qemu-e2k/hw/ppc/e500.c
Bernhard Beschow 1e665723e9 hw/ppc/e500: Remove unused BINARY_DEVICE_TREE_FILE
Commit 28290f37e2 'PPC: E500: Generate
device tree on reset' improved device tree generation and made
BINARY_DEVICE_TREE_FILE obsolete.

Signed-off-by: Bernhard Beschow <shentey@gmail.com>
Reviewed-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20220505161805.11116-8-shentey@gmail.com>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
2022-05-26 17:11:32 -03:00

1173 lines
39 KiB
C

/*
* QEMU PowerPC e500-based platforms
*
* Copyright (C) 2009 Freescale Semiconductor, Inc. All rights reserved.
*
* Author: Yu Liu, <yu.liu@freescale.com>
*
* This file is derived from hw/ppc440_bamboo.c,
* the copyright for that material belongs to the original owners.
*
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "e500.h"
#include "e500-ccsr.h"
#include "net/net.h"
#include "qemu/config-file.h"
#include "hw/char/serial.h"
#include "hw/pci/pci.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "sysemu/reset.h"
#include "sysemu/runstate.h"
#include "kvm_ppc.h"
#include "sysemu/device_tree.h"
#include "hw/ppc/openpic.h"
#include "hw/ppc/openpic_kvm.h"
#include "hw/ppc/ppc.h"
#include "hw/qdev-properties.h"
#include "hw/loader.h"
#include "elf.h"
#include "hw/sysbus.h"
#include "qemu/host-utils.h"
#include "qemu/option.h"
#include "hw/pci-host/ppce500.h"
#include "qemu/error-report.h"
#include "hw/platform-bus.h"
#include "hw/net/fsl_etsec/etsec.h"
#include "hw/i2c/i2c.h"
#include "hw/irq.h"
#define EPAPR_MAGIC (0x45504150)
#define DTC_LOAD_PAD 0x1800000
#define DTC_PAD_MASK 0xFFFFF
#define DTB_MAX_SIZE (8 * MiB)
#define INITRD_LOAD_PAD 0x2000000
#define INITRD_PAD_MASK 0xFFFFFF
#define RAM_SIZES_ALIGN (64 * MiB)
/* TODO: parameterize */
#define MPC8544_CCSRBAR_SIZE 0x00100000ULL
#define MPC8544_MPIC_REGS_OFFSET 0x40000ULL
#define MPC8544_MSI_REGS_OFFSET 0x41600ULL
#define MPC8544_SERIAL0_REGS_OFFSET 0x4500ULL
#define MPC8544_SERIAL1_REGS_OFFSET 0x4600ULL
#define MPC8544_PCI_REGS_OFFSET 0x8000ULL
#define MPC8544_PCI_REGS_SIZE 0x1000ULL
#define MPC8544_UTIL_OFFSET 0xe0000ULL
#define MPC8XXX_GPIO_OFFSET 0x000FF000ULL
#define MPC8544_I2C_REGS_OFFSET 0x3000ULL
#define MPC8XXX_GPIO_IRQ 47
#define MPC8544_I2C_IRQ 43
#define RTC_REGS_OFFSET 0x68
#define PLATFORM_CLK_FREQ_HZ (400 * 1000 * 1000)
struct boot_info
{
uint32_t dt_base;
uint32_t dt_size;
uint32_t entry;
};
static uint32_t *pci_map_create(void *fdt, uint32_t mpic, int first_slot,
int nr_slots, int *len)
{
int i = 0;
int slot;
int pci_irq;
int host_irq;
int last_slot = first_slot + nr_slots;
uint32_t *pci_map;
*len = nr_slots * 4 * 7 * sizeof(uint32_t);
pci_map = g_malloc(*len);
for (slot = first_slot; slot < last_slot; slot++) {
for (pci_irq = 0; pci_irq < 4; pci_irq++) {
pci_map[i++] = cpu_to_be32(slot << 11);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(0x0);
pci_map[i++] = cpu_to_be32(pci_irq + 1);
pci_map[i++] = cpu_to_be32(mpic);
host_irq = ppce500_pci_map_irq_slot(slot, pci_irq);
pci_map[i++] = cpu_to_be32(host_irq + 1);
pci_map[i++] = cpu_to_be32(0x1);
}
}
assert((i * sizeof(uint32_t)) == *len);
return pci_map;
}
static void dt_serial_create(void *fdt, unsigned long long offset,
const char *soc, const char *mpic,
const char *alias, int idx, bool defcon)
{
char *ser;
ser = g_strdup_printf("%s/serial@%llx", soc, offset);
qemu_fdt_add_subnode(fdt, ser);
qemu_fdt_setprop_string(fdt, ser, "device_type", "serial");
qemu_fdt_setprop_string(fdt, ser, "compatible", "ns16550");
qemu_fdt_setprop_cells(fdt, ser, "reg", offset, 0x100);
qemu_fdt_setprop_cell(fdt, ser, "cell-index", idx);
qemu_fdt_setprop_cell(fdt, ser, "clock-frequency", PLATFORM_CLK_FREQ_HZ);
qemu_fdt_setprop_cells(fdt, ser, "interrupts", 42, 2);
qemu_fdt_setprop_phandle(fdt, ser, "interrupt-parent", mpic);
qemu_fdt_setprop_string(fdt, "/aliases", alias, ser);
if (defcon) {
/*
* "linux,stdout-path" and "stdout" properties are deprecated by linux
* kernel. New platforms should only use the "stdout-path" property. Set
* the new property and continue using older property to remain
* compatible with the existing firmware.
