53cd663792
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1337 c046a42c-6fe2-441c-8c8c-71466251a162
1122 lines
20 KiB
C
1122 lines
20 KiB
C
/*
|
|
* ARM micro operations
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
* Copyright (c) 2005 CodeSourcery, LLC
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#include "exec.h"
|
|
|
|
#define REGNAME r0
|
|
#define REG (env->regs[0])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r1
|
|
#define REG (env->regs[1])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r2
|
|
#define REG (env->regs[2])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r3
|
|
#define REG (env->regs[3])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r4
|
|
#define REG (env->regs[4])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r5
|
|
#define REG (env->regs[5])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r6
|
|
#define REG (env->regs[6])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r7
|
|
#define REG (env->regs[7])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r8
|
|
#define REG (env->regs[8])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r9
|
|
#define REG (env->regs[9])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r10
|
|
#define REG (env->regs[10])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r11
|
|
#define REG (env->regs[11])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r12
|
|
#define REG (env->regs[12])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r13
|
|
#define REG (env->regs[13])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r14
|
|
#define REG (env->regs[14])
|
|
#include "op_template.h"
|
|
|
|
#define REGNAME r15
|
|
#define REG (env->regs[15])
|
|
#define SET_REG(x) REG = x & ~(uint32_t)1
|
|
#include "op_template.h"
|
|
|
|
void OPPROTO op_bx_T0(void)
|
|
{
|
|
env->regs[15] = T0 & ~(uint32_t)1;
|
|
env->thumb = (T0 & 1) != 0;
|
|
}
|
|
|
|
void OPPROTO op_movl_T0_0(void)
|
|
{
|
|
T0 = 0;
|
|
}
|
|
|
|
void OPPROTO op_movl_T0_im(void)
|
|
{
|
|
T0 = PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_movl_T1_im(void)
|
|
{
|
|
T1 = PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_mov_CF_T1(void)
|
|
{
|
|
env->CF = ((uint32_t)T1) >> 31;
|
|
}
|
|
|
|
void OPPROTO op_movl_T2_im(void)
|
|
{
|
|
T2 = PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_addl_T1_im(void)
|
|
{
|
|
T1 += PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_addl_T1_T2(void)
|
|
{
|
|
T1 += T2;
|
|
}
|
|
|
|
void OPPROTO op_subl_T1_T2(void)
|
|
{
|
|
T1 -= T2;
|
|
}
|
|
|
|
void OPPROTO op_addl_T0_T1(void)
|
|
{
|
|
T0 += T1;
|
|
}
|
|
|
|
void OPPROTO op_addl_T0_T1_cc(void)
|
|
{
|
|
unsigned int src1;
|
|
src1 = T0;
|
|
T0 += T1;
|
|
env->NZF = T0;
|
|
env->CF = T0 < src1;
|
|
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
|
|
}
|
|
|
|
void OPPROTO op_adcl_T0_T1(void)
|
|
{
|
|
T0 += T1 + env->CF;
|
|
}
|
|
|
|
void OPPROTO op_adcl_T0_T1_cc(void)
|
|
{
|
|
unsigned int src1;
|
|
src1 = T0;
|
|
if (!env->CF) {
|
|
T0 += T1;
|
