73ad0ff216
Since7f0f1acedf
("hw/block/nvme: support multiple namespaces"), the namespaces member of NvmeCtrl is no longer a dynamically allocated array. Remove the free. Fixes:7f0f1acedf
("hw/block/nvme: support multiple namespaces") Reported-by: Coverity (CID 1436131) Signed-off-by: Klaus Jensen <k.jensen@samsung.com> Message-Id: <20201104102248.32168-4-its@irrelevant.dk> Reviewed-by: Philippe Mathieu-Daudé <philmd@redhat.com> Signed-off-by: Max Reitz <mreitz@redhat.com>
2889 lines
85 KiB
C
2889 lines
85 KiB
C
/*
|
|
* QEMU NVM Express Controller
|
|
*
|
|
* Copyright (c) 2012, Intel Corporation
|
|
*
|
|
* Written by Keith Busch <keith.busch@intel.com>
|
|
*
|
|
* This code is licensed under the GNU GPL v2 or later.
|
|
*/
|
|
|
|
/**
|
|
* Reference Specs: http://www.nvmexpress.org, 1.2, 1.1, 1.0e
|
|
*
|
|
* https://nvmexpress.org/developers/nvme-specification/
|
|
*/
|
|
|
|
/**
|
|
* Usage: add options:
|
|
* -drive file=<file>,if=none,id=<drive_id>
|
|
* -device nvme,serial=<serial>,id=<bus_name>, \
|
|
* cmb_size_mb=<cmb_size_mb[optional]>, \
|
|
* [pmrdev=<mem_backend_file_id>,] \
|
|
* max_ioqpairs=<N[optional]>, \
|
|
* aerl=<N[optional]>, aer_max_queued=<N[optional]>, \
|
|
* mdts=<N[optional]>
|
|
* -device nvme-ns,drive=<drive_id>,bus=bus_name,nsid=<nsid>
|
|
*
|
|
* Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
|
|
* offset 0 in BAR2 and supports only WDS, RDS and SQS for now.
|
|
*
|
|
* cmb_size_mb= and pmrdev= options are mutually exclusive due to limitation
|
|
* in available BAR's. cmb_size_mb= will take precedence over pmrdev= when
|
|
* both provided.
|
|
* Enabling pmr emulation can be achieved by pointing to memory-backend-file.
|
|
* For example:
|
|
* -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
|
|
* size=<size> .... -device nvme,...,pmrdev=<mem_id>
|
|
*
|
|
*
|
|
* nvme device parameters
|
|
* ~~~~~~~~~~~~~~~~~~~~~~
|
|
* - `aerl`
|
|
* The Asynchronous Event Request Limit (AERL). Indicates the maximum number
|
|
* of concurrently outstanding Asynchronous Event Request commands suppoert
|
|
* by the controller. This is a 0's based value.
|
|
*
|
|
* - `aer_max_queued`
|
|
* This is the maximum number of events that the device will enqueue for
|
|
* completion when there are no oustanding AERs. When the maximum number of
|
|
* enqueued events are reached, subsequent events will be dropped.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qemu/units.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/block/block.h"
|
|
#include "hw/pci/msix.h"
|
|
#include "hw/pci/pci.h"
|
|
#include "hw/qdev-properties.h"
|
|
#include "migration/vmstate.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "qapi/error.h"
|
|
#include "qapi/visitor.h"
|
|
#include "sysemu/hostmem.h"
|
|
#include "sysemu/block-backend.h"
|
|
#include "exec/memory.h"
|
|
#include "qemu/log.h"
|
|
#include "qemu/module.h"
|
|
#include "qemu/cutils.h"
|
|
#include "trace.h"
|
|
#include "nvme.h"
|
|
#include "nvme-ns.h"
|
|
|
|
#define NVME_MAX_IOQPAIRS 0xffff
|
|
#define NVME_DB_SIZE 4
|
|
#define NVME_SPEC_VER 0x00010300
|
|
#define NVME_CMB_BIR 2
|
|
#define NVME_PMR_BIR 2
|
|
#define NVME_TEMPERATURE 0x143
|
|
#define NVME_TEMPERATURE_WARNING 0x157
|
|
#define NVME_TEMPERATURE_CRITICAL 0x175
|
|
#define NVME_NUM_FW_SLOTS 1
|
|
|
|
#define NVME_GUEST_ERR(trace, fmt, ...) \
|
|
do { \
|
|
(trace_##trace)(__VA_ARGS__); \
|
|
qemu_log_mask(LOG_GUEST_ERROR, #trace \
|
|
" in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
|
|
} while (0)
|
|
|
|
static const bool nvme_feature_support[NVME_FID_MAX] = {
|
|
[NVME_ARBITRATION] = true,
|
|
[NVME_POWER_MANAGEMENT] = true,
|
|
[NVME_TEMPERATURE_THRESHOLD] = true,
|
|
[NVME_ERROR_RECOVERY] = true,
|
|
[NVME_VOLATILE_WRITE_CACHE] = true,
|
|
[NVME_NUMBER_OF_QUEUES] = true,
|
|
[NVME_INTERRUPT_COALESCING] = true,
|
|
[NVME_INTERRUPT_VECTOR_CONF] = true,
|
|
[NVME_WRITE_ATOMICITY] = true,
|
|
[NVME_ASYNCHRONOUS_EVENT_CONF] = true,
|
|
[NVME_TIMESTAMP] = true,
|
|
};
|
|
|
|
static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
|
|
[NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
|
|
[NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
|
|
};
|
|
|
|
static void nvme_process_sq(void *opaque);
|
|
|
|
static uint16_t nvme_cid(NvmeRequest *req)
|
|
{
|
|
if (!req) {
|
|
return 0xffff;
|
|
}
|
|
|
|
return le16_to_cpu(req->cqe.cid);
|
|
}
|
|
|
|
static uint16_t nvme_sqid(NvmeRequest *req)
|
|
{
|
|
return le16_to_cpu(req->sq->sqid);
|
|
}
|
|
|
|
static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
|
|
{
|
|
hwaddr low = n->ctrl_mem.addr;
|
|
hwaddr hi = n->ctrl_mem.addr + int128_get64(n->ctrl_mem.size);
|
|
|
|
return addr >= low && addr < hi;
|
|
}
|
|
|
|
static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
|
|
{
|
|
assert(nvme_addr_is_cmb(n, addr));
|
|
|
|
return &n->cmbuf[addr - n->ctrl_mem.addr];
|
|
}
|
|
|
|
static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
|
|
{
|
|
hwaddr hi = addr + size - 1;
|
|
if (hi < addr) {
|
|
return 1;
|
|
}
|
|
|
|
if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
|
|
memcpy(buf, nvme_addr_to_cmb(n, addr), size);
|
|
return 0;
|
|
}
|
|
|
|
return pci_dma_read(&n->parent_obj, addr, buf, size);
|
|
}
|
|
|
|
static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
|
|
{
|
|
return nsid && (nsid == NVME_NSID_BROADCAST || nsid <= n->num_namespaces);
|
|
}
|
|
|
|
static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
|
|
{
|
|
return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
|
|
}
|
|
|
|
static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
|
|
{
|
|
return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
|
|
}
|
|
|
|
static void nvme_inc_cq_tail(NvmeCQueue *cq)
|
|
{
|
|
cq->tail++;
|
|
if (cq->tail >= cq->size) {
|
|
cq->tail = 0;
|
|
cq->phase = !cq->phase;
|
|
}
|
|
}
|
|
|
|
static void nvme_inc_sq_head(NvmeSQueue *sq)
|
|
{
|
|
sq->head = (sq->head + 1) % sq->size;
|
|
}
|
|
|
|
static uint8_t nvme_cq_full(NvmeCQueue *cq)
|
|
{
|
|
return (cq->tail + 1) % cq->size == cq->head;
|
|
}
|
|
|
|
static uint8_t nvme_sq_empty(NvmeSQueue *sq)
|
|
{
|
|
return sq->head == sq->tail;
|
|
}
|
|
|
|
static void nvme_irq_check(NvmeCtrl *n)
|
|
{
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
return;
|
|
}
|
|
if (~n->bar.intms & n->irq_status) {
|
|
pci_irq_assert(&n->parent_obj);
|
|
} else {
|
|
pci_irq_deassert(&n->parent_obj);
|
|
}
|
|
}
|
|
|
|
static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
|
|
{
|
|
if (cq->irq_enabled) {
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
trace_pci_nvme_irq_msix(cq->vector);
|
|
msix_notify(&(n->parent_obj), cq->vector);
|
|
} else {
|
|
trace_pci_nvme_irq_pin();
|
|
assert(cq->vector < 32);
|
|
n->irq_status |= 1 << cq->vector;
|
|
nvme_irq_check(n);
|
|
}
|
|
} else {
|
|
trace_pci_nvme_irq_masked();
|
|
}
|
|
}
|
|
|
|
static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
|
|
{
|
|
if (cq->irq_enabled) {
|
|
if (msix_enabled(&(n->parent_obj))) {
|
|
return;
|
|
} else {
|
|
assert(cq->vector < 32);
|
|
n->irq_status &= ~(1 << cq->vector);
|
|
nvme_irq_check(n);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nvme_req_clear(NvmeRequest *req)
|
|
{
|
|
req->ns = NULL;
|
|
memset(&req->cqe, 0x0, sizeof(req->cqe));
|
|
req->status = NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_req_exit(NvmeRequest *req)
|
|
{
|
|
if (req->qsg.sg) {
|
|
qemu_sglist_destroy(&req->qsg);
|
|
}
|
|
|
|
if (req->iov.iov) {
|
|
qemu_iovec_destroy(&req->iov);
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
|
|
size_t len)
|
|
{
|
|
if (!len) {
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
trace_pci_nvme_map_addr_cmb(addr, len);
|
|
|
|
if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
|
|
return NVME_DATA_TRAS_ERROR;
|
|
}
|
|
|
|
qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_map_addr(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
|
|
hwaddr addr, size_t len)
|
|
{
|
|
if (!len) {
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
trace_pci_nvme_map_addr(addr, len);
|
|
|
|
if (nvme_addr_is_cmb(n, addr)) {
|
|
if (qsg && qsg->sg) {
|
|
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
|
|
}
|
|
|
|
assert(iov);
|
|
|
|
if (!iov->iov) {
|
|
qemu_iovec_init(iov, 1);
