddr pio_base,
DeviceState *plic, bool link_up)
{
DeviceState *dev;
MemoryRegion *ecam_alias, *ecam_reg;
MemoryRegion *mmio_alias, *mmio_reg;
qemu_irq irq;
int i;
dev = qdev_create(NULL, TYPE_GPEX_HOST);
qdev_init_nofail(dev);
ecam_alias = g_new0(MemoryRegion, 1);
ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
ecam_reg, 0, ecam_size);
memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
mmio_alias = g_new0(MemoryRegion, 1);
mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
mmio_reg, mmio_base, mmio_size);
memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
for (i = 0; i < GPEX_NUM_IRQS; i++) {
irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
}
return dev;
}
static void riscv_virt_board_init(MachineState *machine)
{
const struct MemmapEntry *memmap = virt_memmap;
RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
MemoryRegion *system_memory = get_system_memory();
MemoryRegion *main_mem = g_new(MemoryRegion, 1);
MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
char *plic_hart_config;
size_t plic_hart_config_len;
target_ulong start_addr = memmap[VIRT_DRAM].base;
int i;
unsigned int smp_cpus = machine->smp.cpus;
/* Initialize SOC */
object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
TYPE_RISCV_HART_ARRAY, &error_abort, NULL);
object_property_set_str(OBJECT(&s->soc), machine->cpu_type, "cpu-type",
&error_abort);
object_property_set_int(OBJECT(&s->soc), smp_cpus, "num-harts",
&error_abort);
object_property_set_bool(OBJECT(&s->soc), true, "realized",
&error_abort);
/* register system main memory (actual RAM) */
memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
machine->ram_size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
main_mem);
/* create device tree */
create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline);
/* boot rom */
memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
memmap[VIRT_MROM].size, &error_fatal);
memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
mask_rom);
riscv_find_and_load_firmware(machine, BIOS_FILENAME,
memmap[VIRT_DRAM].base, NULL);
if (machine->kernel_filename) {
uint64_t kernel_entry = riscv_load_kernel(machine->kernel_filename,
NULL);
if (machine->initrd_filename) {
hwaddr start;
hwaddr end = riscv_load_initrd(machine->initrd_filename,
machine->ram_size, kernel_entry,
&start);
qemu_fdt_setprop_cell(s->fdt, "/chosen",
"linux,initrd-start", start);
qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
end);
}
}
if (drive_get(IF_PFLASH, 0, 0)) {
/*
* Pflash was supplied, let's overwrite the address we jump to after
* reset to the base of the flash.
*/
start_addr = virt_memmap[VIRT_FLASH].base;
}
/* reset vector */
uint32_t reset_vec[8] = {
0x00000297, /* 1: auipc t0, %pcrel_hi(dtb) */
0x02028593, /* addi a1, t0, %pcrel_lo(1b) */
0xf1402573, /* csrr a0, mhartid */
#if defined(TARGET_RISCV32)
0x0182a283, /* lw t0, 24(t0) */
#elif defined(TARGET_RISCV64)
0x0182b283, /* ld t0, 24(t0) */
#endif
0x00028067, /* jr t0 */
0x00000000,
start_addr, /* start: .dword */
0x00000000,
/* dtb: */
};
/* copy in the reset vector in little_endian byte order */
for (i = 0; i < sizeof(reset_vec) >> 2; i++) {
reset_vec[i] = cpu_to_le32(reset_vec[i]);
}
rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
memmap[VIRT_MROM].base, &address_space_memory);
/* copy in the device tree */
if (fdt_pack(s->fdt) || fdt_totalsize(s->fdt) >
memmap[VIRT_MROM].size - sizeof(reset_vec)) {
error_report("not enough space to store device-tree");
exit(1);
}
qemu_fdt_dumpdtb(s->fdt, fdt_totalsize(s->fdt));
rom_add_blob_fixed_as("mrom.fdt", s->fdt, fdt_totalsize(s->fdt),
memmap[VIRT_MROM].base + sizeof(reset_vec),
&address_space_memory);
/* create PLIC hart topology configuration string */
plic_hart_config_len = (strlen(VIRT_PLIC_HART_CONFIG) + 1) * smp_cpus;
plic_hart_config = g_malloc0(plic_hart_config_len);
for (i = 0; i < smp_cpus; i++) {
if (i != 0) {
strncat(plic_hart_config, ",", plic_hart_config_len);
}
strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG, plic_hart_config_len);
plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1);
}
/* MMIO */
s->plic = sifive_plic_create(memmap[VIRT_PLIC].base,
plic_hart_config,
VIRT_PLIC_NUM_SOURCES,
VIRT_PLIC_NUM_PRIORITIES,
VIRT_PLIC_PRIORITY_BASE,
VIRT_PLIC_PENDING_BASE,
VIRT_PLIC_ENABLE_BASE,
VIRT_PLIC_ENABLE_STRIDE,
VIRT_PLIC_CONTEXT_BASE,
VIRT_PLIC_CONTEXT_STRIDE,
memmap[VIRT_PLIC].size);
sifive_clint_create(memmap[VIRT_CLINT].base,
memmap[VIRT_CLINT].size, smp_cpus,
SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE, true);
sifive_test_create(memmap[VIRT_TEST].base);
for (i = 0; i < VIRTIO_COUNT; i++) {
sysbus_create_simple("virtio-mmio",
memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
qdev_get_gpio_in(DEVICE(s->plic), VIRTIO_IRQ + i));
}
gpex_pcie_init(system_memory,
memmap[VIRT_PCIE_ECAM].base,
memmap[VIRT_PCIE_ECAM].size,
memmap[VIRT_PCIE_MMIO].base,
memmap[VIRT_PCIE_MMIO].size,
memmap[VIRT_PCIE_PIO].base,
DEVICE(s->plic), true);
serial_mm_init(system_memory, memmap[VIRT_UART0].base,
0, qdev_get_gpio_in(DEVICE(s->plic), UART0_IRQ), 399193,
serial_hd(0), DEVICE_LITTLE_ENDIAN);
sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
qdev_get_gpio_in(DEVICE(s->plic), RTC_IRQ));
virt_flash_create(s);
for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
/* Map legacy -drive if=pflash to machine properties */
pflash_cfi01_legacy_drive(s->flash[i],
drive_get(IF_PFLASH, 0, i));
}
virt_flash_map(s, system_memory);
g_free(plic_hart_config);
}
static void riscv_virt_machine_instance_init(Object *obj)
{
}
static void riscv_virt_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "RISC-V VirtIO board";
mc->init = riscv_virt_board_init;
mc->max_cpus = 8;
mc->default_cpu_type = VIRT_CPU;
mc->pci_allow_0_address = true;
}
static const TypeInfo riscv_virt_machine_typeinfo = {
.name = MACHINE_TYPE_NAME("virt"),
.parent = TYPE_MACHINE,
.class_init = riscv_virt_machine_class_init,
.instance_init = riscv_virt_machine_instance_init,
.instance_size = sizeof(RISCVVirtState),
};
static void riscv_virt_machine_init_register_types(void)
{
type_register_static(&riscv_virt_machine_typeinfo);
}
type_init(riscv_virt_machine_init_register_types)