|
env->CF = T0 < src1;
|
|
} else {
|
|
T0 += T1 + 1;
|
|
env->CF = T0 <= src1;
|
|
}
|
|
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
|
|
env->NZF = T0;
|
|
FORCE_RET();
|
|
}
|
|
|
|
#define OPSUB(sub, sbc, res, T0, T1) \
|
|
\
|
|
void OPPROTO op_ ## sub ## l_T0_T1(void) \
|
|
{ \
|
|
res = T0 - T1; \
|
|
} \
|
|
\
|
|
void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
|
|
{ \
|
|
unsigned int src1; \
|
|
src1 = T0; \
|
|
T0 -= T1; \
|
|
env->NZF = T0; \
|
|
env->CF = src1 >= T1; \
|
|
env->VF = (src1 ^ T1) & (src1 ^ T0); \
|
|
res = T0; \
|
|
} \
|
|
\
|
|
void OPPROTO op_ ## sbc ## l_T0_T1(void) \
|
|
{ \
|
|
res = T0 - T1 + env->CF - 1; \
|
|
} \
|
|
\
|
|
void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
|
|
{ \
|
|
unsigned int src1; \
|
|
src1 = T0; \
|
|
if (!env->CF) { \
|
|
T0 = T0 - T1 - 1; \
|
|
env->CF = src1 > T1; \
|
|
} else { \
|
|
T0 = T0 - T1; \
|
|
env->CF = src1 >= T1; \
|
|
} \
|
|
env->VF = (src1 ^ T1) & (src1 ^ T0); \
|
|
env->NZF = T0; \
|
|
res = T0; \
|
|
FORCE_RET(); \
|
|
}
|
|
|
|
OPSUB(sub, sbc, T0, T0, T1)
|
|
|
|
OPSUB(rsb, rsc, T0, T1, T0)
|
|
|
|
void OPPROTO op_andl_T0_T1(void)
|
|
{
|
|
T0 &= T1;
|
|
}
|
|
|
|
void OPPROTO op_xorl_T0_T1(void)
|
|
{
|
|
T0 ^= T1;
|
|
}
|
|
|
|
void OPPROTO op_orl_T0_T1(void)
|
|
{
|
|
T0 |= T1;
|
|
}
|
|
|
|
void OPPROTO op_bicl_T0_T1(void)
|
|
{
|
|
T0 &= ~T1;
|
|
}
|
|
|
|
void OPPROTO op_notl_T1(void)
|
|
{
|
|
T1 = ~T1;
|
|
}
|
|
|
|
void OPPROTO op_logic_T0_cc(void)
|
|
{
|
|
env->NZF = T0;
|
|
}
|
|
|
|
void OPPROTO op_logic_T1_cc(void)
|
|
{
|
|
env->NZF = T1;
|
|
}
|
|
|
|
#define EIP (env->regs[15])
|
|
|
|
void OPPROTO op_test_eq(void)
|
|
{
|
|
if (env->NZF == 0)
|
|
JUMP_TB(op_test_eq, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_ne(void)
|
|
{
|
|
if (env->NZF != 0)
|
|
JUMP_TB(op_test_ne, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_cs(void)
|
|
{
|
|
if (env->CF != 0)
|
|
JUMP_TB(op_test_cs, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_cc(void)
|
|
{
|
|
if (env->CF == 0)
|
|
JUMP_TB(op_test_cc, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_mi(void)
|
|
{
|
|
if ((env->NZF & 0x80000000) != 0)
|
|
JUMP_TB(op_test_mi, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_pl(void)
|
|
{
|
|
if ((env->NZF & 0x80000000) == 0)
|
|
JUMP_TB(op_test_pl, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_vs(void)
|
|
{
|
|
if ((env->VF & 0x80000000) != 0)
|
|
JUMP_TB(op_test_vs, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_vc(void)
|
|
{
|
|
if ((env->VF & 0x80000000) == 0)
|
|
JUMP_TB(op_test_vc, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_hi(void)
|
|
{
|
|
if (env->CF != 0 && env->NZF != 0)
|
|
JUMP_TB(op_test_hi, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_ls(void)
|
|
{
|
|
if (env->CF == 0 || env->NZF == 0)
|
|
JUMP_TB(op_test_ls, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_ge(void)
|
|
{
|
|
if (((env->VF ^ env->NZF) & 0x80000000) == 0)
|
|
JUMP_TB(op_test_ge, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_lt(void)
