1a25e59c62
This patch changes behavior on writing RW=01 to pmpcfg with MML=0.
RWX filed is form of collective WARL with the combination of
pmpcfg.RW=01 remains reserved for future standard use.
According to definition of WARL writing the CSR has no other side
effect. But current implementation change architectural state and
change system behavior. After writing we will get unreadable-unwriteble
region regardless on the previous state.
On the other side WARL said that we should read legal value and nothing
says about what we should write. Current behavior change system state
regardless of whether we read this register or not.
Fixes: ac66f2f0
("target/riscv: pmp: Ignore writes when RW=01")
Signed-off-by: Ivan Klokov <ivan.klokov@syntacore.com>
Reviewed-by: Daniel Henrique Barboza <dbarboza@ventanamicro.com>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-ID: <20231220153205.11072-1-ivan.klokov@syntacore.com>
Signed-off-by: Alistair Francis <alistair.francis@wdc.com>
695 lines
20 KiB
C
695 lines
20 KiB
C
/*
|
|
* QEMU RISC-V PMP (Physical Memory Protection)
|
|
*
|
|
* Author: Daire McNamara, daire.mcnamara@emdalo.com
|
|
* Ivan Griffin, ivan.griffin@emdalo.com
|
|
*
|
|
* This provides a RISC-V Physical Memory Protection implementation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms and conditions of the GNU General Public License,
|
|
* version 2 or later, as published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope it will be useful, but WITHOUT
|
|
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
|
* more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License along with
|
|
* this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/log.h"
|
|
#include "qapi/error.h"
|
|
#include "cpu.h"
|
|
#include "trace.h"
|
|
#include "exec/exec-all.h"
|
|
|
|
static bool pmp_write_cfg(CPURISCVState *env, uint32_t addr_index,
|
|
uint8_t val);
|
|
static uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t addr_index);
|
|
|
|
/*
|
|
* Accessor method to extract address matching type 'a field' from cfg reg
|
|
*/
|
|
static inline uint8_t pmp_get_a_field(uint8_t cfg)
|
|
{
|
|
uint8_t a = cfg >> 3;
|
|
return a & 0x3;
|
|
}
|
|
|
|
/*
|
|
* Check whether a PMP is locked or not.
|
|
*/
|
|
static inline int pmp_is_locked(CPURISCVState *env, uint32_t pmp_index)
|
|
{
|
|
/* mseccfg.RLB is set */
|
|
if (MSECCFG_RLB_ISSET(env)) {
|
|
return 0;
|
|
}
|
|
|
|
if (env->pmp_state.pmp[pmp_index].cfg_reg & PMP_LOCK) {
|
|
return 1;
|
|
}
|
|
|
|
/* Top PMP has no 'next' to check */
|
|
if ((pmp_index + 1u) >= MAX_RISCV_PMPS) {
|
|
return 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Count the number of active rules.
|
|
*/
|
|
uint32_t pmp_get_num_rules(CPURISCVState *env)
|
|
{
|
|
return env->pmp_state.num_rules;
|
|
}
|
|
|
|
/*
|
|
* Accessor to get the cfg reg for a specific PMP/HART
|
|
*/
|
|
static inline uint8_t pmp_read_cfg(CPURISCVState *env, uint32_t pmp_index)
|
|
{
|
|
if (pmp_index < MAX_RISCV_PMPS) {
|
|
return env->pmp_state.pmp[pmp_index].cfg_reg;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/*
|
|
* Accessor to set the cfg reg for a specific PMP/HART
|
|
* Bounds checks and relevant lock bit.
