qemu-e2k/target/mips/tcg/sysemu/tlb_helper.c
Philippe Mathieu-Daudé 883f2c591f bulk: Rename TARGET_FMT_plx -> HWADDR_FMT_plx
The 'hwaddr' type is defined in "exec/hwaddr.h" as:

    hwaddr is the type of a physical address
   (its size can be different from 'target_ulong').

All definitions use the 'HWADDR_' prefix, except TARGET_FMT_plx:

 $ fgrep define include/exec/hwaddr.h
 #define HWADDR_H
 #define HWADDR_BITS 64
 #define HWADDR_MAX UINT64_MAX
 #define TARGET_FMT_plx "%016" PRIx64
         ^^^^^^
 #define HWADDR_PRId PRId64
 #define HWADDR_PRIi PRIi64
 #define HWADDR_PRIo PRIo64
 #define HWADDR_PRIu PRIu64
 #define HWADDR_PRIx PRIx64
 #define HWADDR_PRIX PRIX64

Since hwaddr's size can be *different* from target_ulong, it is
very confusing to read one of its format using the 'TARGET_FMT_'
prefix, normally used for the target_long / target_ulong types:

$ fgrep TARGET_FMT_ include/exec/cpu-defs.h
 #define TARGET_FMT_lx "%08x"
 #define TARGET_FMT_ld "%d"
 #define TARGET_FMT_lu "%u"
 #define TARGET_FMT_lx "%016" PRIx64
 #define TARGET_FMT_ld "%" PRId64
 #define TARGET_FMT_lu "%" PRIu64

Apparently this format was missed during commit a8170e5e97
("Rename target_phys_addr_t to hwaddr"), so complete it by
doing a bulk-rename with:

 $ sed -i -e s/TARGET_FMT_plx/HWADDR_FMT_plx/g $(git grep -l TARGET_FMT_plx)

Signed-off-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Message-Id: <20230110212947.34557-1-philmd@linaro.org>
[thuth: Fix some warnings from checkpatch.pl along the way]
Signed-off-by: Thomas Huth <thuth@redhat.com>
2023-01-18 11:14:34 +01:00

1429 lines
45 KiB
C

/*
* MIPS TLB (Translation lookaside buffer) helpers.
*
* Copyright (c) 2004-2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "cpu.h"
#include "internal.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/log.h"
#include "hw/mips/cpudevs.h"
#include "exec/helper-proto.h"
/* TLB management */
static void r4k_mips_tlb_flush_extra(CPUMIPSState *env, int first)
{
/* Discard entries from env->tlb[first] onwards. */
while (env->tlb->tlb_in_use > first) {
r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
}
}
static inline uint64_t get_tlb_pfn_from_entrylo(uint64_t entrylo)
{
#if defined(TARGET_MIPS64)
return extract64(entrylo, 6, 54);
#else
return extract64(entrylo, 6, 24) | /* PFN */
(extract64(entrylo, 32, 32) << 24); /* PFNX */
#endif
}
static void r4k_fill_tlb(CPUMIPSState *env, int idx)
{
r4k_tlb_t *tlb;
uint64_t mask = env->CP0_PageMask >> (TARGET_PAGE_BITS + 1);
/* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
tlb = &env->tlb->mmu.r4k.tlb[idx];
if (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) {
tlb->EHINV = 1;
return;
}
tlb->EHINV = 0;
tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
tlb->VPN &= env->SEGMask;
#endif
tlb->ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
tlb->MMID = env->CP0_MemoryMapID;
tlb->PageMask = env->CP0_PageMask;
tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
tlb->XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) & 1;
tlb->RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) & 1;
tlb->PFN[0] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo0) & ~mask) << 12;
tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
tlb->XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) & 1;
tlb->RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) & 1;
tlb->PFN[1] = (get_tlb_pfn_from_entrylo(env->CP0_EntryLo1) & ~mask) << 12;
}
static void r4k_helper_tlbinv(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
r4k_tlb_t *tlb;
int idx;
MMID = mi ? MMID : (uint32_t) ASID;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
tlb = &env->tlb->mmu.r4k.tlb[idx];
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
if (!tlb->G && tlb_mmid == MMID) {
tlb->EHINV = 1;
}
}
cpu_mips_tlb_flush(env);
}
static void r4k_helper_tlbinvf(CPUMIPSState *env)
{
int idx;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
env->tlb->mmu.r4k.tlb[idx].EHINV = 1;
}
cpu_mips_tlb_flush(env);
}
static void r4k_helper_tlbwi(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
target_ulong VPN;
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
bool EHINV, G, V0, D0, V1, D1, XI0, XI1, RI0, RI1;
r4k_tlb_t *tlb;
int idx;
MMID = mi ? MMID : (uint32_t) ASID;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
#if defined(TARGET_MIPS64)
VPN &= env->SEGMask;
#endif
EHINV = (env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) != 0;
G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
V0 = (env->CP0_EntryLo0 & 2) != 0;
D0 = (env->CP0_EntryLo0 & 4) != 0;
XI0 = (env->CP0_EntryLo0 >> CP0EnLo_XI) &1;
RI0 = (env->CP0_EntryLo0 >> CP0EnLo_RI) &1;
V1 = (env->CP0_EntryLo1 & 2) != 0;
D1 = (env->CP0_EntryLo1 & 4) != 0;
XI1 = (env->CP0_EntryLo1 >> CP0EnLo_XI) &1;
RI1 = (env->CP0_EntryLo1 >> CP0EnLo_RI) &1;
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/*
* Discard cached TLB entries, unless tlbwi is just upgrading access
* permissions on the current entry.