|
|
{
|
|
if (((env->VF ^ env->NZF) & 0x80000000) != 0)
|
|
JUMP_TB(op_test_lt, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_gt(void)
|
|
{
|
|
if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
|
|
JUMP_TB(op_test_gt, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_test_le(void)
|
|
{
|
|
if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
|
|
JUMP_TB(op_test_le, PARAM1, 0, PARAM2);
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_jmp(void)
|
|
{
|
|
JUMP_TB(op_jmp, PARAM1, 1, PARAM2);
|
|
}
|
|
|
|
void OPPROTO op_exit_tb(void)
|
|
{
|
|
EXIT_TB();
|
|
}
|
|
|
|
void OPPROTO op_movl_T0_psr(void)
|
|
{
|
|
T0 = compute_cpsr();
|
|
}
|
|
|
|
/* NOTE: N = 1 and Z = 1 cannot be stored currently */
|
|
void OPPROTO op_movl_psr_T0(void)
|
|
{
|
|
unsigned int psr;
|
|
psr = T0;
|
|
env->CF = (psr >> 29) & 1;
|
|
env->NZF = (psr & 0xc0000000) ^ 0x40000000;
|
|
env->VF = (psr << 3) & 0x80000000;
|
|
/* for user mode we do not update other state info */
|
|
}
|
|
|
|
void OPPROTO op_mul_T0_T1(void)
|
|
{
|
|
T0 = T0 * T1;
|
|
}
|
|
|
|
/* 64 bit unsigned mul */
|
|
void OPPROTO op_mull_T0_T1(void)
|
|
{
|
|
uint64_t res;
|
|
res = (uint64_t)T0 * (uint64_t)T1;
|
|
T1 = res >> 32;
|
|
T0 = res;
|
|
}
|
|
|
|
/* 64 bit signed mul */
|
|
void OPPROTO op_imull_T0_T1(void)
|
|
{
|
|
uint64_t res;
|
|
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
|
|
T1 = res >> 32;
|
|
T0 = res;
|
|
}
|
|
|
|
/* 48 bit signed mul, top 32 bits */
|
|
void OPPROTO op_imulw_T0_T1(void)
|
|
{
|
|
uint64_t res;
|
|
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
|
|
T0 = res >> 16;
|
|
}
|
|
|
|
void OPPROTO op_addq_T0_T1(void)
|
|
{
|
|
uint64_t res;
|
|
res = ((uint64_t)T1 << 32) | T0;
|
|
res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
|
|
T1 = res >> 32;
|
|
T0 = res;
|
|
}
|
|
|
|
void OPPROTO op_addq_lo_T0_T1(void)
|
|
{
|
|
uint64_t res;
|
|
res = ((uint64_t)T1 << 32) | T0;
|
|
res += (uint64_t)(env->regs[PARAM1]);
|
|
T1 = res >> 32;
|
|
T0 = res;
|
|
}
|
|
|
|
void OPPROTO op_logicq_cc(void)
|
|
{
|
|
env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
|
|
}
|
|
|
|
/* memory access */
|
|
|
|
void OPPROTO op_ldub_T0_T1(void)
|
|
{
|
|
T0 = ldub((void *)T1);
|
|
}
|
|
|
|
void OPPROTO op_ldsb_T0_T1(void)
|
|
{
|
|
T0 = ldsb((void *)T1);
|
|
}
|
|
|
|
void OPPROTO op_lduw_T0_T1(void)
|
|
{
|
|
T0 = lduw((void *)T1);
|
|
}
|
|
|
|
void OPPROTO op_ldsw_T0_T1(void)
|
|
{
|
|
T0 = ldsw((void *)T1);
|
|
}
|
|
|
|
void OPPROTO op_ldl_T0_T1(void)
|
|
{
|
|
T0 = ldl((void *)T1);
|
|
}
|
|
|
|
void OPPROTO op_stb_T0_T1(void)
|
|
{
|
|
stb((void *)T1, T0);
|
|
}
|
|
|
|
void OPPROTO op_stw_T0_T1(void)
|
|
{
|
|
stw((void *)T1, T0);
|
|
}
|
|
|
|
void OPPROTO op_stl_T0_T1(void)
|
|
{
|
|
stl((void *)T1, T0);
|
|
}
|
|
|
|
void OPPROTO op_swpb_T0_T1(void)
|
|
{
|
|
int tmp;
|
|
|
|
cpu_lock();
|
|
tmp = ldub((void *)T1);
|
|
stb((void *)T1, T0);
|
|
T0 = tmp;
|
|
cpu_unlock();
|
|
}
|
|
|
|