|
|
*/
|
|
static bool pmp_write_cfg(CPURISCVState *env, uint32_t pmp_index, uint8_t val)
|
|
{
|
|
if (pmp_index < MAX_RISCV_PMPS) {
|
|
bool locked = true;
|
|
|
|
if (riscv_cpu_cfg(env)->ext_smepmp) {
|
|
/* mseccfg.RLB is set */
|
|
if (MSECCFG_RLB_ISSET(env)) {
|
|
locked = false;
|
|
}
|
|
|
|
/* mseccfg.MML is not set */
|
|
if (!MSECCFG_MML_ISSET(env) && !pmp_is_locked(env, pmp_index)) {
|
|
locked = false;
|
|
}
|
|
|
|
/* mseccfg.MML is set */
|
|
if (MSECCFG_MML_ISSET(env)) {
|
|
/* not adding execute bit */
|
|
if ((val & PMP_LOCK) != 0 && (val & PMP_EXEC) != PMP_EXEC) {
|
|
locked = false;
|
|
}
|
|
/* shared region and not adding X bit */
|
|
if ((val & PMP_LOCK) != PMP_LOCK &&
|
|
(val & 0x7) != (PMP_WRITE | PMP_EXEC)) {
|
|
locked = false;
|
|
}
|
|
}
|
|
} else {
|
|
if (!pmp_is_locked(env, pmp_index)) {
|
|
locked = false;
|
|
}
|
|
}
|
|
|
|
if (locked) {
|
|
qemu_log_mask(LOG_GUEST_ERROR, "ignoring pmpcfg write - locked\n");
|
|
} else if (env->pmp_state.pmp[pmp_index].cfg_reg != val) {
|
|
/* If !mseccfg.MML then ignore writes with encoding RW=01 */
|
|
if ((val & PMP_WRITE) && !(val & PMP_READ) &&
|
|
!MSECCFG_MML_ISSET(env)) {
|
|
return false;
|
|
}
|
|
env->pmp_state.pmp[pmp_index].cfg_reg = val;
|
|
pmp_update_rule_addr(env, pmp_index);
|
|
return true;
|
|
}
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ignoring pmpcfg write - out of bounds\n");
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void pmp_unlock_entries(CPURISCVState *env)
|
|
{
|
|
uint32_t pmp_num = pmp_get_num_rules(env);
|
|
int i;
|
|
|
|
for (i = 0; i < pmp_num; i++) {
|
|
env->pmp_state.pmp[i].cfg_reg &= ~(PMP_LOCK | PMP_AMATCH);
|
|
}
|
|
}
|
|
|
|
static void pmp_decode_napot(hwaddr a, hwaddr *sa, hwaddr *ea)
|
|
{
|
|
/*
|
|
* aaaa...aaa0 8-byte NAPOT range
|
|
* aaaa...aa01 16-byte NAPOT range
|
|
* aaaa...a011 32-byte NAPOT range
|
|
* ...
|
|
* aa01...1111 2^XLEN-byte NAPOT range
|
|
* a011...1111 2^(XLEN+1)-byte NAPOT range
|
|
* 0111...1111 2^(XLEN+2)-byte NAPOT range
|
|
* 1111...1111 Reserved
|
|
*/
|
|
a = (a << 2) | 0x3;
|
|
*sa = a & (a + 1);
|
|
*ea = a | (a + 1);
|
|
}
|
|
|
|
void pmp_update_rule_addr(CPURISCVState *env, uint32_t pmp_index)
|
|
{
|
|
uint8_t this_cfg = env->pmp_state.pmp[pmp_index].cfg_reg;
|
|
target_ulong this_addr = env->pmp_state.pmp[pmp_index].addr_reg;
|
|
target_ulong prev_addr = 0u;
|
|
hwaddr sa = 0u;
|
|
hwaddr ea = 0u;
|
|
|
|
if (pmp_index >= 1u) {
|
|
prev_addr = env->pmp_state.pmp[pmp_index - 1].addr_reg;
|
|
}
|
|
|
|
switch (pmp_get_a_field(this_cfg)) {
|
|
case PMP_AMATCH_OFF:
|
|
sa = 0u;
|
|
ea = -1;
|
|
break;
|
|
|
|
case PMP_AMATCH_TOR:
|
|
sa = prev_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
|
|
ea = (this_addr << 2) - 1u;
|
|
if (sa > ea) {
|
|
sa = ea = 0u;
|
|
}
|
|
break;
|
|
|
|
case PMP_AMATCH_NA4:
|
|
sa = this_addr << 2; /* shift up from [xx:0] to [xx+2:2] */
|
|
ea = (sa + 4u) - 1u;
|
|
break;
|
|
|
|
case PMP_AMATCH_NAPOT:
|
|
pmp_decode_napot(this_addr, &sa, &ea);
|
|
break;
|
|
|
|
default:
|
|
sa = 0u;
|
|
ea = 0u;
|
|
break;
|
|
}
|
|
|
|
env->pmp_state.addr[pmp_index].sa = sa;
|
|
env->pmp_state.addr[pmp_index].ea = ea;
|
|
}
|
|
|
|
void pmp_update_rule_nums(CPURISCVState *env)
|
|
{
|
|
int i;
|
|
|
|
env->pmp_state.num_rules = 0;
|
|
for (i = 0; i < MAX_RISCV_PMPS; i++) {
|
|
const uint8_t a_field =
|
|
pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
|
|
if (PMP_AMATCH_OFF != a_field) {
|
|
env->pmp_state.num_rules++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int pmp_is_in_range(CPURISCVState *env, int pmp_index, hwaddr addr)
|
|
{
|
|
int result = 0;
|
|
|
|
if ((addr >= env->pmp_state.addr[pmp_index].sa) &&
|
|
(addr <= env->pmp_state.addr[pmp_index].ea)) {
|
|
result = 1;
|
|
} else {
|
|
result = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Check if the address has required RWX privs when no PMP entry is matched.