*/
qemu_fdt_setprop_string(fdt, "/chosen", "linux,stdout-path", ser);
qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", ser);
}
g_free(ser);
}
static void create_dt_mpc8xxx_gpio(void *fdt, const char *soc, const char *mpic)
{
hwaddr mmio0 = MPC8XXX_GPIO_OFFSET;
int irq0 = MPC8XXX_GPIO_IRQ;
gchar *node = g_strdup_printf("%s/gpio@%"PRIx64, soc, mmio0);
gchar *poweroff = g_strdup_printf("%s/power-off", soc);
int gpio_ph;
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,qoriq-gpio");
qemu_fdt_setprop_cells(fdt, node, "reg", mmio0, 0x1000);
qemu_fdt_setprop_cells(fdt, node, "interrupts", irq0, 0x2);
qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, node, "#gpio-cells", 2);
qemu_fdt_setprop(fdt, node, "gpio-controller", NULL, 0);
gpio_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cell(fdt, node, "phandle", gpio_ph);
qemu_fdt_setprop_cell(fdt, node, "linux,phandle", gpio_ph);
/* Power Off Pin */
qemu_fdt_add_subnode(fdt, poweroff);
qemu_fdt_setprop_string(fdt, poweroff, "compatible", "gpio-poweroff");
qemu_fdt_setprop_cells(fdt, poweroff, "gpios", gpio_ph, 0, 0);
g_free(node);
g_free(poweroff);
}
static void dt_rtc_create(void *fdt, const char *i2c, const char *alias)
{
int offset = RTC_REGS_OFFSET;
gchar *rtc = g_strdup_printf("%s/rtc@%"PRIx32, i2c, offset);
qemu_fdt_add_subnode(fdt, rtc);
qemu_fdt_setprop_string(fdt, rtc, "compatible", "pericom,pt7c4338");
qemu_fdt_setprop_cells(fdt, rtc, "reg", offset);
qemu_fdt_setprop_string(fdt, "/aliases", alias, rtc);
g_free(rtc);
}
static void dt_i2c_create(void *fdt, const char *soc, const char *mpic,
const char *alias)
{
hwaddr mmio0 = MPC8544_I2C_REGS_OFFSET;
int irq0 = MPC8544_I2C_IRQ;
gchar *i2c = g_strdup_printf("%s/i2c@%"PRIx64, soc, mmio0);
qemu_fdt_add_subnode(fdt, i2c);
qemu_fdt_setprop_string(fdt, i2c, "device_type", "i2c");
qemu_fdt_setprop_string(fdt, i2c, "compatible", "fsl-i2c");
qemu_fdt_setprop_cells(fdt, i2c, "reg", mmio0, 0x14);
qemu_fdt_setprop_cells(fdt, i2c, "cell-index", 0);
qemu_fdt_setprop_cells(fdt, i2c, "interrupts", irq0, 0x2);
qemu_fdt_setprop_phandle(fdt, i2c, "interrupt-parent", mpic);
qemu_fdt_setprop_string(fdt, "/aliases", alias, i2c);
g_free(i2c);
}
typedef struct PlatformDevtreeData {
void *fdt;
const char *mpic;
int irq_start;
const char *node;
PlatformBusDevice *pbus;
} PlatformDevtreeData;
static int create_devtree_etsec(SysBusDevice *sbdev, PlatformDevtreeData *data)
{
eTSEC *etsec = ETSEC_COMMON(sbdev);
PlatformBusDevice *pbus = data->pbus;
hwaddr mmio0 = platform_bus_get_mmio_addr(pbus, sbdev, 0);
int irq0 = platform_bus_get_irqn(pbus, sbdev, 0);
int irq1 = platform_bus_get_irqn(pbus, sbdev, 1);
int irq2 = platform_bus_get_irqn(pbus, sbdev, 2);
gchar *node = g_strdup_printf("/platform/ethernet@%"PRIx64, mmio0);
gchar *group = g_strdup_printf("%s/queue-group", node);
void *fdt = data->fdt;
assert((int64_t)mmio0 >= 0);
assert(irq0 >= 0);
assert(irq1 >= 0);
assert(irq2 >= 0);
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop(fdt, node, "ranges", NULL, 0);
qemu_fdt_setprop_string(fdt, node, "device_type", "network");
qemu_fdt_setprop_string(fdt, node, "compatible", "fsl,etsec2");
qemu_fdt_setprop_string(fdt, node, "model", "eTSEC");
qemu_fdt_setprop(fdt, node, "local-mac-address", etsec->conf.macaddr.a, 6);
qemu_fdt_setprop_cells(fdt, node, "fixed-link", 0, 1, 1000, 0, 0);
qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1);
qemu_fdt_add_subnode(fdt, group);
qemu_fdt_setprop_cells(fdt, group, "reg", mmio0, 0x1000);
qemu_fdt_setprop_cells(fdt, group, "interrupts",
data->irq_start + irq0, 0x2,
data->irq_start + irq1, 0x2,
data->irq_start + irq2, 0x2);
g_free(node);
g_free(group);
return 0;
}
static void sysbus_device_create_devtree(SysBusDevice *sbdev, void *opaque)
{
PlatformDevtreeData *data = opaque;
bool matched = false;
if (object_dynamic_cast(OBJECT(sbdev), TYPE_ETSEC_COMMON)) {
create_devtree_etsec(sbdev, data);
matched = true;
}
if (!matched) {
error_report("Device %s is not supported by this machine yet.",
qdev_fw_name(DEVICE(sbdev)));
exit(1);
}
}
static void platform_bus_create_devtree(PPCE500MachineState *pms,