void OPPROTO op_swpl_T0_T1(void)
|
|
{
|
|
int tmp;
|
|
|
|
cpu_lock();
|
|
tmp = ldl((void *)T1);
|
|
stl((void *)T1, T0);
|
|
T0 = tmp;
|
|
cpu_unlock();
|
|
}
|
|
|
|
/* shifts */
|
|
|
|
/* T1 based */
|
|
|
|
void OPPROTO op_shll_T1_im(void)
|
|
{
|
|
T1 = T1 << PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_shrl_T1_im(void)
|
|
{
|
|
T1 = (uint32_t)T1 >> PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_shrl_T1_0(void)
|
|
{
|
|
T1 = 0;
|
|
}
|
|
|
|
void OPPROTO op_sarl_T1_im(void)
|
|
{
|
|
T1 = (int32_t)T1 >> PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_sarl_T1_0(void)
|
|
{
|
|
T1 = (int32_t)T1 >> 31;
|
|
}
|
|
|
|
void OPPROTO op_rorl_T1_im(void)
|
|
{
|
|
int shift;
|
|
shift = PARAM1;
|
|
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
|
|
}
|
|
|
|
void OPPROTO op_rrxl_T1(void)
|
|
{
|
|
T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
|
|
}
|
|
|
|
/* T1 based, set C flag */
|
|
void OPPROTO op_shll_T1_im_cc(void)
|
|
{
|
|
env->CF = (T1 >> (32 - PARAM1)) & 1;
|
|
T1 = T1 << PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_shrl_T1_im_cc(void)
|
|
{
|
|
env->CF = (T1 >> (PARAM1 - 1)) & 1;
|
|
T1 = (uint32_t)T1 >> PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_shrl_T1_0_cc(void)
|
|
{
|
|
env->CF = (T1 >> 31) & 1;
|
|
T1 = 0;
|
|
}
|
|
|
|
void OPPROTO op_sarl_T1_im_cc(void)
|
|
{
|
|
env->CF = (T1 >> (PARAM1 - 1)) & 1;
|
|
T1 = (int32_t)T1 >> PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_sarl_T1_0_cc(void)
|
|
{
|
|
env->CF = (T1 >> 31) & 1;
|
|
T1 = (int32_t)T1 >> 31;
|
|
}
|
|
|
|
void OPPROTO op_rorl_T1_im_cc(void)
|
|
{
|
|
int shift;
|
|
shift = PARAM1;
|
|
env->CF = (T1 >> (shift - 1)) & 1;
|
|
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
|
|
}
|
|
|
|
void OPPROTO op_rrxl_T1_cc(void)
|
|
{
|
|
uint32_t c;
|
|
c = T1 & 1;
|
|
T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
|
|
env->CF = c;
|
|
}
|
|
|
|
/* T2 based */
|
|
void OPPROTO op_shll_T2_im(void)
|
|
{
|
|
T2 = T2 << PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_shrl_T2_im(void)
|
|
{
|
|
T2 = (uint32_t)T2 >> PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_shrl_T2_0(void)
|
|
{
|
|
T2 = 0;
|
|
}
|
|
|
|
void OPPROTO op_sarl_T2_im(void)
|
|
{
|
|
T2 = (int32_t)T2 >> PARAM1;
|
|
}
|
|
|
|
void OPPROTO op_sarl_T2_0(void)
|
|
{
|
|
T2 = (int32_t)T2 >> 31;
|
|
}
|
|
|
|
void OPPROTO op_rorl_T2_im(void)
|
|
{
|
|
int shift;
|
|
shift = PARAM1;
|
|
T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
|
|
}
|
|
|
|
void OPPROTO op_rrxl_T2(void)
|
|
{
|
|
T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31);
|
|
}
|
|
|
|
/* T1 based, use T0 as shift count */
|
|
|
|
void OPPROTO op_shll_T1_T0(void)
|
|
{
|
|
int shift;
|
|
shift = T0 & 0xff;
|
|
if (shift >= 32)
|
|
T1 = 0;
|
|
else
|
|
T1 = T1 << shift;
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_shrl_T1_T0(void)
|
|
{
|
|
int shift;
|
|
shift = T0 & 0xff;
|
|
if (shift >= 32)
|
|
T1 = 0;
|
|
else
|
|
T1 = (uint32_t)T1 >> shift;