*/
if (tlb->VPN != VPN || tlb_mmid != MMID || tlb->G != G ||
(!tlb->EHINV && EHINV) ||
(tlb->V0 && !V0) || (tlb->D0 && !D0) ||
(!tlb->XI0 && XI0) || (!tlb->RI0 && RI0) ||
(tlb->V1 && !V1) || (tlb->D1 && !D1) ||
(!tlb->XI1 && XI1) || (!tlb->RI1 && RI1)) {
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
}
r4k_invalidate_tlb(env, idx, 0);
r4k_fill_tlb(env, idx);
}
static void r4k_helper_tlbwr(CPUMIPSState *env)
{
int r = cpu_mips_get_random(env);
r4k_invalidate_tlb(env, r, 1);
r4k_fill_tlb(env, r);
}
static void r4k_helper_tlbp(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
r4k_tlb_t *tlb;
target_ulong mask;
target_ulong tag;
target_ulong VPN;
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
int i;
MMID = mi ? MMID : (uint32_t) ASID;
for (i = 0; i < env->tlb->nb_tlb; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/* Check ASID/MMID, virtual page number & size */
if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
/* TLB match */
env->CP0_Index = i;
break;
}
}
if (i == env->tlb->nb_tlb) {
/* No match. Discard any shadow entries, if any of them match. */
for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
tag = env->CP0_EntryHi & ~mask;
VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/* Check ASID/MMID, virtual page number & size */
if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag) {
r4k_mips_tlb_flush_extra(env, i);
break;
}
}
env->CP0_Index |= 0x80000000;
}
}
static inline uint64_t get_entrylo_pfn_from_tlb(uint64_t tlb_pfn)
{
#if defined(TARGET_MIPS64)
return tlb_pfn << 6;
#else
return (extract64(tlb_pfn, 0, 24) << 6) | /* PFN */
(extract64(tlb_pfn, 24, 32) << 32); /* PFNX */
#endif
}
static void r4k_helper_tlbr(CPUMIPSState *env)
{
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
uint32_t tlb_mmid;
r4k_tlb_t *tlb;
int idx;
MMID = mi ? MMID : (uint32_t) ASID;
idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
tlb = &env->tlb->mmu.r4k.tlb[idx];
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
/* If this will change the current ASID/MMID, flush qemu's TLB. */
if (MMID != tlb_mmid) {
cpu_mips_tlb_flush(env);
}
r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
if (tlb->EHINV) {
env->CP0_EntryHi = 1 << CP0EnHi_EHINV;
env->CP0_PageMask = 0;
env->CP0_EntryLo0 = 0;
env->CP0_EntryLo1 = 0;
} else {
env->CP0_EntryHi = mi ? tlb->VPN : tlb->VPN | tlb->ASID;
env->CP0_MemoryMapID = tlb->MMID;
env->CP0_PageMask = tlb->PageMask;
env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
((uint64_t)tlb->RI0 << CP0EnLo_RI) |
((uint64_t)tlb->XI0 << CP0EnLo_XI) | (tlb->C0 << 3) |
get_entrylo_pfn_from_tlb(tlb->PFN[0] >> 12);
env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
((uint64_t)tlb->RI1 << CP0EnLo_RI) |
((uint64_t)tlb->XI1 << CP0EnLo_XI) | (tlb->C1 << 3) |
get_entrylo_pfn_from_tlb(tlb->PFN[1] >> 12);
}
}
void helper_tlbwi(CPUMIPSState *env)
{
env->tlb->helper_tlbwi(env);
}
void helper_tlbwr(CPUMIPSState *env)
{
env->tlb->helper_tlbwr(env);
}
void helper_tlbp(CPUMIPSState *env)
{
env->tlb->helper_tlbp(env);
}
void helper_tlbr(CPUMIPSState *env)
{
env->tlb->helper_tlbr(env);
}
void helper_tlbinv(CPUMIPSState *env)
{
env->tlb->helper_tlbinv(env);
}
void helper_tlbinvf(CPUMIPSState *env)
{
env->tlb->helper_tlbinvf(env);
}
static void global_invalidate_tlb(CPUMIPSState *env,
uint32_t invMsgVPN2,
uint8_t invMsgR,
uint32_t invMsgMMid,
bool invAll,
bool invVAMMid,
bool invMMid,
bool invVA)
{
int idx;
r4k_tlb_t *tlb;
bool VAMatch;
bool MMidMatch;
for (idx = 0; idx < env->tlb->nb_tlb; idx++) {
tlb = &env->tlb->mmu.r4k.tlb[idx];
VAMatch =
(((tlb->VPN & ~tlb->PageMask) == (invMsgVPN2 & ~tlb->PageMask))
#ifdef TARGET_MIPS64
&&
(extract64(env->CP0_EntryHi, 62, 2) == invMsgR)
#endif
);
MMidMatch = tlb->MMID == invMsgMMid;
if ((invAll && (idx > env->CP0_Wired)) ||
(VAMatch && invVAMMid && (tlb->G || MMidMatch)) ||
(VAMatch && invVA) ||
(MMidMatch && !(tlb->G) && invMMid)) {
tlb->EHINV = 1;
}
}
cpu_mips_tlb_flush(env);
}
void helper_ginvt(CPUMIPSState *env, target_ulong arg, uint32_t type)
{
bool invAll = type == 0;
bool invVA = type == 1;
bool invMMid = type == 2;
bool invVAMMid = type == 3;
uint32_t invMsgVPN2 = arg & (TARGET_PAGE_MASK << 1);
uint8_t invMsgR = 0;
uint32_t invMsgMMid = env->CP0_MemoryMapID;
CPUState *other_cs = first_cpu;
#ifdef TARGET_MIPS64
invMsgR = extract64(arg, 62, 2);
#endif
CPU_FOREACH(other_cs) {
MIPSCPU *other_cpu = MIPS_CPU(other_cs);
global_invalidate_tlb(&other_cpu->env, invMsgVPN2, invMsgR, invMsgMMid,
invAll, invVAMMid, invMMid, invVA);
}
}
/* no MMU emulation */
static int no_mmu_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, MMUAccessType access_type)
{
*physical = address;
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return TLBRET_MATCH;
}
/* fixed mapping MMU emulation */
static int fixed_mmu_map_address(CPUMIPSState *env, hwaddr *physical,
int *prot, target_ulong address,
MMUAccessType access_type)
{
if (address <= (int32_t)0x7FFFFFFFUL) {
if (!(env->CP0_Status & (1 << CP0St_ERL))) {
*physical = address + 0x40000000UL;
} else {