void *fdt, const char *mpic)
{
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
gchar *node = g_strdup_printf("/platform@%"PRIx64, pmc->platform_bus_base);
const char platcomp[] = "qemu,platform\0simple-bus";
uint64_t addr = pmc->platform_bus_base;
uint64_t size = pmc->platform_bus_size;
int irq_start = pmc->platform_bus_first_irq;
/* Create a /platform node that we can put all devices into */
qemu_fdt_add_subnode(fdt, node);
qemu_fdt_setprop(fdt, node, "compatible", platcomp, sizeof(platcomp));
/* Our platform bus region is less than 32bit big, so 1 cell is enough for
address and size */
qemu_fdt_setprop_cells(fdt, node, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "#address-cells", 1);
qemu_fdt_setprop_cells(fdt, node, "ranges", 0, addr >> 32, addr, size);
qemu_fdt_setprop_phandle(fdt, node, "interrupt-parent", mpic);
/* Create dt nodes for dynamic devices */
PlatformDevtreeData data = {
.fdt = fdt,
.mpic = mpic,
.irq_start = irq_start,
.node = node,
.pbus = pms->pbus_dev,
};
/* Loop through all dynamic sysbus devices and create nodes for them */
foreach_dynamic_sysbus_device(sysbus_device_create_devtree, &data);
g_free(node);
}
static int ppce500_load_device_tree(PPCE500MachineState *pms,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size,
hwaddr kernel_base,
hwaddr kernel_size,
bool dry_run)
{
MachineState *machine = MACHINE(pms);
unsigned int smp_cpus = machine->smp.cpus;
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
CPUPPCState *env = first_cpu->env_ptr;
int ret = -1;
uint64_t mem_reg_property[] = { 0, cpu_to_be64(machine->ram_size) };
int fdt_size;
void *fdt;
uint8_t hypercall[16];
uint32_t clock_freq = PLATFORM_CLK_FREQ_HZ;
uint32_t tb_freq = PLATFORM_CLK_FREQ_HZ;
int i;
char compatible_sb[] = "fsl,mpc8544-immr\0simple-bus";
char *soc;
char *mpic;
uint32_t mpic_ph;
uint32_t msi_ph;
char *gutil;
char *pci;
char *msi;
uint32_t *pci_map = NULL;
int len;
uint32_t pci_ranges[14] =
{
0x2000000, 0x0, pmc->pci_mmio_bus_base,
pmc->pci_mmio_base >> 32, pmc->pci_mmio_base,
0x0, 0x20000000,
0x1000000, 0x0, 0x0,
pmc->pci_pio_base >> 32, pmc->pci_pio_base,
0x0, 0x10000,
};
const char *dtb_file = machine->dtb;
const char *toplevel_compat = machine->dt_compatible;
if (dtb_file) {
char *filename;
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, dtb_file);
if (!filename) {
goto out;
}
fdt = load_device_tree(filename, &fdt_size);
g_free(filename);
if (!fdt) {
goto out;
}
goto done;
}
fdt = create_device_tree(&fdt_size);
if (fdt == NULL) {
goto out;
}
/* Manipulate device tree in memory. */
qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 2);
qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 2);
qemu_fdt_add_subnode(fdt, "/memory");
qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
qemu_fdt_setprop(fdt, "/memory", "reg", mem_reg_property,
sizeof(mem_reg_property));
qemu_fdt_add_subnode(fdt, "/chosen");
if (initrd_size) {
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
initrd_base);
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
}
ret = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
(initrd_base + initrd_size));
if (ret < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
}
}
if (kernel_base != -1ULL) {
qemu_fdt_setprop_cells(fdt, "/chosen", "qemu,boot-kernel",
kernel_base >> 32, kernel_base,
kernel_size >> 32, kernel_size);
}
ret = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
machine->kernel_cmdline);
if (ret < 0)
fprintf(stderr, "couldn't set /chosen/bootargs\n");
if (kvm_enabled()) {
/* Read out host's frequencies */
clock_freq = kvmppc_get_clockfreq();
tb_freq = kvmppc_get_tbfreq();
/* indicate KVM hypercall interface */
qemu_fdt_add_subnode(fdt, "/hypervisor");
qemu_fdt_setprop_string(fdt, "/hypervisor", "compatible",
"linux,kvm");
kvmppc_get_hypercall(env, hypercall, sizeof(hypercall));
qemu_fdt_setprop(fdt, "/hypervisor", "hcall-instructions",
hypercall, sizeof(hypercall));
/* if KVM supports the idle hcall, set property indicating this */
if (kvmppc_get_hasidle(env)) {
qemu_fdt_setprop(fdt, "/hypervisor", "has-idle", NULL, 0);