|
|
*/
|
|
static bool pmp_hart_has_privs_default(CPURISCVState *env, pmp_priv_t privs,
|
|
pmp_priv_t *allowed_privs,
|
|
target_ulong mode)
|
|
{
|
|
bool ret;
|
|
|
|
if (MSECCFG_MMWP_ISSET(env)) {
|
|
/*
|
|
* The Machine Mode Whitelist Policy (mseccfg.MMWP) is set
|
|
* so we default to deny all, even for M-mode.
|
|
*/
|
|
*allowed_privs = 0;
|
|
return false;
|
|
} else if (MSECCFG_MML_ISSET(env)) {
|
|
/*
|
|
* The Machine Mode Lockdown (mseccfg.MML) bit is set
|
|
* so we can only execute code in M-mode with an applicable
|
|
* rule. Other modes are disabled.
|
|
*/
|
|
if (mode == PRV_M && !(privs & PMP_EXEC)) {
|
|
ret = true;
|
|
*allowed_privs = PMP_READ | PMP_WRITE;
|
|
} else {
|
|
ret = false;
|
|
*allowed_privs = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
if (!riscv_cpu_cfg(env)->pmp || (mode == PRV_M)) {
|
|
/*
|
|
* Privileged spec v1.10 states if HW doesn't implement any PMP entry
|
|
* or no PMP entry matches an M-Mode access, the access succeeds.
|
|
*/
|
|
ret = true;
|
|
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
|
|
} else {
|
|
/*
|
|
* Other modes are not allowed to succeed if they don't * match a rule,
|
|
* but there are rules. We've checked for no rule earlier in this
|
|
* function.
|
|
*/
|
|
ret = false;
|
|
*allowed_privs = 0;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
|
|
/*
|
|
* Public Interface
|
|
*/
|
|
|
|
/*
|
|
* Check if the address has required RWX privs to complete desired operation
|
|
* Return true if a pmp rule match or default match
|
|
* Return false if no match
|
|
*/
|
|
bool pmp_hart_has_privs(CPURISCVState *env, hwaddr addr,
|
|
target_ulong size, pmp_priv_t privs,
|
|
pmp_priv_t *allowed_privs, target_ulong mode)
|
|
{
|
|
int i = 0;
|
|
int pmp_size = 0;
|
|
hwaddr s = 0;
|
|
hwaddr e = 0;
|
|
|
|
/* Short cut if no rules */
|
|
if (0 == pmp_get_num_rules(env)) {
|
|
return pmp_hart_has_privs_default(env, privs, allowed_privs, mode);
|
|
}
|
|
|
|
if (size == 0) {
|
|
if (riscv_cpu_cfg(env)->mmu) {
|
|
/*
|
|
* If size is unknown (0), assume that all bytes
|
|
* from addr to the end of the page will be accessed.