*physical = address;
}
} else if (address <= (int32_t)0xBFFFFFFFUL) {
*physical = address & 0x1FFFFFFF;
} else {
*physical = address;
}
*prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
return TLBRET_MATCH;
}
/* MIPS32/MIPS64 R4000-style MMU emulation */
static int r4k_map_address(CPUMIPSState *env, hwaddr *physical, int *prot,
target_ulong address, MMUAccessType access_type)
{
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
uint32_t tlb_mmid;
int i;
MMID = mi ? MMID : (uint32_t) ASID;
for (i = 0; i < env->tlb->tlb_in_use; i++) {
r4k_tlb_t *tlb = &env->tlb->mmu.r4k.tlb[i];
/* 1k pages are not supported. */
target_ulong mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
target_ulong tag = address & ~mask;
target_ulong VPN = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
tag &= env->SEGMask;
#endif
/* Check ASID/MMID, virtual page number & size */
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
if ((tlb->G == 1 || tlb_mmid == MMID) && VPN == tag && !tlb->EHINV) {
/* TLB match */
int n = !!(address & mask & ~(mask >> 1));
/* Check access rights */
if (!(n ? tlb->V1 : tlb->V0)) {
return TLBRET_INVALID;
}
if (access_type == MMU_INST_FETCH && (n ? tlb->XI1 : tlb->XI0)) {
return TLBRET_XI;
}
if (access_type == MMU_DATA_LOAD && (n ? tlb->RI1 : tlb->RI0)) {
return TLBRET_RI;
}
if (access_type != MMU_DATA_STORE || (n ? tlb->D1 : tlb->D0)) {
*physical = tlb->PFN[n] | (address & (mask >> 1));
*prot = PAGE_READ;
if (n ? tlb->D1 : tlb->D0) {
*prot |= PAGE_WRITE;
}
if (!(n ? tlb->XI1 : tlb->XI0)) {
*prot |= PAGE_EXEC;
}
return TLBRET_MATCH;
}
return TLBRET_DIRTY;
}
}
return TLBRET_NOMATCH;
}
static void no_mmu_init(CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1;
env->tlb->map_address = &no_mmu_map_address;
}
static void fixed_mmu_init(CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1;
env->tlb->map_address = &fixed_mmu_map_address;
}
static void r4k_mmu_init(CPUMIPSState *env, const mips_def_t *def)
{
env->tlb->nb_tlb = 1 + ((def->CP0_Config1 >> CP0C1_MMU) & 63);
env->tlb->map_address = &r4k_map_address;
env->tlb->helper_tlbwi = r4k_helper_tlbwi;
env->tlb->helper_tlbwr = r4k_helper_tlbwr;
env->tlb->helper_tlbp = r4k_helper_tlbp;
env->tlb->helper_tlbr = r4k_helper_tlbr;
env->tlb->helper_tlbinv = r4k_helper_tlbinv;
env->tlb->helper_tlbinvf = r4k_helper_tlbinvf;
}
void mmu_init(CPUMIPSState *env, const mips_def_t *def)
{
env->tlb = g_malloc0(sizeof(CPUMIPSTLBContext));
switch (def->mmu_type) {
case MMU_TYPE_NONE:
no_mmu_init(env, def);
break;
case MMU_TYPE_R4000:
r4k_mmu_init(env, def);
break;
case MMU_TYPE_FMT:
fixed_mmu_init(env, def);
break;
case MMU_TYPE_R3000:
case MMU_TYPE_R6000:
case MMU_TYPE_R8000:
default:
cpu_abort(env_cpu(env), "MMU type not supported\n");
}
}
void cpu_mips_tlb_flush(CPUMIPSState *env)
{
/* Flush qemu's TLB and discard all shadowed entries. */
tlb_flush(env_cpu(env));
env->tlb->tlb_in_use = env->tlb->nb_tlb;
}
static void raise_mmu_exception(CPUMIPSState *env, target_ulong address,
MMUAccessType access_type, int tlb_error)
{
CPUState *cs = env_cpu(env);
int exception = 0, error_code = 0;
if (access_type == MMU_INST_FETCH) {
error_code |= EXCP_INST_NOTAVAIL;
}
switch (tlb_error) {
default:
case TLBRET_BADADDR:
/* Reference to kernel address from user mode or supervisor mode */
/* Reference to supervisor address from user mode */
if (access_type == MMU_DATA_STORE) {
exception = EXCP_AdES;
} else {
exception = EXCP_AdEL;
}
break;
case TLBRET_NOMATCH:
/* No TLB match for a mapped address */
if (access_type == MMU_DATA_STORE) {
exception = EXCP_TLBS;
} else {
exception = EXCP_TLBL;
}
error_code |= EXCP_TLB_NOMATCH;
break;
case TLBRET_INVALID:
/* TLB match with no valid bit */
if (access_type == MMU_DATA_STORE) {
exception = EXCP_TLBS;
} else {
exception = EXCP_TLBL;
}
break;
case TLBRET_DIRTY:
/* TLB match but 'D' bit is cleared */
exception = EXCP_LTLBL;
break;
case TLBRET_XI:
/* Execute-Inhibit Exception */
if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
exception = EXCP_TLBXI;
} else {
exception = EXCP_TLBL;
}
break;
case TLBRET_RI:
/* Read-Inhibit Exception */
if (env->CP0_PageGrain & (1 << CP0PG_IEC)) {
exception = EXCP_TLBRI;
} else {
exception = EXCP_TLBL;
}
break;
}
/* Raise exception */
if (!(env->hflags & MIPS_HFLAG_DM)) {
env->CP0_BadVAddr = address;
}
env->CP0_Context = (env->CP0_Context & ~0x007fffff) |
((address >> 9) & 0x007ffff0);
env->CP0_EntryHi = (env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask) |
(env->CP0_EntryHi & (1 << CP0EnHi_EHINV)) |
(address & (TARGET_PAGE_MASK << 1));
#if defined(TARGET_MIPS64)
env->CP0_EntryHi &= env->SEGMask;
env->CP0_XContext =
(env->CP0_XContext & ((~0ULL) << (env->SEGBITS - 7))) | /* PTEBase */
(extract64(address, 62, 2) << (env->SEGBITS - 9)) | /* R */
(extract64(address, 13, env->SEGBITS - 13) << 4); /* BadVPN2 */
#endif
cs->exception_index = exception;
env->error_code = error_code;
}
#if !defined(TARGET_MIPS64)
/*
* Perform hardware page table walk
*
* Memory accesses are performed using the KERNEL privilege level.