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_sarl_T1_T0(void)
|
|
{
|
|
int shift;
|
|
shift = T0 & 0xff;
|
|
if (shift >= 32)
|
|
shift = 31;
|
|
T1 = (int32_t)T1 >> shift;
|
|
}
|
|
|
|
void OPPROTO op_rorl_T1_T0(void)
|
|
{
|
|
int shift;
|
|
shift = T0 & 0x1f;
|
|
if (shift) {
|
|
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
|
|
}
|
|
FORCE_RET();
|
|
}
|
|
|
|
/* T1 based, use T0 as shift count and compute CF */
|
|
|
|
void OPPROTO op_shll_T1_T0_cc(void)
|
|
{
|
|
int shift;
|
|
shift = T0 & 0xff;
|
|
if (shift >= 32) {
|
|
if (shift == 32)
|
|
env->CF = T1 & 1;
|
|
else
|
|
env->CF = 0;
|
|
T1 = 0;
|
|
} else if (shift != 0) {
|
|
env->CF = (T1 >> (32 - shift)) & 1;
|
|
T1 = T1 << shift;
|
|
}
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_shrl_T1_T0_cc(void)
|
|
{
|
|
int shift;
|
|
shift = T0 & 0xff;
|
|
if (shift >= 32) {
|
|
if (shift == 32)
|
|
env->CF = (T1 >> 31) & 1;
|
|
else
|
|
env->CF = 0;
|
|
T1 = 0;
|
|
} else if (shift != 0) {
|
|
env->CF = (T1 >> (shift - 1)) & 1;
|
|
T1 = (uint32_t)T1 >> shift;
|
|
}
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_sarl_T1_T0_cc(void)
|
|
{
|
|
int shift;
|
|
shift = T0 & 0xff;
|
|
if (shift >= 32) {
|
|
env->CF = (T1 >> 31) & 1;
|
|
T1 = (int32_t)T1 >> 31;
|
|
} else {
|
|
env->CF = (T1 >> (shift - 1)) & 1;
|
|
T1 = (int32_t)T1 >> shift;
|
|
}
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_rorl_T1_T0_cc(void)
|
|
{
|
|
int shift1, shift;
|
|
shift1 = T0 & 0xff;
|
|
shift = shift1 & 0x1f;
|
|
if (shift == 0) {
|
|
if (shift1 != 0)
|
|
env->CF = (T1 >> 31) & 1;
|
|
} else {
|
|
env->CF = (T1 >> (shift - 1)) & 1;
|
|
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
|
|
}
|
|
FORCE_RET();
|
|
}
|
|
|
|
/* misc */
|
|
void OPPROTO op_clz_T0(void)
|
|
{
|
|
int count;
|
|
for (count = 32; T0 > 0; count--)
|
|
T0 = T0 >> 1;
|
|
T0 = count;
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_sarl_T0_im(void)
|
|
{
|
|
T0 = (int32_t)T0 >> PARAM1;
|
|
}
|
|
|
|
/* 16->32 Sign extend */
|
|
void OPPROTO op_sxl_T0(void)
|
|
{
|
|
T0 = (int16_t)T0;
|
|
}
|
|
|
|
void OPPROTO op_sxl_T1(void)
|
|
{
|
|
T1 = (int16_t)T1;
|
|
}
|
|
|
|
#define SIGNBIT (uint32_t)0x80000000
|
|
/* saturating arithmetic */
|
|
void OPPROTO op_addl_T0_T1_setq(void)
|
|
{
|
|
uint32_t res;
|
|
|
|
res = T0 + T1;
|
|
if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
|
|
env->QF = 1;
|
|
|
|
T0 = res;
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_addl_T0_T1_saturate(void)
|
|
{
|
|
uint32_t res;
|
|
|
|
res = T0 + T1;
|
|
if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
|
|
env->QF = 1;
|
|
if (T0 & SIGNBIT)
|
|
T0 = 0x80000000;
|
|
else
|
|
T0 = 0x7fffffff;
|
|
}
|
|
else
|
|
T0 = res;
|
|
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_subl_T0_T1_saturate(void)
|
|
{
|
|
uint32_t res;
|
|
|
|
res = T0 - T1;
|
|
if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
|
|
env->QF = 1;
|
|
if (T0 & SIGNBIT)
|
|
T0 = 0x8000000;
|
|
else
|
|
T0 = 0x7fffffff;
|
|
}
|
|
else
|