}
}
/* Create CPU nodes */
qemu_fdt_add_subnode(fdt, "/cpus");
qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0);
/* We need to generate the cpu nodes in reverse order, so Linux can pick
the first node as boot node and be happy */
for (i = smp_cpus - 1; i >= 0; i--) {
CPUState *cpu;
char *cpu_name;
uint64_t cpu_release_addr = pmc->spin_base + (i * 0x20);
cpu = qemu_get_cpu(i);
if (cpu == NULL) {
continue;
}
env = cpu->env_ptr;
cpu_name = g_strdup_printf("/cpus/PowerPC,8544@%x", i);
qemu_fdt_add_subnode(fdt, cpu_name);
qemu_fdt_setprop_cell(fdt, cpu_name, "clock-frequency", clock_freq);
qemu_fdt_setprop_cell(fdt, cpu_name, "timebase-frequency", tb_freq);
qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
qemu_fdt_setprop_cell(fdt, cpu_name, "reg", i);
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-line-size",
env->dcache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-line-size",
env->icache_line_size);
qemu_fdt_setprop_cell(fdt, cpu_name, "d-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "i-cache-size", 0x8000);
qemu_fdt_setprop_cell(fdt, cpu_name, "bus-frequency", 0);
if (cpu->cpu_index) {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "disabled");
qemu_fdt_setprop_string(fdt, cpu_name, "enable-method",
"spin-table");
qemu_fdt_setprop_u64(fdt, cpu_name, "cpu-release-addr",
cpu_release_addr);
} else {
qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
}
g_free(cpu_name);
}
qemu_fdt_add_subnode(fdt, "/aliases");
/* XXX These should go into their respective devices' code */
soc = g_strdup_printf("/soc@%"PRIx64, pmc->ccsrbar_base);
qemu_fdt_add_subnode(fdt, soc);
qemu_fdt_setprop_string(fdt, soc, "device_type", "soc");
qemu_fdt_setprop(fdt, soc, "compatible", compatible_sb,
sizeof(compatible_sb));
qemu_fdt_setprop_cell(fdt, soc, "#address-cells", 1);
qemu_fdt_setprop_cell(fdt, soc, "#size-cells", 1);
qemu_fdt_setprop_cells(fdt, soc, "ranges", 0x0,
pmc->ccsrbar_base >> 32, pmc->ccsrbar_base,
MPC8544_CCSRBAR_SIZE);
/* XXX should contain a reasonable value */
qemu_fdt_setprop_cell(fdt, soc, "bus-frequency", 0);
mpic = g_strdup_printf("%s/pic@%llx", soc, MPC8544_MPIC_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, mpic);
qemu_fdt_setprop_string(fdt, mpic, "device_type", "open-pic");
qemu_fdt_setprop_string(fdt, mpic, "compatible", "fsl,mpic");
qemu_fdt_setprop_cells(fdt, mpic, "reg", MPC8544_MPIC_REGS_OFFSET,
0x40000);
qemu_fdt_setprop_cell(fdt, mpic, "#address-cells", 0);
qemu_fdt_setprop_cell(fdt, mpic, "#interrupt-cells", 2);
mpic_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cell(fdt, mpic, "phandle", mpic_ph);
qemu_fdt_setprop_cell(fdt, mpic, "linux,phandle", mpic_ph);
qemu_fdt_setprop(fdt, mpic, "interrupt-controller", NULL, 0);
/*
* We have to generate ser1 first, because Linux takes the first
* device it finds in the dt as serial output device. And we generate
* devices in reverse order to the dt.
*/
if (serial_hd(1)) {
dt_serial_create(fdt, MPC8544_SERIAL1_REGS_OFFSET,
soc, mpic, "serial1", 1, false);
}
if (serial_hd(0)) {
dt_serial_create(fdt, MPC8544_SERIAL0_REGS_OFFSET,
soc, mpic, "serial0", 0, true);
}
/* i2c */
dt_i2c_create(fdt, soc, mpic, "i2c");
dt_rtc_create(fdt, "i2c", "rtc");
gutil = g_strdup_printf("%s/global-utilities@%llx", soc,
MPC8544_UTIL_OFFSET);
qemu_fdt_add_subnode(fdt, gutil);
qemu_fdt_setprop_string(fdt, gutil, "compatible", "fsl,mpc8544-guts");
qemu_fdt_setprop_cells(fdt, gutil, "reg", MPC8544_UTIL_OFFSET, 0x1000);
qemu_fdt_setprop(fdt, gutil, "fsl,has-rstcr", NULL, 0);
g_free(gutil);
msi = g_strdup_printf("/%s/msi@%llx", soc, MPC8544_MSI_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, msi);
qemu_fdt_setprop_string(fdt, msi, "compatible", "fsl,mpic-msi");
qemu_fdt_setprop_cells(fdt, msi, "reg", MPC8544_MSI_REGS_OFFSET, 0x200);
msi_ph = qemu_fdt_alloc_phandle(fdt);
qemu_fdt_setprop_cells(fdt, msi, "msi-available-ranges", 0x0, 0x100);
qemu_fdt_setprop_phandle(fdt, msi, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, msi, "interrupts",
0xe0, 0x0,
0xe1, 0x0,
0xe2, 0x0,
0xe3, 0x0,
0xe4, 0x0,
0xe5, 0x0,
