qemu-e2k/target/microblaze/helper.c
Richard Henderson f523531471 target/microblaze: Convert brk and brki to decodetree
Split these out of the normal branch instructions, as they require
special handling.  Perform the entire operation inline, instead of
raising EXCP_BREAK to do the work in mb_cpu_do_interrupt.

This fixes a bug in that brki rd, imm, for imm != 0x18 is not
supposed to set MSR_BIP.  This fixes a bug in that imm == 0 is
the reset vector and 0x18 is the debug vector, and neither should
raise a tcg exception in system mode.

Introduce EXCP_SYSCALL for microblaze-linux-user.

Tested-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2020-09-01 07:43:35 -07:00

321 lines
10 KiB
C

/*
* MicroBlaze helper routines.
*
* Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>
* Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "exec/log.h"
#if defined(CONFIG_USER_ONLY)
void mb_cpu_do_interrupt(CPUState *cs)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
cs->exception_index = -1;
env->res_addr = RES_ADDR_NONE;
env->regs[14] = env->pc;
}
bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
cs->exception_index = 0xaa;
cpu_loop_exit_restore(cs, retaddr);
}
#else /* !CONFIG_USER_ONLY */
bool mb_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
struct microblaze_mmu_lookup lu;
unsigned int hit;
int prot;
if (mmu_idx == MMU_NOMMU_IDX) {
/* MMU disabled or not available. */
address &= TARGET_PAGE_MASK;
prot = PAGE_BITS;
tlb_set_page(cs, address, address, prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
hit = mmu_translate(&env->mmu, &lu, address, access_type, mmu_idx);
if (likely(hit)) {
uint32_t vaddr = address & TARGET_PAGE_MASK;
uint32_t paddr = lu.paddr + vaddr - lu.vaddr;
qemu_log_mask(CPU_LOG_MMU, "MMU map mmu=%d v=%x p=%x prot=%x\n",
mmu_idx, vaddr, paddr, lu.prot);
tlb_set_page(cs, vaddr, paddr, lu.prot, mmu_idx, TARGET_PAGE_SIZE);
return true;
}
/* TLB miss. */
if (probe) {
return false;
}
qemu_log_mask(CPU_LOG_MMU, "mmu=%d miss v=%" VADDR_PRIx "\n",
mmu_idx, address);
env->ear = address;
switch (lu.err) {
case ERR_PROT:
env->esr = access_type == MMU_INST_FETCH ? 17 : 16;
env->esr |= (access_type == MMU_DATA_STORE) << 10;
break;
case ERR_MISS:
env->esr = access_type == MMU_INST_FETCH ? 19 : 18;
env->esr |= (access_type == MMU_DATA_STORE) << 10;
break;
default:
abort();
}
if (cs->exception_index == EXCP_MMU) {
cpu_abort(cs, "recursive faults\n");
}
/* TLB miss. */
cs->exception_index = EXCP_MMU;
cpu_loop_exit_restore(cs, retaddr);
}
void mb_cpu_do_interrupt(CPUState *cs)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
uint32_t t, msr = mb_cpu_read_msr(env);
/* IMM flag cannot propagate across a branch and into the dslot. */
assert(!((env->iflags & D_FLAG) && (env->iflags & IMM_FLAG)));
assert(!(env->iflags & (DRTI_FLAG | DRTE_FLAG | DRTB_FLAG)));
env->res_addr = RES_ADDR_NONE;
switch (cs->exception_index) {
case EXCP_HW_EXCP:
if (!(env->pvr.regs[0] & PVR0_USE_EXC_MASK)) {
qemu_log_mask(LOG_GUEST_ERROR, "Exception raised on system without exceptions!\n");
return;
}
env->regs[17] = env->pc + 4;
env->esr &= ~(1 << 12);
/* Exception breaks branch + dslot sequence? */
if (env->iflags & D_FLAG) {
env->esr |= 1 << 12 ;
env->btr = env->btarget;
}
/* Disable the MMU. */
t = (msr & (MSR_VM | MSR_UM)) << 1;
msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
msr |= t;
/* Exception in progress. */
msr |= MSR_EIP;
mb_cpu_write_msr(env, msr);
qemu_log_mask(CPU_LOG_INT,
"hw exception at pc=%x ear=%" PRIx64 " "
"esr=%x iflags=%x\n",
env->pc, env->ear,
env->esr, env->iflags);
log_cpu_state_mask(CPU_LOG_INT, cs, 0);
env->iflags &= ~(IMM_FLAG | D_FLAG);
env->pc = cpu->cfg.base_vectors + 0x20;
break;
case EXCP_MMU:
env->regs[17] = env->pc;
qemu_log_mask(CPU_LOG_INT,
"MMU exception at pc=%x iflags=%x ear=%" PRIx64 "\n",
env->pc, env->iflags, env->ear);
env->esr &= ~(1 << 12);
/* Exception breaks branch + dslot sequence? */
if (env->iflags & D_FLAG) {
env->esr |= 1 << 12 ;
env->btr = env->btarget;
/* Reexecute the branch. */
env->regs[17] -= 4;
/* was the branch immprefixed?. */
if (env->iflags & BIMM_FLAG) {
env->regs[17] -= 4;
log_cpu_state_mask(CPU_LOG_INT, cs, 0);
}
} else if (env->iflags & IMM_FLAG) {
env->regs[17] -= 4;
}
/* Disable the MMU. */
t = (msr & (MSR_VM | MSR_UM)) << 1;
msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
msr |= t;
/* Exception in progress. */
msr |= MSR_EIP;
mb_cpu_write_msr(env, msr);
qemu_log_mask(CPU_LOG_INT,
"exception at pc=%x ear=%" PRIx64 " iflags=%x\n",
env->pc, env->ear, env->iflags);
log_cpu_state_mask(CPU_LOG_INT, cs, 0);
env->iflags &= ~(IMM_FLAG | D_FLAG);
env->pc = cpu->cfg.base_vectors + 0x20;
break;
case EXCP_IRQ:
assert(!(msr & (MSR_EIP | MSR_BIP)));
assert(msr & MSR_IE);
assert(!(env->iflags & D_FLAG));
t = (msr & (MSR_VM | MSR_UM)) << 1;
#if 0
#include "disas/disas.h"
/* Useful instrumentation when debugging interrupt issues in either
the models or in sw. */
{
const char *sym;
sym = lookup_symbol(env->pc);
if (sym
&& (!strcmp("netif_rx", sym)
|| !strcmp("process_backlog", sym))) {
qemu_log("interrupt at pc=%x msr=%x %x iflags=%x sym=%s\n",
env->pc, msr, t, env->iflags, sym);
log_cpu_state(cs, 0);
}
}
#endif
qemu_log_mask(CPU_LOG_INT,
"interrupt at pc=%x msr=%x %x iflags=%x\n",
env->pc, msr, t, env->iflags);
msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM | MSR_IE);
msr |= t;
mb_cpu_write_msr(env, msr);
env->regs[14] = env->pc;
env->pc = cpu->cfg.base_vectors + 0x10;
//log_cpu_state_mask(CPU_LOG_INT, cs, 0);
break;
case EXCP_HW_BREAK:
assert(!(env->iflags & IMM_FLAG));
assert(!(env->iflags & D_FLAG));
t = (msr & (MSR_VM | MSR_UM)) << 1;
qemu_log_mask(CPU_LOG_INT,
"break at pc=%x msr=%x %x iflags=%x\n",
env->pc, msr, t, env->iflags);
log_cpu_state_mask(CPU_LOG_INT, cs, 0);
msr &= ~(MSR_VMS | MSR_UMS | MSR_VM | MSR_UM);
msr |= t;
msr |= MSR_BIP;
env->regs[16] = env->pc;
env->pc = cpu->cfg.base_vectors + 0x18;
mb_cpu_write_msr(env, msr);
break;
default:
cpu_abort(cs, "unhandled exception type=%d\n",
cs->exception_index);
break;
}
}
hwaddr mb_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
target_ulong vaddr, paddr = 0;
struct microblaze_mmu_lookup lu;
int mmu_idx = cpu_mmu_index(env, false);
unsigned int hit;
if (mmu_idx != MMU_NOMMU_IDX) {
hit = mmu_translate(&env->mmu, &lu, addr, 0, 0);
if (hit) {
vaddr = addr & TARGET_PAGE_MASK;
paddr = lu.paddr + vaddr - lu.vaddr;
} else
paddr = 0; /* ???. */
} else
paddr = addr & TARGET_PAGE_MASK;
return paddr;
}
#endif
bool mb_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
CPUMBState *env = &cpu->env;
if ((interrupt_request & CPU_INTERRUPT_HARD)
&& (env->msr & MSR_IE)
&& !(env->msr & (MSR_EIP | MSR_BIP))
&& !(env->iflags & (D_FLAG | IMM_FLAG))) {
cs->exception_index = EXCP_IRQ;
mb_cpu_do_interrupt(cs);
return true;
}
return false;
}
void mb_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs);
uint32_t esr, iflags;
/* Recover the pc and iflags from the corresponding insn_start. */
cpu_restore_state(cs, retaddr, true);
iflags = cpu->env.iflags;
qemu_log_mask(CPU_LOG_INT,
"Unaligned access addr=" TARGET_FMT_lx
" pc=%x iflags=%x\n", addr, cpu->env.pc, iflags);
esr = ESR_EC_UNALIGNED_DATA;
if (likely(iflags & ESR_ESS_FLAG)) {
esr |= iflags & ESR_ESS_MASK;
} else {
qemu_log_mask(LOG_UNIMP, "Unaligned access without ESR_ESS_FLAG\n");
}
cpu->env.ear = addr;
cpu->env.esr = esr;
cs->exception_index = EXCP_HW_EXCP;
cpu_loop_exit(cs);
}