|
T0 = res;
|
|
|
|
FORCE_RET();
|
|
}
|
|
|
|
/* thumb shift by immediate */
|
|
void OPPROTO op_shll_T0_im_thumb(void)
|
|
{
|
|
int shift;
|
|
shift = PARAM1;
|
|
if (shift != 0) {
|
|
env->CF = (T1 >> (32 - shift)) & 1;
|
|
T0 = T0 << shift;
|
|
}
|
|
env->NZF = T0;
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_shrl_T0_im_thumb(void)
|
|
{
|
|
int shift;
|
|
|
|
shift = PARAM1;
|
|
if (shift == 0) {
|
|
env->CF = 0;
|
|
T0 = 0;
|
|
} else {
|
|
env->CF = (T0 >> (shift - 1)) & 1;
|
|
T0 = T0 >> shift;
|
|
}
|
|
FORCE_RET();
|
|
}
|
|
|
|
void OPPROTO op_sarl_T0_im_thumb(void)
|
|
{
|
|
int shift;
|
|
|
|
shift = PARAM1;
|
|
if (shift == 0) {
|
|
T0 = ((int32_t)T0) >> 31;
|
|
env->CF = T0 & 1;
|
|
} else {
|
|
env->CF = (T0 >> (shift - 1)) & 1;
|
|
T0 = ((int32_t)T0) >> shift;
|
|
}
|
|
env->NZF = T0;
|
|
FORCE_RET();
|
|
}
|
|
|
|
/* exceptions */
|
|
|
|
void OPPROTO op_swi(void)
|
|
{
|
|
env->exception_index = EXCP_SWI;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
void OPPROTO op_undef_insn(void)
|
|
{
|
|
env->exception_index = EXCP_UDEF;
|
|
cpu_loop_exit();
|
|
}
|
|
|
|
/* VFP support. We follow the convention used for VFP instrunctions:
|
|
Single precition routines have a "s" suffix, double precision a
|
|
"d" suffix. */
|
|
|
|
#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
|
|
|
|
#define VFP_BINOP(name) \
|
|
VFP_OP(name, s) \
|
|
{ \
|
|
FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
|
|
} \
|
|
VFP_OP(name, d) \
|
|
{ \
|
|
FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
|
|
}
|
|
VFP_BINOP(add)
|
|
VFP_BINOP(sub)
|
|
VFP_BINOP(mul)
|
|
VFP_BINOP(div)
|
|
#undef VFP_BINOP
|
|
|
|
#define VFP_HELPER(name) \
|
|
VFP_OP(name, s) \
|
|
{ \
|
|
do_vfp_##name##s(); \
|
|
} \
|
|
VFP_OP(name, d) \
|
|
{ \
|
|
do_vfp_##name##d(); \
|
|
}
|
|
VFP_HELPER(abs)
|
|
VFP_HELPER(sqrt)
|
|
VFP_HELPER(cmp)
|
|
VFP_HELPER(cmpe)
|
|
#undef VFP_HELPER
|
|
|
|
/* XXX: Will this do the right thing for NANs. Should invert the signbit
|
|
without looking at the rest of the value. */
|
|
VFP_OP(neg, s)
|
|
{
|
|
FT0s = float32_chs(FT0s);
|
|
}
|
|
|
|
VFP_OP(neg, d)
|
|
{
|
|
FT0d = float64_chs(FT0d);
|
|
}
|
|
|
|
VFP_OP(F1_ld0, s)
|
|
{
|
|
union {
|
|
uint32_t i;
|
|
float32 s;
|
|
} v;
|
|
v.i = 0;
|
|
FT1s = v.s;
|
|
}
|
|
|
|
VFP_OP(F1_ld0, d)
|
|
{
|
|
union {
|
|
uint64_t i;
|
|
float64 d;
|
|
} v;
|
|
v.i = 0;
|
|
FT1d = v.d;
|
|
}
|
|
|
|
/* Helper routines to perform bitwise copies between float and int. */
|
|
static inline float32 vfp_itos(uint32_t i)
|
|
{
|
|
union {
|
|
uint32_t i;
|
|
float32 s;
|
|
} v;
|
|
|
|
v.i = i;
|
|
return v.s;
|
|
}
|
|
|
|
static inline uint32_t vfp_stoi(float32 s)
|
|
{
|
|
union {
|
|
uint32_t i;
|
|
float32 s;
|
|
} v;
|
|
|
|
v.s = s;
|
|
return v.i;
|
|
}
|
|
|
|
/* Integer to float conversion. */
|
|
VFP_OP(uito, s)
|
|
{
|
|
FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
|
|
}
|
|
|
|
VFP_OP(uito, d)
|
|
{
|
|
FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