|
|
*/
|
|
pmp_size = -(addr | TARGET_PAGE_MASK);
|
|
} else {
|
|
pmp_size = sizeof(target_ulong);
|
|
}
|
|
} else {
|
|
pmp_size = size;
|
|
}
|
|
|
|
/*
|
|
* 1.10 draft priv spec states there is an implicit order
|
|
* from low to high
|
|
*/
|
|
for (i = 0; i < MAX_RISCV_PMPS; i++) {
|
|
s = pmp_is_in_range(env, i, addr);
|
|
e = pmp_is_in_range(env, i, addr + pmp_size - 1);
|
|
|
|
/* partially inside */
|
|
if ((s + e) == 1) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"pmp violation - access is partially inside\n");
|
|
*allowed_privs = 0;
|
|
return false;
|
|
}
|
|
|
|
/* fully inside */
|
|
const uint8_t a_field =
|
|
pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg);
|
|
|
|
/*
|
|
* Convert the PMP permissions to match the truth table in the
|
|
* Smepmp spec.
|
|
*/
|
|
const uint8_t smepmp_operation =
|
|
((env->pmp_state.pmp[i].cfg_reg & PMP_LOCK) >> 4) |
|
|
((env->pmp_state.pmp[i].cfg_reg & PMP_READ) << 2) |
|
|
(env->pmp_state.pmp[i].cfg_reg & PMP_WRITE) |
|
|
((env->pmp_state.pmp[i].cfg_reg & PMP_EXEC) >> 2);
|
|
|
|
if (((s + e) == 2) && (PMP_AMATCH_OFF != a_field)) {
|
|
/*
|
|
* If the PMP entry is not off and the address is in range,
|
|
* do the priv check
|
|
*/
|
|
if (!MSECCFG_MML_ISSET(env)) {
|
|
/*
|
|
* If mseccfg.MML Bit is not set, do pmp priv check
|
|
* This will always apply to regular PMP.
|
|
*/
|
|
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
|
|
if ((mode != PRV_M) || pmp_is_locked(env, i)) {
|
|
*allowed_privs &= env->pmp_state.pmp[i].cfg_reg;
|
|
}
|
|
} else {
|
|
/*
|
|
* If mseccfg.MML Bit set, do the enhanced pmp priv check
|
|
*/
|
|
if (mode == PRV_M) {
|
|
switch (smepmp_operation) {
|
|
case 0:
|
|
case 1:
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8:
|
|
*allowed_privs = 0;
|
|
break;
|
|
case 2:
|
|
case 3:
|
|
case 14:
|
|
*allowed_privs = PMP_READ | PMP_WRITE;
|
|
break;
|
|
case 9:
|
|
case 10:
|
|
*allowed_privs = PMP_EXEC;
|
|
break;
|
|
case 11:
|
|
case 13:
|
|
*allowed_privs = PMP_READ | PMP_EXEC;
|
|
break;
|
|
case 12:
|
|
case 15:
|
|
*allowed_privs = PMP_READ;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
} else {
|
|
switch (smepmp_operation) {
|
|
case 0:
|
|
case 8:
|
|
case 9:
|
|
case 12:
|
|
case 13:
|
|
case 14:
|
|
*allowed_privs = 0;
|
|
break;
|
|
case 1:
|
|
case 10:
|
|
case 11:
|
|
*allowed_privs = PMP_EXEC;
|
|
break;
|
|
case 2:
|
|
case 4:
|
|
case 15:
|
|
*allowed_privs = PMP_READ;
|
|
break;
|
|
case 3:
|
|
case 6:
|
|
*allowed_privs = PMP_READ | PMP_WRITE;
|
|
break;
|
|
case 5:
|
|
*allowed_privs = PMP_READ | PMP_EXEC;
|
|
break;
|
|
case 7:
|
|
*allowed_privs = PMP_READ | PMP_WRITE | PMP_EXEC;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If matching address range was found, the protection bits
|
|
* defined with PMP must be used. We shouldn't fallback on
|
|
* finding default privileges.