0xe6, 0x0,
0xe7, 0x0);
qemu_fdt_setprop_cell(fdt, msi, "phandle", msi_ph);
qemu_fdt_setprop_cell(fdt, msi, "linux,phandle", msi_ph);
g_free(msi);
pci = g_strdup_printf("/pci@%llx",
pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET);
qemu_fdt_add_subnode(fdt, pci);
qemu_fdt_setprop_cell(fdt, pci, "cell-index", 0);
qemu_fdt_setprop_string(fdt, pci, "compatible", "fsl,mpc8540-pci");
qemu_fdt_setprop_string(fdt, pci, "device_type", "pci");
qemu_fdt_setprop_cells(fdt, pci, "interrupt-map-mask", 0xf800, 0x0,
0x0, 0x7);
pci_map = pci_map_create(fdt, qemu_fdt_get_phandle(fdt, mpic),
pmc->pci_first_slot, pmc->pci_nr_slots,
&len);
qemu_fdt_setprop(fdt, pci, "interrupt-map", pci_map, len);
qemu_fdt_setprop_phandle(fdt, pci, "interrupt-parent", mpic);
qemu_fdt_setprop_cells(fdt, pci, "interrupts", 24, 2);
qemu_fdt_setprop_cells(fdt, pci, "bus-range", 0, 255);
for (i = 0; i < 14; i++) {
pci_ranges[i] = cpu_to_be32(pci_ranges[i]);
}
qemu_fdt_setprop_cell(fdt, pci, "fsl,msi", msi_ph);
qemu_fdt_setprop(fdt, pci, "ranges", pci_ranges, sizeof(pci_ranges));
qemu_fdt_setprop_cells(fdt, pci, "reg",
(pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET) >> 32,
(pmc->ccsrbar_base + MPC8544_PCI_REGS_OFFSET),
0, 0x1000);
qemu_fdt_setprop_cell(fdt, pci, "clock-frequency", 66666666);
qemu_fdt_setprop_cell(fdt, pci, "#interrupt-cells", 1);
qemu_fdt_setprop_cell(fdt, pci, "#size-cells", 2);
qemu_fdt_setprop_cell(fdt, pci, "#address-cells", 3);
qemu_fdt_setprop_string(fdt, "/aliases", "pci0", pci);
g_free(pci);
if (pmc->has_mpc8xxx_gpio) {
create_dt_mpc8xxx_gpio(fdt, soc, mpic);
}
g_free(soc);
if (pms->pbus_dev) {
platform_bus_create_devtree(pms, fdt, mpic);
}
g_free(mpic);
pmc->fixup_devtree(fdt);
if (toplevel_compat) {
qemu_fdt_setprop(fdt, "/", "compatible", toplevel_compat,
strlen(toplevel_compat) + 1);
}
done:
if (!dry_run) {
qemu_fdt_dumpdtb(fdt, fdt_size);
cpu_physical_memory_write(addr, fdt, fdt_size);
}
ret = fdt_size;
g_free(fdt);
out:
g_free(pci_map);
return ret;
}
typedef struct DeviceTreeParams {
PPCE500MachineState *machine;
hwaddr addr;
hwaddr initrd_base;
hwaddr initrd_size;
hwaddr kernel_base;
hwaddr kernel_size;
Notifier notifier;
} DeviceTreeParams;
static void ppce500_reset_device_tree(void *opaque)
{
DeviceTreeParams *p = opaque;
ppce500_load_device_tree(p->machine, p->addr, p->initrd_base,
p->initrd_size, p->kernel_base, p->kernel_size,
false);
}
static void ppce500_init_notify(Notifier *notifier, void *data)
{
DeviceTreeParams *p = container_of(notifier, DeviceTreeParams, notifier);
ppce500_reset_device_tree(p);
}
static int ppce500_prep_device_tree(PPCE500MachineState *machine,
hwaddr addr,
hwaddr initrd_base,
hwaddr initrd_size,
hwaddr kernel_base,
hwaddr kernel_size)
{
DeviceTreeParams *p = g_new(DeviceTreeParams, 1);
p->machine = machine;
p->addr = addr;
p->initrd_base = initrd_base;
p->initrd_size = initrd_size;
p->kernel_base = kernel_base;
p->kernel_size = kernel_size;
qemu_register_reset(ppce500_reset_device_tree, p);
p->notifier.notify = ppce500_init_notify;
qemu_add_machine_init_done_notifier(&p->notifier);
/* Issue the device tree loader once, so that we get the size of the blob */
return ppce500_load_device_tree(machine, addr, initrd_base, initrd_size,
kernel_base, kernel_size, true);
}
/* Create -kernel TLB entries for BookE. */
hwaddr booke206_page_size_to_tlb(uint64_t size)
{
return 63 - clz64(size / KiB);
}
static int booke206_initial_map_tsize(CPUPPCState *env)
{
struct boot_info *bi = env->load_info;
hwaddr dt_end;
int ps;
/* Our initial TLB entry needs to cover everything from 0 to
the device tree top */
dt_end = bi->dt_base + bi->dt_size;
ps = booke206_page_size_to_tlb(dt_end) + 1;
if (ps & 1) {
/* e500v2 can only do even TLB size bits */
ps++;
}
return ps;
}
static uint64_t mmubooke_initial_mapsize(CPUPPCState *env)
{
int tsize;
tsize = booke206_initial_map_tsize(env);
return (1ULL << 10 << tsize);
}
static void mmubooke_create_initial_mapping(CPUPPCState *env)
{
ppcmas_tlb_t *tlb = booke206_get_tlbm(env, 1, 0, 0);
hwaddr size;
int ps;
ps = booke206_initial_map_tsize(env);