|
|
}
|
|
|
|
return nvme_map_addr_cmb(n, iov, addr, len);
|
|
}
|
|
|
|
if (iov && iov->iov) {
|
|
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
|
|
}
|
|
|
|
assert(qsg);
|
|
|
|
if (!qsg->sg) {
|
|
pci_dma_sglist_init(qsg, &n->parent_obj, 1);
|
|
}
|
|
|
|
qemu_sglist_add(qsg, addr, len);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_map_prp(NvmeCtrl *n, uint64_t prp1, uint64_t prp2,
|
|
uint32_t len, NvmeRequest *req)
|
|
{
|
|
hwaddr trans_len = n->page_size - (prp1 % n->page_size);
|
|
trans_len = MIN(len, trans_len);
|
|
int num_prps = (len >> n->page_bits) + 1;
|
|
uint16_t status;
|
|
bool prp_list_in_cmb = false;
|
|
int ret;
|
|
|
|
QEMUSGList *qsg = &req->qsg;
|
|
QEMUIOVector *iov = &req->iov;
|
|
|
|
trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
|
|
|
|
if (nvme_addr_is_cmb(n, prp1)) {
|
|
qemu_iovec_init(iov, num_prps);
|
|
} else {
|
|
pci_dma_sglist_init(qsg, &n->parent_obj, num_prps);
|
|
}
|
|
|
|
status = nvme_map_addr(n, qsg, iov, prp1, trans_len);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
len -= trans_len;
|
|
if (len) {
|
|
if (len > n->page_size) {
|
|
uint64_t prp_list[n->max_prp_ents];
|
|
uint32_t nents, prp_trans;
|
|
int i = 0;
|
|
|
|
if (nvme_addr_is_cmb(n, prp2)) {
|
|
prp_list_in_cmb = true;
|
|
}
|
|
|
|
nents = (len + n->page_size - 1) >> n->page_bits;
|
|
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
|
|
ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_read(prp2);
|
|
return NVME_DATA_TRAS_ERROR;
|
|
}
|
|
while (len != 0) {
|
|
uint64_t prp_ent = le64_to_cpu(prp_list[i]);
|
|
|
|
if (i == n->max_prp_ents - 1 && len > n->page_size) {
|
|
if (unlikely(prp_ent & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
|
|
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
}
|
|
|
|
if (prp_list_in_cmb != nvme_addr_is_cmb(n, prp_ent)) {
|
|
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
|
|
}
|
|
|
|
i = 0;
|
|
nents = (len + n->page_size - 1) >> n->page_bits;
|
|
prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
|
|
ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
|
|
prp_trans);
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_read(prp_ent);
|
|
return NVME_DATA_TRAS_ERROR;
|
|
}
|
|
prp_ent = le64_to_cpu(prp_list[i]);
|
|
}
|
|
|
|
if (unlikely(prp_ent & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
|
|
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
}
|
|
|
|
trans_len = MIN(len, n->page_size);
|
|
status = nvme_map_addr(n, qsg, iov, prp_ent, trans_len);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
len -= trans_len;
|
|
i++;
|
|
}
|
|
} else {
|
|
if (unlikely(prp2 & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_prp2_align(prp2);
|
|
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
}
|
|
status = nvme_map_addr(n, qsg, iov, prp2, len);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
}
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Map 'nsgld' data descriptors from 'segment'. The function will subtract the
|
|
* number of bytes mapped in len.
|
|
*/
|
|
static uint16_t nvme_map_sgl_data(NvmeCtrl *n, QEMUSGList *qsg,
|
|
QEMUIOVector *iov,
|
|
NvmeSglDescriptor *segment, uint64_t nsgld,
|
|
size_t *len, NvmeRequest *req)
|
|
{
|
|
dma_addr_t addr, trans_len;
|
|
uint32_t dlen;
|
|
uint16_t status;
|
|
|
|
for (int i = 0; i < nsgld; i++) {
|
|
uint8_t type = NVME_SGL_TYPE(segment[i].type);
|
|
|
|
switch (type) {
|
|
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
|
|
if (req->cmd.opcode == NVME_CMD_WRITE) {
|
|
continue;
|
|
}
|
|
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
|
|
break;
|
|
case NVME_SGL_DESCR_TYPE_SEGMENT:
|
|
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
|
|
return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
|
|
default:
|
|
return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
|
|
}
|
|
|
|
dlen = le32_to_cpu(segment[i].len);
|
|
|
|
if (!dlen) {
|
|
continue;
|
|
}
|
|
|
|
if (*len == 0) {
|
|
/*
|
|
* All data has been mapped, but the SGL contains additional
|
|
* segments and/or descriptors. The controller might accept
|
|
* ignoring the rest of the SGL.