* Synchronous exceptions detected on memory accesses cause a silent exit
* from page table walking, resulting in a TLB or XTLB Refill exception.
*
* Implementations are not required to support page table walk memory
* accesses from mapped memory regions. When an unsupported access is
* attempted, a silent exit is taken, resulting in a TLB or XTLB Refill
* exception.
*
* Note that if an exception is caused by AddressTranslation or LoadMemory
* functions, the exception is not taken, a silent exit is taken,
* resulting in a TLB or XTLB Refill exception.
*/
static bool get_pte(CPUMIPSState *env, uint64_t vaddr, int entry_size,
uint64_t *pte)
{
if ((vaddr & ((entry_size >> 3) - 1)) != 0) {
return false;
}
if (entry_size == 64) {
*pte = cpu_ldq_code(env, vaddr);
} else {
*pte = cpu_ldl_code(env, vaddr);
}
return true;
}
static uint64_t get_tlb_entry_layout(CPUMIPSState *env, uint64_t entry,
int entry_size, int ptei)
{
uint64_t result = entry;
uint64_t rixi;
if (ptei > entry_size) {
ptei -= 32;
}
result >>= (ptei - 2);
rixi = result & 3;
result >>= 2;
result |= rixi << CP0EnLo_XI;
return result;
}
static int walk_directory(CPUMIPSState *env, uint64_t *vaddr,
int directory_index, bool *huge_page, bool *hgpg_directory_hit,
uint64_t *pw_entrylo0, uint64_t *pw_entrylo1)
{
int dph = (env->CP0_PWCtl >> CP0PC_DPH) & 0x1;
int psn = (env->CP0_PWCtl >> CP0PC_PSN) & 0x3F;
int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
int directory_shift = (ptew > 1) ? -1 :
(hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
int leaf_shift = (ptew > 1) ? -1 :
(ptew == 1) ? native_shift + 1 : native_shift;
uint32_t direntry_size = 1 << (directory_shift + 3);
uint32_t leafentry_size = 1 << (leaf_shift + 3);
uint64_t entry;
uint64_t paddr;
int prot;
uint64_t lsb = 0;
uint64_t w = 0;
if (get_physical_address(env, &paddr, &prot, *vaddr, MMU_DATA_LOAD,
cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
/* wrong base address */
return 0;
}
if (!get_pte(env, *vaddr, direntry_size, &entry)) {
return 0;
}
if ((entry & (1 << psn)) && hugepg) {
*huge_page = true;
*hgpg_directory_hit = true;
entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
w = directory_index - 1;
if (directory_index & 0x1) {
/* Generate adjacent page from same PTE for odd TLB page */
lsb = BIT_ULL(w) >> 6;
*pw_entrylo0 = entry & ~lsb; /* even page */
*pw_entrylo1 = entry | lsb; /* odd page */
} else if (dph) {
int oddpagebit = 1 << leaf_shift;
uint64_t vaddr2 = *vaddr ^ oddpagebit;
if (*vaddr & oddpagebit) {
*pw_entrylo1 = entry;
} else {
*pw_entrylo0 = entry;
}
if (get_physical_address(env, &paddr, &prot, vaddr2, MMU_DATA_LOAD,
cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
return 0;
}
if (!get_pte(env, vaddr2, leafentry_size, &entry)) {
return 0;
}
entry = get_tlb_entry_layout(env, entry, leafentry_size, pf_ptew);
if (*vaddr & oddpagebit) {
*pw_entrylo0 = entry;
} else {
*pw_entrylo1 = entry;
}
} else {
return 0;
}
return 1;
} else {
*vaddr = entry;
return 2;
}
}
static bool page_table_walk_refill(CPUMIPSState *env, vaddr address,
int mmu_idx)
{
int gdw = (env->CP0_PWSize >> CP0PS_GDW) & 0x3F;
int udw = (env->CP0_PWSize >> CP0PS_UDW) & 0x3F;
int mdw = (env->CP0_PWSize >> CP0PS_MDW) & 0x3F;
int ptw = (env->CP0_PWSize >> CP0PS_PTW) & 0x3F;
int ptew = (env->CP0_PWSize >> CP0PS_PTEW) & 0x3F;
/* Initial values */
bool huge_page = false;
bool hgpg_bdhit = false;
bool hgpg_gdhit = false;
bool hgpg_udhit = false;
bool hgpg_mdhit = false;
int32_t pw_pagemask = 0;
target_ulong pw_entryhi = 0;
uint64_t pw_entrylo0 = 0;
uint64_t pw_entrylo1 = 0;
/* Native pointer size */
/*For the 32-bit architectures, this bit is fixed to 0.*/
int native_shift = (((env->CP0_PWSize >> CP0PS_PS) & 1) == 0) ? 2 : 3;
/* Indices from PWField */
int pf_gdw = (env->CP0_PWField >> CP0PF_GDW) & 0x3F;
