qemu-e2k/target/arm/vec_internal.h

221 lines
6.1 KiB
C

/*
* ARM AdvSIMD / SVE Vector Helpers
*
* Copyright (c) 2020 Linaro
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TARGET_ARM_VEC_INTERNAL_H
#define TARGET_ARM_VEC_INTERNAL_H
/*
* Note that vector data is stored in host-endian 64-bit chunks,
* so addressing units smaller than that needs a host-endian fixup.
*
* The H<N> macros are used when indexing an array of elements of size N.
*
* The H1_<N> macros are used when performing byte arithmetic and then
* casting the final pointer to a type of size N.
*/
#if HOST_BIG_ENDIAN
#define H1(x) ((x) ^ 7)
#define H1_2(x) ((x) ^ 6)
#define H1_4(x) ((x) ^ 4)
#define H2(x) ((x) ^ 3)
#define H4(x) ((x) ^ 1)
#else
#define H1(x) (x)
#define H1_2(x) (x)
#define H1_4(x) (x)
#define H2(x) (x)
#define H4(x) (x)
#endif
/*
* Access to 64-bit elements isn't host-endian dependent; we provide H8
* and H1_8 so that when a function is being generated from a macro we
* can pass these rather than an empty macro argument, for clarity.
*/
#define H8(x) (x)
#define H1_8(x) (x)
/* Data for expanding active predicate bits to bytes, for byte elements. */
extern const uint64_t expand_pred_b_data[256];
static inline void clear_tail(void *vd, uintptr_t opr_sz, uintptr_t max_sz)
{
uint64_t *d = vd + opr_sz;
uintptr_t i;
for (i = opr_sz; i < max_sz; i += 8) {
*d++ = 0;
}
}
static inline int32_t do_sqrshl_bhs(int32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (shift <= -bits) {
/* Rounding the sign bit always produces 0. */
if (round) {
return 0;
}
return src >> 31;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < bits) {
int32_t val = src << shift;
if (bits == 32) {
if (!sat || val >> shift == src) {
return val;
}
} else {
int32_t extval = sextract32(val, 0, bits);
if (!sat || val == extval) {
return extval;
}
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return (1u << (bits - 1)) - (src >= 0);
}
static inline uint32_t do_uqrshl_bhs(uint32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (shift <= -(bits + round)) {
return 0;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < bits) {
uint32_t val = src << shift;
if (bits == 32) {
if (!sat || val >> shift == src) {
return val;
}
} else {
uint32_t extval = extract32(val, 0, bits);
if (!sat || val == extval) {
return extval;
}
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return MAKE_64BIT_MASK(0, bits);
}
static inline int32_t do_suqrshl_bhs(int32_t src, int32_t shift, int bits,
bool round, uint32_t *sat)
{
if (sat && src < 0) {
*sat = 1;
return 0;
}
return do_uqrshl_bhs(src, shift, bits, round, sat);
}
static inline int64_t do_sqrshl_d(int64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (shift <= -64) {
/* Rounding the sign bit always produces 0. */
if (round) {
return 0;
}
return src >> 63;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < 64) {
int64_t val = src << shift;
if (!sat || val >> shift == src) {
return val;
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return src < 0 ? INT64_MIN : INT64_MAX;
}
static inline uint64_t do_uqrshl_d(uint64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (shift <= -(64 + round)) {
return 0;
} else if (shift < 0) {
if (round) {
src >>= -shift - 1;
return (src >> 1) + (src & 1);
}
return src >> -shift;
} else if (shift < 64) {
uint64_t val = src << shift;
if (!sat || val >> shift == src) {
return val;
}
} else if (!sat || src == 0) {
return 0;
}
*sat = 1;
return UINT64_MAX;
}
static inline int64_t do_suqrshl_d(int64_t src, int64_t shift,
bool round, uint32_t *sat)
{
if (sat && src < 0) {
*sat = 1;
return 0;
}
return do_uqrshl_d(src, shift, round, sat);
}
int8_t do_sqrdmlah_b(int8_t, int8_t, int8_t, bool, bool);
int16_t do_sqrdmlah_h(int16_t, int16_t, int16_t, bool, bool, uint32_t *);
int32_t do_sqrdmlah_s(int32_t, int32_t, int32_t, bool, bool, uint32_t *);
int64_t do_sqrdmlah_d(int64_t, int64_t, int64_t, bool, bool);
/*
* 8 x 8 -> 16 vector polynomial multiply where the inputs are
* in the low 8 bits of each 16-bit element
*/
uint64_t pmull_h(uint64_t op1, uint64_t op2);
/*
* 16 x 16 -> 32 vector polynomial multiply where the inputs are
* in the low 16 bits of each 32-bit element
*/
uint64_t pmull_w(uint64_t op1, uint64_t op2);
#endif /* TARGET_ARM_VEC_INTERNAL_H */