|
|
*/
|
|
uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
|
|
if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
|
|
break;
|
|
}
|
|
|
|
trace_pci_nvme_err_invalid_sgl_excess_length(nvme_cid(req));
|
|
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
}
|
|
|
|
trans_len = MIN(*len, dlen);
|
|
|
|
if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
|
|
goto next;
|
|
}
|
|
|
|
addr = le64_to_cpu(segment[i].addr);
|
|
|
|
if (UINT64_MAX - addr < dlen) {
|
|
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
}
|
|
|
|
status = nvme_map_addr(n, qsg, iov, addr, trans_len);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
next:
|
|
*len -= trans_len;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_map_sgl(NvmeCtrl *n, QEMUSGList *qsg, QEMUIOVector *iov,
|
|
NvmeSglDescriptor sgl, size_t len,
|
|
NvmeRequest *req)
|
|
{
|
|
/*
|
|
* Read the segment in chunks of 256 descriptors (one 4k page) to avoid
|
|
* dynamically allocating a potentially huge SGL. The spec allows the SGL
|
|
* to be larger (as in number of bytes required to describe the SGL
|
|
* descriptors and segment chain) than the command transfer size, so it is
|
|
* not bounded by MDTS.
|
|
*/
|
|
const int SEG_CHUNK_SIZE = 256;
|
|
|
|
NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
|
|
uint64_t nsgld;
|
|
uint32_t seg_len;
|
|
uint16_t status;
|
|
bool sgl_in_cmb = false;
|
|
hwaddr addr;
|
|
int ret;
|
|
|
|
sgld = &sgl;
|
|
addr = le64_to_cpu(sgl.addr);
|
|
|
|
trace_pci_nvme_map_sgl(nvme_cid(req), NVME_SGL_TYPE(sgl.type), len);
|
|
|
|
/*
|
|
* If the entire transfer can be described with a single data block it can
|
|
* be mapped directly.
|
|
*/
|
|
if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
|
|
status = nvme_map_sgl_data(n, qsg, iov, sgld, 1, &len, req);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* If the segment is located in the CMB, the submission queue of the
|
|
* request must also reside there.
|
|
*/
|
|
if (nvme_addr_is_cmb(n, addr)) {
|
|
if (!nvme_addr_is_cmb(n, req->sq->dma_addr)) {
|
|
return NVME_INVALID_USE_OF_CMB | NVME_DNR;
|
|
}
|
|
|
|
sgl_in_cmb = true;
|
|
}
|
|
|
|
for (;;) {
|
|
switch (NVME_SGL_TYPE(sgld->type)) {
|
|
case NVME_SGL_DESCR_TYPE_SEGMENT:
|
|
case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
|
|
break;
|
|
default:
|
|
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
|
|
}
|
|
|
|
seg_len = le32_to_cpu(sgld->len);
|
|
|
|
/* check the length of the (Last) Segment descriptor */
|
|
if ((!seg_len || seg_len & 0xf) &&
|
|
(NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
|
|
return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
|
|
}
|
|
|
|
if (UINT64_MAX - addr < seg_len) {
|
|
return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
}
|
|
|
|
nsgld = seg_len / sizeof(NvmeSglDescriptor);
|
|
|
|
while (nsgld > SEG_CHUNK_SIZE) {
|
|
if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
|
|
trace_pci_nvme_err_addr_read(addr);
|
|
status = NVME_DATA_TRAS_ERROR;
|
|
goto unmap;
|
|
}
|
|
|
|
status = nvme_map_sgl_data(n, qsg, iov, segment, SEG_CHUNK_SIZE,
|
|
&len, req);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
nsgld -= SEG_CHUNK_SIZE;
|
|
addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
|
|
}
|
|
|
|
ret = nvme_addr_read(n, addr, segment, nsgld *
|
|
sizeof(NvmeSglDescriptor));
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_read(addr);
|
|
status = NVME_DATA_TRAS_ERROR;
|
|
goto unmap;
|
|
}
|
|
|
|
last_sgld = &segment[nsgld - 1];
|
|
|
|
/*
|
|
* If the segment ends with a Data Block or Bit Bucket Descriptor Type,
|
|
* then we are done.
|
|
*/
|
|
switch (NVME_SGL_TYPE(last_sgld->type)) {
|
|
case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
|
|
case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
|
|
status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld, &len, req);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
goto out;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If the last descriptor was not a Data Block or Bit Bucket, then the
|
|
* current segment must not be a Last Segment.
|
|
*/
|
|
if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
|
|
status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
|
|
sgld = last_sgld;
|
|
addr = le64_to_cpu(sgld->addr);
|
|
|
|
/*
|
|
* Do not map the last descriptor; it will be a Segment or Last Segment
|
|
* descriptor and is handled by the next iteration.
|
|
*/
|
|
status = nvme_map_sgl_data(n, qsg, iov, segment, nsgld - 1, &len, req);
|
|
if (status) {
|
|
goto unmap;
|
|
}
|
|
|
|
/*
|
|
* If the next segment is in the CMB, make sure that the sgl was
|
|
* already located there.