int pf_udw = (env->CP0_PWField >> CP0PF_UDW) & 0x3F;
int pf_mdw = (env->CP0_PWField >> CP0PF_MDW) & 0x3F;
int pf_ptw = (env->CP0_PWField >> CP0PF_PTW) & 0x3F;
int pf_ptew = (env->CP0_PWField >> CP0PF_PTEW) & 0x3F;
/* Indices computed from faulting address */
int gindex = (address >> pf_gdw) & ((1 << gdw) - 1);
int uindex = (address >> pf_udw) & ((1 << udw) - 1);
int mindex = (address >> pf_mdw) & ((1 << mdw) - 1);
int ptindex = (address >> pf_ptw) & ((1 << ptw) - 1);
/* Other HTW configs */
int hugepg = (env->CP0_PWCtl >> CP0PC_HUGEPG) & 0x1;
/* HTW Shift values (depend on entry size) */
int directory_shift = (ptew > 1) ? -1 :
(hugepg && (ptew == 1)) ? native_shift + 1 : native_shift;
int leaf_shift = (ptew > 1) ? -1 :
(ptew == 1) ? native_shift + 1 : native_shift;
/* Offsets into tables */
int goffset = gindex << directory_shift;
int uoffset = uindex << directory_shift;
int moffset = mindex << directory_shift;
int ptoffset0 = (ptindex >> 1) << (leaf_shift + 1);
int ptoffset1 = ptoffset0 | (1 << (leaf_shift));
uint32_t leafentry_size = 1 << (leaf_shift + 3);
/* Starting address - Page Table Base */
uint64_t vaddr = env->CP0_PWBase;
uint64_t dir_entry;
uint64_t paddr;
int prot;
int m;
if (!(env->CP0_Config3 & (1 << CP0C3_PW))) {
/* walker is unimplemented */
return false;
}
if (!(env->CP0_PWCtl & (1 << CP0PC_PWEN))) {
/* walker is disabled */
return false;
}
if (!(gdw > 0 || udw > 0 || mdw > 0)) {
/* no structure to walk */
return false;
}
if ((directory_shift == -1) || (leaf_shift == -1)) {
return false;
}
/* Global Directory */
if (gdw > 0) {
vaddr |= goffset;
switch (walk_directory(env, &vaddr, pf_gdw, &huge_page, &hgpg_gdhit,
&pw_entrylo0, &pw_entrylo1))
{
case 0:
return false;
case 1:
goto refill;
case 2:
default:
break;
}
}
/* Upper directory */
if (udw > 0) {
vaddr |= uoffset;
switch (walk_directory(env, &vaddr, pf_udw, &huge_page, &hgpg_udhit,
&pw_entrylo0, &pw_entrylo1))
{
case 0:
return false;
case 1:
goto refill;
case 2:
default:
break;
}
}
/* Middle directory */
if (mdw > 0) {
vaddr |= moffset;
switch (walk_directory(env, &vaddr, pf_mdw, &huge_page, &hgpg_mdhit,
&pw_entrylo0, &pw_entrylo1))
{
case 0:
return false;
case 1:
goto refill;
case 2:
default:
break;
}
}
/* Leaf Level Page Table - First half of PTE pair */
vaddr |= ptoffset0;
if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
return false;
}
if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
return false;
}
dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
pw_entrylo0 = dir_entry;
/* Leaf Level Page Table - Second half of PTE pair */
vaddr |= ptoffset1;
if (get_physical_address(env, &paddr, &prot, vaddr, MMU_DATA_LOAD,
cpu_mmu_index(env, false)) !=
TLBRET_MATCH) {
return false;
}
if (!get_pte(env, vaddr, leafentry_size, &dir_entry)) {
return false;
}
dir_entry = get_tlb_entry_layout(env, dir_entry, leafentry_size, pf_ptew);
pw_entrylo1 = dir_entry;
refill:
m = (1 << pf_ptw) - 1;
if (huge_page) {
switch (hgpg_bdhit << 3 | hgpg_gdhit << 2 | hgpg_udhit << 1 |
hgpg_mdhit)
{
case 4:
m = (1 << pf_gdw) - 1;
if (pf_gdw & 1) {
m >>= 1;
}
break;
case 2:
m = (1 << pf_udw) - 1;
if (pf_udw & 1) {
m >>= 1;
}
break;
case 1:
m = (1 << pf_mdw) - 1;
if (pf_mdw & 1) {
m >>= 1;
}
break;
}
}
pw_pagemask = m >> TARGET_PAGE_BITS_MIN;
update_pagemask(env, pw_pagemask << CP0PM_MASK, &pw_pagemask);
pw_entryhi = (address & ~0x1fff) | (env->CP0_EntryHi & 0xFF);
{
target_ulong tmp_entryhi = env->CP0_EntryHi;
int32_t tmp_pagemask = env->CP0_PageMask;
uint64_t tmp_entrylo0 = env->CP0_EntryLo0;
uint64_t tmp_entrylo1 = env->CP0_EntryLo1;
env->CP0_EntryHi = pw_entryhi;
env->CP0_PageMask = pw_pagemask;
env->CP0_EntryLo0 = pw_entrylo0;
env->CP0_EntryLo1 = pw_entrylo1;
/*
* The hardware page walker inserts a page into the TLB in a manner
* identical to a TLBWR instruction as executed by the software refill
* handler.