|
|
*/
|
|
return (privs & *allowed_privs) == privs;
|
|
}
|
|
}
|
|
|
|
/* No rule matched */
|
|
return pmp_hart_has_privs_default(env, privs, allowed_privs, mode);
|
|
}
|
|
|
|
/*
|
|
* Handle a write to a pmpcfg CSR
|
|
*/
|
|
void pmpcfg_csr_write(CPURISCVState *env, uint32_t reg_index,
|
|
target_ulong val)
|
|
{
|
|
int i;
|
|
uint8_t cfg_val;
|
|
int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
|
|
bool modified = false;
|
|
|
|
trace_pmpcfg_csr_write(env->mhartid, reg_index, val);
|
|
|
|
for (i = 0; i < pmpcfg_nums; i++) {
|
|
cfg_val = (val >> 8 * i) & 0xff;
|
|
modified |= pmp_write_cfg(env, (reg_index * 4) + i, cfg_val);
|
|
}
|
|
|
|
/* If PMP permission of any addr has been changed, flush TLB pages. */
|
|
if (modified) {
|
|
pmp_update_rule_nums(env);
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle a read from a pmpcfg CSR
|
|
*/
|
|
target_ulong pmpcfg_csr_read(CPURISCVState *env, uint32_t reg_index)
|
|
{
|
|
int i;
|
|
target_ulong cfg_val = 0;
|
|
target_ulong val = 0;
|
|
int pmpcfg_nums = 2 << riscv_cpu_mxl(env);
|
|
|
|
for (i = 0; i < pmpcfg_nums; i++) {
|
|
val = pmp_read_cfg(env, (reg_index * 4) + i);
|
|
cfg_val |= (val << (i * 8));
|
|
}
|
|
trace_pmpcfg_csr_read(env->mhartid, reg_index, cfg_val);
|
|
|
|
return cfg_val;
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle a write to a pmpaddr CSR
|
|
*/
|
|
void pmpaddr_csr_write(CPURISCVState *env, uint32_t addr_index,
|
|
target_ulong val)
|
|
{
|
|
trace_pmpaddr_csr_write(env->mhartid, addr_index, val);
|
|
bool is_next_cfg_tor = false;
|
|
|
|
if (addr_index < MAX_RISCV_PMPS) {
|
|
/*
|
|
* In TOR mode, need to check the lock bit of the next pmp
|
|
* (if there is a next).
|
|
*/
|
|
if (addr_index + 1 < MAX_RISCV_PMPS) {
|
|
uint8_t pmp_cfg = env->pmp_state.pmp[addr_index + 1].cfg_reg;
|
|
is_next_cfg_tor = PMP_AMATCH_TOR == pmp_get_a_field(pmp_cfg);
|
|
|
|
if (pmp_cfg & PMP_LOCK && is_next_cfg_tor) {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ignoring pmpaddr write - pmpcfg + 1 locked\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (!pmp_is_locked(env, addr_index)) {
|
|
if (env->pmp_state.pmp[addr_index].addr_reg != val) {
|
|
env->pmp_state.pmp[addr_index].addr_reg = val;
|
|
pmp_update_rule_addr(env, addr_index);
|
|
if (is_next_cfg_tor) {
|
|
pmp_update_rule_addr(env, addr_index + 1);
|
|
}
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ignoring pmpaddr write - locked\n");
|
|
}
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ignoring pmpaddr write - out of bounds\n");
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Handle a read from a pmpaddr CSR
|
|
*/
|
|
target_ulong pmpaddr_csr_read(CPURISCVState *env, uint32_t addr_index)
|
|
{
|
|
target_ulong val = 0;
|
|
|
|
if (addr_index < MAX_RISCV_PMPS) {
|
|
val = env->pmp_state.pmp[addr_index].addr_reg;
|
|
trace_pmpaddr_csr_read(env->mhartid, addr_index, val);
|
|
} else {
|
|
qemu_log_mask(LOG_GUEST_ERROR,
|
|
"ignoring pmpaddr read - out of bounds\n");
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
/*
|
|
* Handle a write to a mseccfg CSR
|
|
*/
|
|
void mseccfg_csr_write(CPURISCVState *env, target_ulong val)
|
|
{
|
|
int i;
|
|
|
|
trace_mseccfg_csr_write(env->mhartid, val);
|
|
|
|
/* RLB cannot be enabled if it's already 0 and if any regions are locked */
|
|
if (!MSECCFG_RLB_ISSET(env)) {
|
|
for (i = 0; i < MAX_RISCV_PMPS; i++) {
|
|
if (pmp_is_locked(env, i)) {
|
|
val &= ~MSECCFG_RLB;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (riscv_cpu_cfg(env)->ext_smepmp) {
|
|
/* Sticky bits */
|
|
val |= (env->mseccfg & (MSECCFG_MMWP | MSECCFG_MML));
|
|
if ((val ^ env->mseccfg) & (MSECCFG_MMWP | MSECCFG_MML)) {
|
|
tlb_flush(env_cpu(env));
|
|
}
|
|
} else {
|
|
val &= ~(MSECCFG_MMWP | MSECCFG_MML | MSECCFG_RLB);
|
|
}
|
|
|
|
env->mseccfg = val;
|
|
}
|
|
|
|
/*
|
|
* Handle a read from a mseccfg CSR
|
|
*/
|
|
target_ulong mseccfg_csr_read(CPURISCVState *env)
|
|
{
|
|
trace_mseccfg_csr_read(env->mhartid, env->mseccfg);
|
|
return env->mseccfg;
|
|
}
|
|
|
|
/*
|
|
* Calculate the TLB size.