|
|
*/
|
|
if (sgl_in_cmb != nvme_addr_is_cmb(n, addr)) {
|
|
status = NVME_INVALID_USE_OF_CMB | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
}
|
|
|
|
out:
|
|
/* if there is any residual left in len, the SGL was too short */
|
|
if (len) {
|
|
status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
|
|
goto unmap;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
|
|
unmap:
|
|
if (iov->iov) {
|
|
qemu_iovec_destroy(iov);
|
|
}
|
|
|
|
if (qsg->sg) {
|
|
qemu_sglist_destroy(qsg);
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_map_dptr(NvmeCtrl *n, size_t len, NvmeRequest *req)
|
|
{
|
|
uint64_t prp1, prp2;
|
|
|
|
switch (NVME_CMD_FLAGS_PSDT(req->cmd.flags)) {
|
|
case NVME_PSDT_PRP:
|
|
prp1 = le64_to_cpu(req->cmd.dptr.prp1);
|
|
prp2 = le64_to_cpu(req->cmd.dptr.prp2);
|
|
|
|
return nvme_map_prp(n, prp1, prp2, len, req);
|
|
case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
|
|
case NVME_PSDT_SGL_MPTR_SGL:
|
|
/* SGLs shall not be used for Admin commands in NVMe over PCIe */
|
|
if (!req->sq->sqid) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
return nvme_map_sgl(n, &req->qsg, &req->iov, req->cmd.dptr.sgl, len,
|
|
req);
|
|
default:
|
|
return NVME_INVALID_FIELD;
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_dma(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
|
|
DMADirection dir, NvmeRequest *req)
|
|
{
|
|
uint16_t status = NVME_SUCCESS;
|
|
|
|
status = nvme_map_dptr(n, len, req);
|
|
if (status) {
|
|
return status;
|
|
}
|
|
|
|
/* assert that only one of qsg and iov carries data */
|
|
assert((req->qsg.nsg > 0) != (req->iov.niov > 0));
|
|
|
|
if (req->qsg.nsg > 0) {
|
|
uint64_t residual;
|
|
|
|
if (dir == DMA_DIRECTION_TO_DEVICE) {
|
|
residual = dma_buf_write(ptr, len, &req->qsg);
|
|
} else {
|
|
residual = dma_buf_read(ptr, len, &req->qsg);
|
|
}
|
|
|
|
if (unlikely(residual)) {
|
|
trace_pci_nvme_err_invalid_dma();
|
|
status = NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
} else {
|
|
size_t bytes;
|
|
|
|
if (dir == DMA_DIRECTION_TO_DEVICE) {
|
|
bytes = qemu_iovec_to_buf(&req->iov, 0, ptr, len);
|
|
} else {
|
|
bytes = qemu_iovec_from_buf(&req->iov, 0, ptr, len);
|
|
}
|
|
|
|
if (unlikely(bytes != len)) {
|
|
trace_pci_nvme_err_invalid_dma();
|
|
status = NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
return status;
|
|
}
|
|
|
|
static void nvme_post_cqes(void *opaque)
|
|
{
|
|
NvmeCQueue *cq = opaque;
|
|
NvmeCtrl *n = cq->ctrl;
|
|
NvmeRequest *req, *next;
|
|
int ret;
|
|
|
|
QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
|
|
NvmeSQueue *sq;
|
|
hwaddr addr;
|
|
|
|
if (nvme_cq_full(cq)) {
|
|
break;
|
|
}
|
|
|
|
sq = req->sq;
|
|
req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
|
|
req->cqe.sq_id = cpu_to_le16(sq->sqid);
|
|
req->cqe.sq_head = cpu_to_le16(sq->head);
|
|
addr = cq->dma_addr + cq->tail * n->cqe_size;
|
|
ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
|
|
sizeof(req->cqe));
|
|
if (ret) {
|
|
trace_pci_nvme_err_addr_write(addr);
|
|
trace_pci_nvme_err_cfs();
|
|
n->bar.csts = NVME_CSTS_FAILED;
|
|
break;
|
|
}
|
|
QTAILQ_REMOVE(&cq->req_list, req, entry);
|
|
nvme_inc_cq_tail(cq);
|
|
nvme_req_exit(req);
|
|
QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
|
|
}
|
|
if (cq->tail != cq->head) {
|
|
nvme_irq_assert(n, cq);
|
|
}
|
|
}
|
|
|
|
static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
|
|
{
|
|
assert(cq->cqid == req->sq->cqid);
|
|
trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
|
|
req->status);
|
|
|
|
if (req->status) {
|
|
trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
|
|
req->status, req->cmd.opcode);
|
|
}
|
|
|
|
QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
|
|
QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
|
|
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
static void nvme_process_aers(void *opaque)
|
|
{
|
|
NvmeCtrl *n = opaque;
|
|
NvmeAsyncEvent *event, *next;
|
|
|
|
trace_pci_nvme_process_aers(n->aer_queued);
|
|
|
|
QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
|
|
NvmeRequest *req;
|
|
NvmeAerResult *result;
|
|
|
|
/* can't post cqe if there is nothing to complete */
|
|
if (!n->outstanding_aers) {
|
|
trace_pci_nvme_no_outstanding_aers();
|
|
break;
|
|
}
|
|
|
|
/* ignore if masked (cqe posted, but event not cleared) */
|
|