*/
r4k_helper_tlbwr(env);
env->CP0_EntryHi = tmp_entryhi;
env->CP0_PageMask = tmp_pagemask;
env->CP0_EntryLo0 = tmp_entrylo0;
env->CP0_EntryLo1 = tmp_entrylo1;
}
return true;
}
#endif
bool mips_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
hwaddr physical;
int prot;
int ret = TLBRET_BADADDR;
/* data access */
/* XXX: put correct access by using cpu_restore_state() correctly */
ret = get_physical_address(env, &physical, &prot, address,
access_type, mmu_idx);
switch (ret) {
case TLBRET_MATCH:
qemu_log_mask(CPU_LOG_MMU,
"%s address=%" VADDR_PRIx " physical " HWADDR_FMT_plx
" prot %d\n", __func__, address, physical, prot);
break;
default:
qemu_log_mask(CPU_LOG_MMU,
"%s address=%" VADDR_PRIx " ret %d\n", __func__, address,
ret);
break;
}
if (ret == TLBRET_MATCH) {
tlb_set_page(cs, address & TARGET_PAGE_MASK,
physical & TARGET_PAGE_MASK, prot,
mmu_idx, TARGET_PAGE_SIZE);
return true;
}
#if !defined(TARGET_MIPS64)
if ((ret == TLBRET_NOMATCH) && (env->tlb->nb_tlb > 1)) {
/*
* Memory reads during hardware page table walking are performed
* as if they were kernel-mode load instructions.
*/
int mode = (env->hflags & MIPS_HFLAG_KSU);
bool ret_walker;
env->hflags &= ~MIPS_HFLAG_KSU;
ret_walker = page_table_walk_refill(env, address, mmu_idx);
env->hflags |= mode;
if (ret_walker) {
ret = get_physical_address(env, &physical, &prot, address,
access_type, mmu_idx);
if (ret == TLBRET_MATCH) {
tlb_set_page(cs, address & TARGET_PAGE_MASK,
physical & TARGET_PAGE_MASK, prot,
mmu_idx, TARGET_PAGE_SIZE);
return true;
}
}
}
#endif
if (probe) {
return false;
}
raise_mmu_exception(env, address, access_type, ret);
do_raise_exception_err(env, cs->exception_index, env->error_code, retaddr);
}
hwaddr cpu_mips_translate_address(CPUMIPSState *env, target_ulong address,
MMUAccessType access_type, uintptr_t retaddr)
{
hwaddr physical;
int prot;
int ret = 0;
CPUState *cs = env_cpu(env);
/* data access */
ret = get_physical_address(env, &physical, &prot, address, access_type,
cpu_mmu_index(env, false));
if (ret == TLBRET_MATCH) {
return physical;
}
raise_mmu_exception(env, address, access_type, ret);
cpu_loop_exit_restore(cs, retaddr);
}
static void set_hflags_for_handler(CPUMIPSState *env)
{
/* Exception handlers are entered in 32-bit mode. */
env->hflags &= ~(MIPS_HFLAG_M16);
/* ...except that microMIPS lets you choose. */
if (env->insn_flags & ASE_MICROMIPS) {
env->hflags |= (!!(env->CP0_Config3 &
(1 << CP0C3_ISA_ON_EXC))
<< MIPS_HFLAG_M16_SHIFT);
}
}
static inline void set_badinstr_registers(CPUMIPSState *env)
{
if (env->insn_flags & ISA_NANOMIPS32) {
if (env->CP0_Config3 & (1 << CP0C3_BI)) {
uint32_t instr = (cpu_lduw_code(env, env->active_tc.PC)) << 16;
if ((instr & 0x10000000) == 0) {
instr |= cpu_lduw_code(env, env->active_tc.PC + 2);
}
env->CP0_BadInstr = instr;
if ((instr & 0xFC000000) == 0x60000000) {
instr = cpu_lduw_code(env, env->active_tc.PC + 4) << 16;
env->CP0_BadInstrX = instr;
}
}
return;
}
if (env->hflags & MIPS_HFLAG_M16) {
/* TODO: add BadInstr support for microMIPS */
return;
}
if (env->CP0_Config3 & (1 << CP0C3_BI)) {
env->CP0_BadInstr = cpu_ldl_code(env, env->active_tc.PC);
}
if ((env->CP0_Config3 & (1 << CP0C3_BP)) &&
(env->hflags & MIPS_HFLAG_BMASK)) {
env->CP0_BadInstrP = cpu_ldl_code(env, env->active_tc.PC - 4);
}
}
void mips_cpu_do_interrupt(CPUState *cs)
{
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
bool update_badinstr = 0;
target_ulong offset;
int cause = -1;
if (qemu_loglevel_mask(CPU_LOG_INT)
&& cs->exception_index != EXCP_EXT_INTERRUPT) {
qemu_log("%s enter: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx
" %s exception\n",
__func__, env->active_tc.PC, env->CP0_EPC,
mips_exception_name(cs->exception_index));
}
if (cs->exception_index == EXCP_EXT_INTERRUPT &&
(env->hflags & MIPS_HFLAG_DM)) {
cs->exception_index = EXCP_DINT;
}
offset = 0x180;
switch (cs->exception_index) {
case EXCP_SEMIHOST:
cs->exception_index = EXCP_NONE;
mips_semihosting(env);
env->active_tc.PC += env->error_code;
return;
case EXCP_DSS:
env->CP0_Debug |= 1 << CP0DB_DSS;
/*
* Debug single step cannot be raised inside a delay slot and
* resume will always occur on the next instruction
* (but we assume the pc has always been updated during
* code translation).