size = (ps << MAS1_TSIZE_SHIFT);
tlb->mas1 = MAS1_VALID | size;
tlb->mas2 = 0;
tlb->mas7_3 = 0;
tlb->mas7_3 |= MAS3_UR | MAS3_UW | MAS3_UX | MAS3_SR | MAS3_SW | MAS3_SX;
env->tlb_dirty = true;
}
static void ppce500_cpu_reset_sec(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
cpu_reset(cs);
cs->exception_index = EXCP_HLT;
}
static void ppce500_cpu_reset(void *opaque)
{
PowerPCCPU *cpu = opaque;
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
struct boot_info *bi = env->load_info;
cpu_reset(cs);
/* Set initial guest state. */
cs->halted = 0;
env->gpr[1] = (16 * MiB) - 8;
env->gpr[3] = bi->dt_base;
env->gpr[4] = 0;
env->gpr[5] = 0;
env->gpr[6] = EPAPR_MAGIC;
env->gpr[7] = mmubooke_initial_mapsize(env);
env->gpr[8] = 0;
env->gpr[9] = 0;
env->nip = bi->entry;
mmubooke_create_initial_mapping(env);
}
static DeviceState *ppce500_init_mpic_qemu(PPCE500MachineState *pms,
IrqLines *irqs)
{
DeviceState *dev;
SysBusDevice *s;
int i, j, k;
MachineState *machine = MACHINE(pms);
unsigned int smp_cpus = machine->smp.cpus;
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
dev = qdev_new(TYPE_OPENPIC);
object_property_add_child(OBJECT(machine), "pic", OBJECT(dev));
qdev_prop_set_uint32(dev, "model", pmc->mpic_version);
qdev_prop_set_uint32(dev, "nb_cpus", smp_cpus);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
k = 0;
for (i = 0; i < smp_cpus; i++) {
for (j = 0; j < OPENPIC_OUTPUT_NB; j++) {
sysbus_connect_irq(s, k++, irqs[i].irq[j]);
}
}
return dev;
}
static DeviceState *ppce500_init_mpic_kvm(const PPCE500MachineClass *pmc,
IrqLines *irqs, Error **errp)
{
DeviceState *dev;
CPUState *cs;
dev = qdev_new(TYPE_KVM_OPENPIC);
qdev_prop_set_uint32(dev, "model", pmc->mpic_version);
if (!sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), errp)) {
object_unparent(OBJECT(dev));
return NULL;
}
CPU_FOREACH(cs) {
if (kvm_openpic_connect_vcpu(dev, cs)) {
fprintf(stderr, "%s: failed to connect vcpu to irqchip\n",
__func__);
abort();
}
}
return dev;
}
static DeviceState *ppce500_init_mpic(PPCE500MachineState *pms,
MemoryRegion *ccsr,
IrqLines *irqs)
{
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(pms);
DeviceState *dev = NULL;
SysBusDevice *s;
if (kvm_enabled()) {
Error *err = NULL;
if (kvm_kernel_irqchip_allowed()) {
dev = ppce500_init_mpic_kvm(pmc, irqs, &err);
}
if (kvm_kernel_irqchip_required() && !dev) {
error_reportf_err(err,
"kernel_irqchip requested but unavailable: ");
exit(1);
}
}
if (!dev) {
dev = ppce500_init_mpic_qemu(pms, irqs);
}
s = SYS_BUS_DEVICE(dev);
memory_region_add_subregion(ccsr, MPC8544_MPIC_REGS_OFFSET,
s->mmio[0].memory);
return dev;
}
static void ppce500_power_off(void *opaque, int line, int on)
{
if (on) {
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
}
}
void ppce500_init(MachineState *machine)
{
MemoryRegion *address_space_mem = get_system_memory();
PPCE500MachineState *pms = PPCE500_MACHINE(machine);
const PPCE500MachineClass *pmc = PPCE500_MACHINE_GET_CLASS(machine);
PCIBus *pci_bus;
CPUPPCState *env = NULL;
uint64_t loadaddr;
hwaddr kernel_base = -1LL;
int kernel_size = 0;
hwaddr dt_base = 0;
hwaddr initrd_base = 0;
int initrd_size = 0;
hwaddr cur_base = 0;
char *filename;
const char *payload_name;
bool kernel_as_payload;
hwaddr bios_entry = 0;
target_long payload_size;
struct boot_info *boot_info;
int dt_size;
int i;
unsigned int smp_cpus = machine->smp.cpus;
/* irq num for pin INTA, INTB, INTC and INTD is 1, 2, 3 and
* 4 respectively */
unsigned int pci_irq_nrs[PCI_NUM_PINS] = {1, 2, 3, 4};
IrqLines *irqs;
DeviceState *dev, *mpicdev;
CPUPPCState *firstenv = NULL;
MemoryRegion *ccsr_addr_space;
SysBusDevice *s;
PPCE500CCSRState *ccsr;
I2CBus *i2c;
irqs = g_new0(IrqLines, smp_cpus);
for (i = 0; i < smp_cpus; i++) {
PowerPCCPU *cpu;
CPUState *cs;
qemu_irq *input;
cpu = POWERPC_CPU(object_new(machine->cpu_type));
env = &cpu->env;
cs = CPU(cpu);
if (env->mmu_model != POWERPC_MMU_BOOKE206) {
error_report("MMU model %i not supported by this machine",
env->mmu_model);
exit(1);
}
/*
* Secondary CPU starts in halted state for now. Needs to change
* when implementing non-kernel boot.