|
|
* It's possible that PMP regions only cover partial of the TLB page, and
|
|
* this may split the page into regions with different permissions.
|
|
* For example if PMP0 is (0x80000008~0x8000000F, R) and PMP1 is (0x80000000
|
|
* ~0x80000FFF, RWX), then region 0x80000008~0x8000000F has R permission, and
|
|
* the other regions in this page have RWX permissions.
|
|
* A write access to 0x80000000 will match PMP1. However we cannot cache the
|
|
* translation result in the TLB since this will make the write access to
|
|
* 0x80000008 bypass the check of PMP0.
|
|
* To avoid this we return a size of 1 (which means no caching) if the PMP
|
|
* region only covers partial of the TLB page.
|
|
*/
|
|
target_ulong pmp_get_tlb_size(CPURISCVState *env, hwaddr addr)
|
|
{
|
|
hwaddr pmp_sa;
|
|
hwaddr pmp_ea;
|
|
hwaddr tlb_sa = addr & ~(TARGET_PAGE_SIZE - 1);
|
|
hwaddr tlb_ea = tlb_sa + TARGET_PAGE_SIZE - 1;
|
|
int i;
|
|
|
|
/*
|
|
* If PMP is not supported or there are no PMP rules, the TLB page will not
|
|
* be split into regions with different permissions by PMP so we set the
|
|
* size to TARGET_PAGE_SIZE.
|
|
*/
|
|
if (!riscv_cpu_cfg(env)->pmp || !pmp_get_num_rules(env)) {
|
|
return TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
for (i = 0; i < MAX_RISCV_PMPS; i++) {
|
|
if (pmp_get_a_field(env->pmp_state.pmp[i].cfg_reg) == PMP_AMATCH_OFF) {
|
|
continue;
|
|
}
|
|
|
|
pmp_sa = env->pmp_state.addr[i].sa;
|
|
pmp_ea = env->pmp_state.addr[i].ea;
|
|
|
|
/*
|
|
* Only the first PMP entry that covers (whole or partial of) the TLB
|
|
* page really matters:
|
|
* If it covers the whole TLB page, set the size to TARGET_PAGE_SIZE,
|
|
* since the following PMP entries have lower priority and will not
|
|
* affect the permissions of the page.
|
|
* If it only covers partial of the TLB page, set the size to 1 since
|
|
* the allowed permissions of the region may be different from other
|
|
* region of the page.
|
|
*/
|
|
if (pmp_sa <= tlb_sa && pmp_ea >= tlb_ea) {
|
|
return TARGET_PAGE_SIZE;
|
|
} else if ((pmp_sa >= tlb_sa && pmp_sa <= tlb_ea) ||
|
|
(pmp_ea >= tlb_sa && pmp_ea <= tlb_ea)) {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If no PMP entry matches the TLB page, the TLB page will also not be
|
|
* split into regions with different permissions by PMP so we set the size
|
|
* to TARGET_PAGE_SIZE.
|
|
*/
|
|
return TARGET_PAGE_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Convert PMP privilege to TLB page privilege.
|
|
*/
|
|
int pmp_priv_to_page_prot(pmp_priv_t pmp_priv)
|
|
{
|
|
int prot = 0;
|
|
|
|
if (pmp_priv & PMP_READ) {
|
|
prot |= PAGE_READ;
|
|
}
|
|
if (pmp_priv & PMP_WRITE) {
|
|
prot |= PAGE_WRITE;
|
|
}
|
|
if (pmp_priv & PMP_EXEC) {
|
|
prot |= PAGE_EXEC;
|
|
}
|
|
|
|
return prot;
|
|
}
|