*/
env->CP0_DEPC = env->active_tc.PC | !!(env->hflags & MIPS_HFLAG_M16);
goto enter_debug_mode;
case EXCP_DINT:
env->CP0_Debug |= 1 << CP0DB_DINT;
goto set_DEPC;
case EXCP_DIB:
env->CP0_Debug |= 1 << CP0DB_DIB;
goto set_DEPC;
case EXCP_DBp:
env->CP0_Debug |= 1 << CP0DB_DBp;
/* Setup DExcCode - SDBBP instruction */
env->CP0_Debug = (env->CP0_Debug & ~(0x1fULL << CP0DB_DEC)) |
(9 << CP0DB_DEC);
goto set_DEPC;
case EXCP_DDBS:
env->CP0_Debug |= 1 << CP0DB_DDBS;
goto set_DEPC;
case EXCP_DDBL:
env->CP0_Debug |= 1 << CP0DB_DDBL;
set_DEPC:
env->CP0_DEPC = exception_resume_pc(env);
env->hflags &= ~MIPS_HFLAG_BMASK;
enter_debug_mode:
if (env->insn_flags & ISA_MIPS3) {
env->hflags |= MIPS_HFLAG_64;
if (!(env->insn_flags & ISA_MIPS_R6) ||
env->CP0_Status & (1 << CP0St_KX)) {
env->hflags &= ~MIPS_HFLAG_AWRAP;
}
}
env->hflags |= MIPS_HFLAG_DM | MIPS_HFLAG_CP0;
env->hflags &= ~(MIPS_HFLAG_KSU);
/* EJTAG probe trap enable is not implemented... */
if (!(env->CP0_Status & (1 << CP0St_EXL))) {
env->CP0_Cause &= ~(1U << CP0Ca_BD);
}
env->active_tc.PC = env->exception_base + 0x480;
set_hflags_for_handler(env);
break;
case EXCP_RESET:
cpu_reset(CPU(cpu));
break;
case EXCP_SRESET:
env->CP0_Status |= (1 << CP0St_SR);
memset(env->CP0_WatchLo, 0, sizeof(env->CP0_WatchLo));
goto set_error_EPC;
case EXCP_NMI:
env->CP0_Status |= (1 << CP0St_NMI);
set_error_EPC:
env->CP0_ErrorEPC = exception_resume_pc(env);
env->hflags &= ~MIPS_HFLAG_BMASK;
env->CP0_Status |= (1 << CP0St_ERL) | (1 << CP0St_BEV);
if (env->insn_flags & ISA_MIPS3) {
env->hflags |= MIPS_HFLAG_64;
if (!(env->insn_flags & ISA_MIPS_R6) ||
env->CP0_Status & (1 << CP0St_KX)) {
env->hflags &= ~MIPS_HFLAG_AWRAP;
}
}
env->hflags |= MIPS_HFLAG_CP0;
env->hflags &= ~(MIPS_HFLAG_KSU);
if (!(env->CP0_Status & (1 << CP0St_EXL))) {
env->CP0_Cause &= ~(1U << CP0Ca_BD);
}
env->active_tc.PC = env->exception_base;
set_hflags_for_handler(env);
break;
case EXCP_EXT_INTERRUPT:
cause = 0;
if (env->CP0_Cause & (1 << CP0Ca_IV)) {
uint32_t spacing = (env->CP0_IntCtl >> CP0IntCtl_VS) & 0x1f;
if ((env->CP0_Status & (1 << CP0St_BEV)) || spacing == 0) {
offset = 0x200;
} else {
uint32_t vector = 0;
uint32_t pending = (env->CP0_Cause & CP0Ca_IP_mask) >> CP0Ca_IP;
if (env->CP0_Config3 & (1 << CP0C3_VEIC)) {
/*
* For VEIC mode, the external interrupt controller feeds
* the vector through the CP0Cause IP lines.
*/
vector = pending;
} else {
/*
* Vectored Interrupts
* Mask with Status.IM7-IM0 to get enabled interrupts.
*/
pending &= (env->CP0_Status >> CP0St_IM) & 0xff;
/* Find the highest-priority interrupt. */
while (pending >>= 1) {
vector++;
}
}
offset = 0x200 + (vector * (spacing << 5));
}
}
goto set_EPC;
case EXCP_LTLBL:
cause = 1;
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
goto set_EPC;
case EXCP_TLBL:
cause = 2;
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
if ((env->error_code & EXCP_TLB_NOMATCH) &&
!(env->CP0_Status & (1 << CP0St_EXL))) {
#if defined(TARGET_MIPS64)
int R = env->CP0_BadVAddr >> 62;
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
if ((R != 0 || UX) && (R != 3 || KX) &&
(!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
offset = 0x080;
} else {
#endif
offset = 0x000;
#if defined(TARGET_MIPS64)
}
#endif
}
goto set_EPC;
case EXCP_TLBS:
cause = 3;
update_badinstr = 1;
if ((env->error_code & EXCP_TLB_NOMATCH) &&
!(env->CP0_Status & (1 << CP0St_EXL))) {
#if defined(TARGET_MIPS64)
int R = env->CP0_BadVAddr >> 62;
int UX = (env->CP0_Status & (1 << CP0St_UX)) != 0;
int KX = (env->CP0_Status & (1 << CP0St_KX)) != 0;
if ((R != 0 || UX) && (R != 3 || KX) &&
(!(env->insn_flags & (INSN_LOONGSON2E | INSN_LOONGSON2F)))) {
offset = 0x080;
} else {
#endif
offset = 0x000;
#if defined(TARGET_MIPS64)
}
#endif
}
goto set_EPC;
case EXCP_AdEL:
cause = 4;
update_badinstr = !(env->error_code & EXCP_INST_NOTAVAIL);
goto set_EPC;
case EXCP_AdES:
cause = 5;
update_badinstr = 1;
goto set_EPC;
case EXCP_IBE:
cause = 6;
goto set_EPC;
case EXCP_DBE:
cause = 7;
goto set_EPC;
case EXCP_SYSCALL:
cause = 8;
update_badinstr = 1;
goto set_EPC;
case EXCP_BREAK:
cause = 9;
update_badinstr = 1;
goto set_EPC;
case EXCP_RI:
cause = 10;
update_badinstr = 1;
goto set_EPC;
case EXCP_CpU:
cause = 11;
update_badinstr = 1;
env->CP0_Cause = (env->CP0_Cause & ~(0x3 << CP0Ca_CE)) |