*/
object_property_set_bool(OBJECT(cs), "start-powered-off", i != 0,
&error_fatal);
qdev_realize_and_unref(DEVICE(cs), NULL, &error_fatal);
if (!firstenv) {
firstenv = env;
}
input = (qemu_irq *)env->irq_inputs;
irqs[i].irq[OPENPIC_OUTPUT_INT] = input[PPCE500_INPUT_INT];
irqs[i].irq[OPENPIC_OUTPUT_CINT] = input[PPCE500_INPUT_CINT];
env->spr_cb[SPR_BOOKE_PIR].default_value = cs->cpu_index = i;
env->mpic_iack = pmc->ccsrbar_base + MPC8544_MPIC_REGS_OFFSET + 0xa0;
ppc_booke_timers_init(cpu, PLATFORM_CLK_FREQ_HZ, PPC_TIMER_E500);
/* Register reset handler */
if (!i) {
/* Primary CPU */
struct boot_info *boot_info;
boot_info = g_new0(struct boot_info, 1);
qemu_register_reset(ppce500_cpu_reset, cpu);
env->load_info = boot_info;
} else {
/* Secondary CPUs */
qemu_register_reset(ppce500_cpu_reset_sec, cpu);
}
}
env = firstenv;
if (!QEMU_IS_ALIGNED(machine->ram_size, RAM_SIZES_ALIGN)) {
error_report("RAM size must be multiple of %" PRIu64, RAM_SIZES_ALIGN);
exit(EXIT_FAILURE);
}
/* Register Memory */
memory_region_add_subregion(address_space_mem, 0, machine->ram);
dev = qdev_new("e500-ccsr");
object_property_add_child(qdev_get_machine(), "e500-ccsr",
OBJECT(dev));
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
ccsr = CCSR(dev);
ccsr_addr_space = &ccsr->ccsr_space;
memory_region_add_subregion(address_space_mem, pmc->ccsrbar_base,
ccsr_addr_space);
mpicdev = ppce500_init_mpic(pms, ccsr_addr_space, irqs);
g_free(irqs);
/* Serial */
if (serial_hd(0)) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL0_REGS_OFFSET,
0, qdev_get_gpio_in(mpicdev, 42), 399193,
serial_hd(0), DEVICE_BIG_ENDIAN);
}
if (serial_hd(1)) {
serial_mm_init(ccsr_addr_space, MPC8544_SERIAL1_REGS_OFFSET,
0, qdev_get_gpio_in(mpicdev, 42), 399193,
serial_hd(1), DEVICE_BIG_ENDIAN);
}
/* I2C */
dev = qdev_new("mpc-i2c");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC8544_I2C_IRQ));
memory_region_add_subregion(ccsr_addr_space, MPC8544_I2C_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
i2c_slave_create_simple(i2c, "ds1338", RTC_REGS_OFFSET);
/* General Utility device */
dev = qdev_new("mpc8544-guts");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
memory_region_add_subregion(ccsr_addr_space, MPC8544_UTIL_OFFSET,
sysbus_mmio_get_region(s, 0));
/* PCI */
dev = qdev_new("e500-pcihost");
object_property_add_child(qdev_get_machine(), "pci-host", OBJECT(dev));
qdev_prop_set_uint32(dev, "first_slot", pmc->pci_first_slot);
qdev_prop_set_uint32(dev, "first_pin_irq", pci_irq_nrs[0]);
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
for (i = 0; i < PCI_NUM_PINS; i++) {
sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, pci_irq_nrs[i]));
}
memory_region_add_subregion(ccsr_addr_space, MPC8544_PCI_REGS_OFFSET,
sysbus_mmio_get_region(s, 0));
pci_bus = (PCIBus *)qdev_get_child_bus(dev, "pci.0");
if (!pci_bus)
printf("couldn't create PCI controller!\n");
if (pci_bus) {
/* Register network interfaces. */
for (i = 0; i < nb_nics; i++) {
pci_nic_init_nofail(&nd_table[i], pci_bus, "virtio-net-pci", NULL);
}
}
/* Register spinning region */
sysbus_create_simple("e500-spin", pmc->spin_base, NULL);
if (pmc->has_mpc8xxx_gpio) {
qemu_irq poweroff_irq;
dev = qdev_new("mpc8xxx_gpio");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_connect_irq(s, 0, qdev_get_gpio_in(mpicdev, MPC8XXX_GPIO_IRQ));
memory_region_add_subregion(ccsr_addr_space, MPC8XXX_GPIO_OFFSET,
sysbus_mmio_get_region(s, 0));
/* Power Off GPIO at Pin 0 */
poweroff_irq = qemu_allocate_irq(ppce500_power_off, NULL, 0);
qdev_connect_gpio_out(dev, 0, poweroff_irq);
}
/* Platform Bus Device */
if (pmc->has_platform_bus) {
dev = qdev_new(TYPE_PLATFORM_BUS_DEVICE);
dev->id = g_strdup(TYPE_PLATFORM_BUS_DEVICE);
qdev_prop_set_uint32(dev, "num_irqs", pmc->platform_bus_num_irqs);
qdev_prop_set_uint32(dev, "mmio_size", pmc->platform_bus_size);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
pms->pbus_dev = PLATFORM_BUS_DEVICE(dev);
s = SYS_BUS_DEVICE(pms->pbus_dev);
for (i = 0; i < pmc->platform_bus_num_irqs; i++) {
int irqn = pmc->platform_bus_first_irq + i;
sysbus_connect_irq(s, i, qdev_get_gpio_in(mpicdev, irqn));
}
memory_region_add_subregion(address_space_mem,
pmc->platform_bus_base,
sysbus_mmio_get_region(s, 0));
}
/*
* Smart firmware defaults ahead!