if (n->aer_mask & (1 << event->result.event_type)) {
|
|
trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
|
|
continue;
|
|
}
|
|
|
|
QTAILQ_REMOVE(&n->aer_queue, event, entry);
|
|
n->aer_queued--;
|
|
|
|
n->aer_mask |= 1 << event->result.event_type;
|
|
n->outstanding_aers--;
|
|
|
|
req = n->aer_reqs[n->outstanding_aers];
|
|
|
|
result = (NvmeAerResult *) &req->cqe.result;
|
|
result->event_type = event->result.event_type;
|
|
result->event_info = event->result.event_info;
|
|
result->log_page = event->result.log_page;
|
|
g_free(event);
|
|
|
|
trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
|
|
result->log_page);
|
|
|
|
nvme_enqueue_req_completion(&n->admin_cq, req);
|
|
}
|
|
}
|
|
|
|
static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
|
|
uint8_t event_info, uint8_t log_page)
|
|
{
|
|
NvmeAsyncEvent *event;
|
|
|
|
trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
|
|
|
|
if (n->aer_queued == n->params.aer_max_queued) {
|
|
trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
|
|
return;
|
|
}
|
|
|
|
event = g_new(NvmeAsyncEvent, 1);
|
|
event->result = (NvmeAerResult) {
|
|
.event_type = event_type,
|
|
.event_info = event_info,
|
|
.log_page = log_page,
|
|
};
|
|
|
|
QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
|
|
n->aer_queued++;
|
|
|
|
nvme_process_aers(n);
|
|
}
|
|
|
|
static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
|
|
{
|
|
n->aer_mask &= ~(1 << event_type);
|
|
if (!QTAILQ_EMPTY(&n->aer_queue)) {
|
|
nvme_process_aers(n);
|
|
}
|
|
}
|
|
|
|
static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
|
|
{
|
|
uint8_t mdts = n->params.mdts;
|
|
|
|
if (mdts && len > n->page_size << mdts) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static inline uint16_t nvme_check_bounds(NvmeCtrl *n, NvmeNamespace *ns,
|
|
uint64_t slba, uint32_t nlb)
|
|
{
|
|
uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
|
|
|
|
if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
|
|
return NVME_LBA_RANGE | NVME_DNR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_rw_cb(void *opaque, int ret)
|
|
{
|
|
NvmeRequest *req = opaque;
|
|
NvmeNamespace *ns = req->ns;
|
|
|
|
BlockBackend *blk = ns->blkconf.blk;
|
|
BlockAcctCookie *acct = &req->acct;
|
|
BlockAcctStats *stats = blk_get_stats(blk);
|
|
|
|
Error *local_err = NULL;
|
|
|
|
trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
|
|
|
|
if (!ret) {
|
|
block_acct_done(stats, acct);
|
|
} else {
|
|
uint16_t status;
|
|
|
|
block_acct_failed(stats, acct);
|
|
|
|
switch (req->cmd.opcode) {
|
|
case NVME_CMD_READ:
|
|
status = NVME_UNRECOVERED_READ;
|
|
break;
|
|
case NVME_CMD_FLUSH:
|
|
case NVME_CMD_WRITE:
|
|
case NVME_CMD_WRITE_ZEROES:
|
|
status = NVME_WRITE_FAULT;
|
|
break;
|
|
default:
|
|
status = NVME_INTERNAL_DEV_ERROR;
|
|
break;
|
|
}
|
|
|
|
trace_pci_nvme_err_aio(nvme_cid(req), strerror(ret), status);
|
|
|
|
error_setg_errno(&local_err, -ret, "aio failed");
|
|
error_report_err(local_err);
|
|
|
|
req->status = status;
|
|
}
|
|
|
|
nvme_enqueue_req_completion(nvme_cq(req), req);
|
|
}
|
|
|
|
static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
|
|
BLOCK_ACCT_FLUSH);
|
|
req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_rw_cb, req);
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
|
|
NvmeNamespace *ns = req->ns;
|
|
uint64_t slba = le64_to_cpu(rw->slba);
|
|
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
|
|
uint64_t offset = nvme_l2b(ns, slba);
|
|
uint32_t count = nvme_l2b(ns, nlb);
|
|
uint16_t status;
|
|
|
|
trace_pci_nvme_write_zeroes(nvme_cid(req), nvme_nsid(ns), slba, nlb);
|
|
|
|
status = nvme_check_bounds(n, ns, slba, nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
|
|
return status;
|
|
}
|
|
|
|
block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0,
|
|
BLOCK_ACCT_WRITE);
|
|
req->aiocb = blk_aio_pwrite_zeroes(req->ns->blkconf.blk, offset, count,
|
|
BDRV_REQ_MAY_UNMAP, nvme_rw_cb, req);
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_rw(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
|
|
NvmeNamespace *ns = req->ns;
|
|
uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
|
|
uint64_t slba = le64_to_cpu(rw->slba);
|
|
|
|
uint64_t data_size = nvme_l2b(ns, nlb);
|
|
uint64_t data_offset = nvme_l2b(ns, slba);
|
|
enum BlockAcctType acct = req->cmd.opcode == NVME_CMD_WRITE ?