|
|
}
|
|
|
|
VFP_OP(sito, s)
|
|
{
|
|
FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
|
|
}
|
|
|
|
VFP_OP(sito, d)
|
|
{
|
|
FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
|
|
}
|
|
|
|
/* Float to integer conversion. */
|
|
VFP_OP(toui, s)
|
|
{
|
|
FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
|
|
}
|
|
|
|
VFP_OP(toui, d)
|
|
{
|
|
FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
|
|
}
|
|
|
|
VFP_OP(tosi, s)
|
|
{
|
|
FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
|
|
}
|
|
|
|
VFP_OP(tosi, d)
|
|
{
|
|
FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
|
|
}
|
|
|
|
/* TODO: Set rounding mode properly. */
|
|
VFP_OP(touiz, s)
|
|
{
|
|
FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
|
|
}
|
|
|
|
VFP_OP(touiz, d)
|
|
{
|
|
FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
|
|
}
|
|
|
|
VFP_OP(tosiz, s)
|
|
{
|
|
FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
|
|
}
|
|
|
|
VFP_OP(tosiz, d)
|
|
{
|
|
FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
|
|
}
|
|
|
|
/* floating point conversion */
|
|
VFP_OP(fcvtd, s)
|
|
{
|
|
FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
|
|
}
|
|
|
|
VFP_OP(fcvts, d)
|
|
{
|
|
FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
|
|
}
|
|
|
|
/* Get and Put values from registers. */
|
|
VFP_OP(getreg_F0, d)
|
|
{
|
|
FT0d = *(float64 *)((char *) env + PARAM1);
|
|
}
|
|
|
|
VFP_OP(getreg_F0, s)
|
|
{
|
|
FT0s = *(float32 *)((char *) env + PARAM1);
|
|
}
|
|
|
|
VFP_OP(getreg_F1, d)
|
|
{
|
|
FT1d = *(float64 *)((char *) env + PARAM1);
|
|
}
|
|
|
|
VFP_OP(getreg_F1, s)
|
|
{
|
|
FT1s = *(float32 *)((char *) env + PARAM1);
|
|
}
|
|
|
|
VFP_OP(setreg_F0, d)
|
|
{
|
|
*(float64 *)((char *) env + PARAM1) = FT0d;
|
|
}
|
|
|
|
VFP_OP(setreg_F0, s)
|
|
{
|
|
*(float32 *)((char *) env + PARAM1) = FT0s;
|
|
}
|
|
|
|
void OPPROTO op_vfp_movl_T0_fpscr(void)
|
|
{
|
|
do_vfp_get_fpscr ();
|
|
}
|
|
|
|
void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
|
|
{
|
|
T0 = env->vfp.fpscr & (0xf << 28);
|
|
}
|
|
|
|
void OPPROTO op_vfp_movl_fpscr_T0(void)
|
|
{
|
|
do_vfp_set_fpscr();
|
|
}
|
|
|
|
/* Move between FT0s to T0 */
|
|
void OPPROTO op_vfp_mrs(void)
|
|
{
|
|
T0 = vfp_stoi(FT0s);
|
|
}
|
|
|
|
void OPPROTO op_vfp_msr(void)
|
|
{
|
|
FT0s = vfp_itos(T0);
|
|
}
|
|
|
|
/* Move between FT0d and {T0,T1} */
|
|
void OPPROTO op_vfp_mrrd(void)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.d = FT0d;
|
|
T0 = u.l.lower;
|
|
T1 = u.l.upper;
|
|
}
|
|
|
|
void OPPROTO op_vfp_mdrr(void)
|
|
{
|
|
CPU_DoubleU u;
|
|
|
|
u.l.lower = T0;
|
|
u.l.upper = T1;
|
|
FT0d = u.d;
|
|
}
|
|
|
|
/* Floating point load/store. Address is in T1 */
|
|
void OPPROTO op_vfp_lds(void)
|
|
{
|
|
FT0s = ldfl((void *)T1);
|
|
}
|
|
|
|
void OPPROTO op_vfp_ldd(void)
|
|
{
|
|
FT0d = ldfq((void *)T1);
|
|
}
|
|
|
|
void OPPROTO op_vfp_sts(void)
|
|
{
|
|
stfl((void *)T1, FT0s);
|
|
}
|
|
|
|
void OPPROTO op_vfp_std(void)
|
|
{
|
|
stfq((void *)T1, FT0d);
|
|
}
|