*
* We follow the following table to select which payload we execute.
*
* -kernel | -bios | payload
* ---------+-------+---------
* N | Y | u-boot
* N | N | u-boot
* Y | Y | u-boot
* Y | N | kernel
*
* This ensures backwards compatibility with how we used to expose
* -kernel to users but allows them to run through u-boot as well.
*/
kernel_as_payload = false;
if (machine->firmware == NULL) {
if (machine->kernel_filename) {
payload_name = machine->kernel_filename;
kernel_as_payload = true;
} else {
payload_name = "u-boot.e500";
}
} else {
payload_name = machine->firmware;
}
filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, payload_name);
if (!filename) {
error_report("could not find firmware/kernel file '%s'", payload_name);
exit(1);
}
payload_size = load_elf(filename, NULL, NULL, NULL,
&bios_entry, &loadaddr, NULL, NULL,
1, PPC_ELF_MACHINE, 0, 0);
if (payload_size < 0) {
/*
* Hrm. No ELF image? Try a uImage, maybe someone is giving us an
* ePAPR compliant kernel
*/
loadaddr = LOAD_UIMAGE_LOADADDR_INVALID;
payload_size = load_uimage(filename, &bios_entry, &loadaddr, NULL,
NULL, NULL);
if (payload_size < 0) {
error_report("could not load firmware '%s'", filename);
exit(1);
}
}
g_free(filename);
if (kernel_as_payload) {
kernel_base = loadaddr;
kernel_size = payload_size;
}
cur_base = loadaddr + payload_size;
if (cur_base < 32 * MiB) {
/* u-boot occupies memory up to 32MB, so load blobs above */
cur_base = 32 * MiB;
}
/* Load bare kernel only if no bios/u-boot has been provided */
if (machine->kernel_filename && !kernel_as_payload) {
kernel_base = cur_base;
kernel_size = load_image_targphys(machine->kernel_filename,
cur_base,
machine->ram_size - cur_base);
if (kernel_size < 0) {
error_report("could not load kernel '%s'",
machine->kernel_filename);
exit(1);
}
cur_base += kernel_size;
}
/* Load initrd. */
if (machine->initrd_filename) {
initrd_base = (cur_base + INITRD_LOAD_PAD) & ~INITRD_PAD_MASK;
initrd_size = load_image_targphys(machine->initrd_filename, initrd_base,
machine->ram_size - initrd_base);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
machine->initrd_filename);
exit(1);
}
cur_base = initrd_base + initrd_size;
}
/*
* Reserve space for dtb behind the kernel image because Linux has a bug
* where it can only handle the dtb if it's within the first 64MB of where
* <kernel> starts. dtb cannot not reach initrd_base because INITRD_LOAD_PAD
* ensures enough space between kernel and initrd.
*/
dt_base = (loadaddr + payload_size + DTC_LOAD_PAD) & ~DTC_PAD_MASK;
if (dt_base + DTB_MAX_SIZE > machine->ram_size) {
error_report("not enough memory for device tree");
exit(1);
}
dt_size = ppce500_prep_device_tree(pms, dt_base,
initrd_base, initrd_size,
kernel_base, kernel_size);
if (dt_size < 0) {
error_report("couldn't load device tree");
exit(1);
}
assert(dt_size < DTB_MAX_SIZE);
boot_info = env->load_info;
boot_info->entry = bios_entry;
boot_info->dt_base = dt_base;
boot_info->dt_size = dt_size;
}
static void e500_ccsr_initfn(Object *obj)
{
PPCE500CCSRState *ccsr = CCSR(obj);
memory_region_init(&ccsr->ccsr_space, obj, "e500-ccsr",
MPC8544_CCSRBAR_SIZE);
}
static const TypeInfo e500_ccsr_info = {
.name = TYPE_CCSR,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PPCE500CCSRState),
.instance_init = e500_ccsr_initfn,
};
static const TypeInfo ppce500_info = {
.name = TYPE_PPCE500_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(PPCE500MachineState),
.class_size = sizeof(PPCE500MachineClass),
};
static void e500_register_types(void)
{
type_register_static(&e500_ccsr_info);
type_register_static(&ppce500_info);
}
type_init(e500_register_types)