|
|
BLOCK_ACCT_WRITE : BLOCK_ACCT_READ;
|
|
BlockBackend *blk = ns->blkconf.blk;
|
|
uint16_t status;
|
|
|
|
trace_pci_nvme_rw(nvme_cid(req), nvme_io_opc_str(rw->opcode),
|
|
nvme_nsid(ns), nlb, data_size, slba);
|
|
|
|
status = nvme_check_mdts(n, data_size);
|
|
if (status) {
|
|
trace_pci_nvme_err_mdts(nvme_cid(req), data_size);
|
|
goto invalid;
|
|
}
|
|
|
|
status = nvme_check_bounds(n, ns, slba, nlb);
|
|
if (status) {
|
|
trace_pci_nvme_err_invalid_lba_range(slba, nlb, ns->id_ns.nsze);
|
|
goto invalid;
|
|
}
|
|
|
|
status = nvme_map_dptr(n, data_size, req);
|
|
if (status) {
|
|
goto invalid;
|
|
}
|
|
|
|
block_acct_start(blk_get_stats(blk), &req->acct, data_size, acct);
|
|
if (req->qsg.sg) {
|
|
if (acct == BLOCK_ACCT_WRITE) {
|
|
req->aiocb = dma_blk_write(blk, &req->qsg, data_offset,
|
|
BDRV_SECTOR_SIZE, nvme_rw_cb, req);
|
|
} else {
|
|
req->aiocb = dma_blk_read(blk, &req->qsg, data_offset,
|
|
BDRV_SECTOR_SIZE, nvme_rw_cb, req);
|
|
}
|
|
} else {
|
|
if (acct == BLOCK_ACCT_WRITE) {
|
|
req->aiocb = blk_aio_pwritev(blk, data_offset, &req->iov, 0,
|
|
nvme_rw_cb, req);
|
|
} else {
|
|
req->aiocb = blk_aio_preadv(blk, data_offset, &req->iov, 0,
|
|
nvme_rw_cb, req);
|
|
}
|
|
}
|
|
return NVME_NO_COMPLETE;
|
|
|
|
invalid:
|
|
block_acct_invalid(blk_get_stats(ns->blkconf.blk), acct);
|
|
return status;
|
|
}
|
|
|
|
static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
|
|
|
|
trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
|
|
req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
|
|
|
|
if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_ADMIN_ONLY) {
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
|
|
if (!nvme_nsid_valid(n, nsid)) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
req->ns = nvme_ns(n, nsid);
|
|
if (unlikely(!req->ns)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
switch (req->cmd.opcode) {
|
|
case NVME_CMD_FLUSH:
|
|
return nvme_flush(n, req);
|
|
case NVME_CMD_WRITE_ZEROES:
|
|
return nvme_write_zeroes(n, req);
|
|
case NVME_CMD_WRITE:
|
|
case NVME_CMD_READ:
|
|
return nvme_rw(n, req);
|
|
default:
|
|
trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
|
|
{
|
|
n->sq[sq->sqid] = NULL;
|
|
timer_del(sq->timer);
|
|
timer_free(sq->timer);
|
|
g_free(sq->io_req);
|
|
if (sq->sqid) {
|
|
g_free(sq);
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
|
|
NvmeRequest *r, *next;
|
|
NvmeSQueue *sq;
|
|
NvmeCQueue *cq;
|
|
uint16_t qid = le16_to_cpu(c->qid);
|
|
|
|
if (unlikely(!qid || nvme_check_sqid(n, qid))) {
|
|
trace_pci_nvme_err_invalid_del_sq(qid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
|
|
trace_pci_nvme_del_sq(qid);
|
|
|
|
sq = n->sq[qid];
|
|
while (!QTAILQ_EMPTY(&sq->out_req_list)) {
|
|
r = QTAILQ_FIRST(&sq->out_req_list);
|
|
assert(r->aiocb);
|
|
blk_aio_cancel(r->aiocb);
|
|
}
|
|
if (!nvme_check_cqid(n, sq->cqid)) {
|
|
cq = n->cq[sq->cqid];
|
|
QTAILQ_REMOVE(&cq->sq_list, sq, entry);
|
|
|
|
nvme_post_cqes(cq);
|
|
QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
|
|
if (r->sq == sq) {
|
|
QTAILQ_REMOVE(&cq->req_list, r, entry);
|
|
QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
|
|
}
|
|
}
|
|
}
|
|
|
|
nvme_free_sq(sq, n);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
|
|
uint16_t sqid, uint16_t cqid, uint16_t size)
|
|
{
|
|
int i;
|
|
NvmeCQueue *cq;
|
|
|
|
sq->ctrl = n;
|
|
sq->dma_addr = dma_addr;
|
|
sq->sqid = sqid;
|
|
sq->size = size;
|
|
sq->cqid = cqid;
|
|
sq->head = sq->tail = 0;
|
|
sq->io_req = g_new0(NvmeRequest, sq->size);
|
|
|
|
QTAILQ_INIT(&sq->req_list);
|
|
QTAILQ_INIT(&sq->out_req_list);
|
|
for (i = 0; i < sq->size; i++) {
|
|
sq->io_req[i].sq = sq;
|
|
QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
|
|
}
|
|
sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
|
|
|
|
assert(n->cq[cqid]);
|
|
cq = n->cq[cqid];
|
|
QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
|
|
n->sq[sqid] = sq;
|
|
}
|
|
|
|
static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeSQueue *sq;
|
|
NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
|
|
|
|
uint16_t cqid = le16_to_cpu(c->cqid);
|
|
uint16_t sqid = le16_to_cpu(c->sqid);