(env->error_code << CP0Ca_CE);
goto set_EPC;
case EXCP_OVERFLOW:
cause = 12;
update_badinstr = 1;
goto set_EPC;
case EXCP_TRAP:
cause = 13;
update_badinstr = 1;
goto set_EPC;
case EXCP_MSAFPE:
cause = 14;
update_badinstr = 1;
goto set_EPC;
case EXCP_FPE:
cause = 15;
update_badinstr = 1;
goto set_EPC;
case EXCP_C2E:
cause = 18;
goto set_EPC;
case EXCP_TLBRI:
cause = 19;
update_badinstr = 1;
goto set_EPC;
case EXCP_TLBXI:
cause = 20;
goto set_EPC;
case EXCP_MSADIS:
cause = 21;
update_badinstr = 1;
goto set_EPC;
case EXCP_MDMX:
cause = 22;
goto set_EPC;
case EXCP_DWATCH:
cause = 23;
/* XXX: TODO: manage deferred watch exceptions */
goto set_EPC;
case EXCP_MCHECK:
cause = 24;
goto set_EPC;
case EXCP_THREAD:
cause = 25;
goto set_EPC;
case EXCP_DSPDIS:
cause = 26;
goto set_EPC;
case EXCP_CACHE:
cause = 30;
offset = 0x100;
set_EPC:
if (!(env->CP0_Status & (1 << CP0St_EXL))) {
env->CP0_EPC = exception_resume_pc(env);
if (update_badinstr) {
set_badinstr_registers(env);
}
if (env->hflags & MIPS_HFLAG_BMASK) {
env->CP0_Cause |= (1U << CP0Ca_BD);
} else {
env->CP0_Cause &= ~(1U << CP0Ca_BD);
}
env->CP0_Status |= (1 << CP0St_EXL);
if (env->insn_flags & ISA_MIPS3) {
env->hflags |= MIPS_HFLAG_64;
if (!(env->insn_flags & ISA_MIPS_R6) ||
env->CP0_Status & (1 << CP0St_KX)) {
env->hflags &= ~MIPS_HFLAG_AWRAP;
}
}
env->hflags |= MIPS_HFLAG_CP0;
env->hflags &= ~(MIPS_HFLAG_KSU);
}
env->hflags &= ~MIPS_HFLAG_BMASK;
if (env->CP0_Status & (1 << CP0St_BEV)) {
env->active_tc.PC = env->exception_base + 0x200;
} else if (cause == 30 && !(env->CP0_Config3 & (1 << CP0C3_SC) &&
env->CP0_Config5 & (1 << CP0C5_CV))) {
/* Force KSeg1 for cache errors */
env->active_tc.PC = KSEG1_BASE | (env->CP0_EBase & 0x1FFFF000);
} else {
env->active_tc.PC = env->CP0_EBase & ~0xfff;
}
env->active_tc.PC += offset;
set_hflags_for_handler(env);
env->CP0_Cause = (env->CP0_Cause & ~(0x1f << CP0Ca_EC)) |
(cause << CP0Ca_EC);
break;
default:
abort();
}
if (qemu_loglevel_mask(CPU_LOG_INT)
&& cs->exception_index != EXCP_EXT_INTERRUPT) {
qemu_log("%s: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx " cause %d\n"
" S %08x C %08x A " TARGET_FMT_lx " D " TARGET_FMT_lx "\n",
__func__, env->active_tc.PC, env->CP0_EPC, cause,
env->CP0_Status, env->CP0_Cause, env->CP0_BadVAddr,
env->CP0_DEPC);
}
cs->exception_index = EXCP_NONE;
}
bool mips_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
if (interrupt_request & CPU_INTERRUPT_HARD) {
MIPSCPU *cpu = MIPS_CPU(cs);
CPUMIPSState *env = &cpu->env;
if (cpu_mips_hw_interrupts_enabled(env) &&
cpu_mips_hw_interrupts_pending(env)) {
/* Raise it */
cs->exception_index = EXCP_EXT_INTERRUPT;
env->error_code = 0;
mips_cpu_do_interrupt(cs);
return true;
}
}
return false;
}
void r4k_invalidate_tlb(CPUMIPSState *env, int idx, int use_extra)
{
CPUState *cs = env_cpu(env);
r4k_tlb_t *tlb;
target_ulong addr;
target_ulong end;
uint16_t ASID = env->CP0_EntryHi & env->CP0_EntryHi_ASID_mask;
uint32_t MMID = env->CP0_MemoryMapID;
bool mi = !!((env->CP0_Config5 >> CP0C5_MI) & 1);
uint32_t tlb_mmid;
target_ulong mask;
MMID = mi ? MMID : (uint32_t) ASID;
tlb = &env->tlb->mmu.r4k.tlb[idx];
/*
* The qemu TLB is flushed when the ASID/MMID changes, so no need to
* flush these entries again.
*/
tlb_mmid = mi ? tlb->MMID : (uint32_t) tlb->ASID;
if (tlb->G == 0 && tlb_mmid != MMID) {
return;
}
if (use_extra && env->tlb->tlb_in_use < MIPS_TLB_MAX) {
/*
* For tlbwr, we can shadow the discarded entry into
* a new (fake) TLB entry, as long as the guest can not
* tell that it's there.
*/
env->tlb->mmu.r4k.tlb[env->tlb->tlb_in_use] = *tlb;
env->tlb->tlb_in_use++;
return;
}
/* 1k pages are not supported. */
mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
if (tlb->V0) {
addr = tlb->VPN & ~mask;
#if defined(TARGET_MIPS64)
if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
addr |= 0x3FFFFF0000000000ULL;
}
#endif
end = addr | (mask >> 1);
while (addr < end) {
tlb_flush_page(cs, addr);
addr += TARGET_PAGE_SIZE;
}
}
if (tlb->V1) {
addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
#if defined(TARGET_MIPS64)
if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
addr |= 0x3FFFFF0000000000ULL;
}
#endif
end = addr | mask;
while (addr - 1 < end) {
tlb_flush_page(cs, addr);
addr += TARGET_PAGE_SIZE;
}
}
}