|
|
uint16_t qsize = le16_to_cpu(c->qsize);
|
|
uint16_t qflags = le16_to_cpu(c->sq_flags);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
|
|
trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
|
|
|
|
if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
|
|
trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
|
|
return NVME_INVALID_CQID | NVME_DNR;
|
|
}
|
|
if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
|
|
n->sq[sqid] != NULL)) {
|
|
trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
|
|
trace_pci_nvme_err_invalid_create_sq_size(qsize);
|
|
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
|
|
}
|
|
if (unlikely(prp1 & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_create_sq_addr(prp1);
|
|
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
}
|
|
if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
|
|
trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
sq = g_malloc0(sizeof(*sq));
|
|
nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
struct nvme_stats {
|
|
uint64_t units_read;
|
|
uint64_t units_written;
|
|
uint64_t read_commands;
|
|
uint64_t write_commands;
|
|
};
|
|
|
|
static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
|
|
{
|
|
BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
|
|
|
|
stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
|
|
stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
|
|
stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
|
|
stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
|
|
}
|
|
|
|
static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
|
|
uint64_t off, NvmeRequest *req)
|
|
{
|
|
uint32_t nsid = le32_to_cpu(req->cmd.nsid);
|
|
struct nvme_stats stats = { 0 };
|
|
NvmeSmartLog smart = { 0 };
|
|
uint32_t trans_len;
|
|
NvmeNamespace *ns;
|
|
time_t current_ms;
|
|
|
|
if (off >= sizeof(smart)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (nsid != 0xffffffff) {
|
|
ns = nvme_ns(n, nsid);
|
|
if (!ns) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
nvme_set_blk_stats(ns, &stats);
|
|
} else {
|
|
int i;
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
nvme_set_blk_stats(ns, &stats);
|
|
}
|
|
}
|
|
|
|
trans_len = MIN(sizeof(smart) - off, buf_len);
|
|
|
|
smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
|
|
1000));
|
|
smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
|
|
1000));
|
|
smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
|
|
smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
|
|
|
|
smart.temperature = cpu_to_le16(n->temperature);
|
|
|
|
if ((n->temperature >= n->features.temp_thresh_hi) ||
|
|
(n->temperature <= n->features.temp_thresh_low)) {
|
|
smart.critical_warning |= NVME_SMART_TEMPERATURE;
|
|
}
|
|
|
|
current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
smart.power_on_hours[0] =
|
|
cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
|
|
|
|
if (!rae) {
|
|
nvme_clear_events(n, NVME_AER_TYPE_SMART);
|
|
}
|
|
|
|
return nvme_dma(n, (uint8_t *) &smart + off, trans_len,
|
|
DMA_DIRECTION_FROM_DEVICE, req);
|
|
}
|
|
|
|
static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
|
|
NvmeRequest *req)
|
|
{
|
|
uint32_t trans_len;
|
|
NvmeFwSlotInfoLog fw_log = {
|
|
.afi = 0x1,
|
|
};
|
|
|
|
if (off >= sizeof(fw_log)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
|
|
trans_len = MIN(sizeof(fw_log) - off, buf_len);
|
|
|
|
return nvme_dma(n, (uint8_t *) &fw_log + off, trans_len,
|
|
DMA_DIRECTION_FROM_DEVICE, req);
|
|
}
|
|
|
|
static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
|
|
uint64_t off, NvmeRequest *req)
|
|
{
|
|
uint32_t trans_len;
|
|
NvmeErrorLog errlog;
|
|
|
|
if (off >= sizeof(errlog)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (!rae) {
|
|
nvme_clear_events(n, NVME_AER_TYPE_ERROR);
|
|
}
|
|
|
|
memset(&errlog, 0x0, sizeof(errlog));
|
|
trans_len = MIN(sizeof(errlog) - off, buf_len);
|
|
|
|
return nvme_dma(n, (uint8_t *)&errlog, trans_len,
|
|
DMA_DIRECTION_FROM_DEVICE, req);
|
|
}
|
|
|
|
static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCmd *cmd = &req->cmd;
|
|
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
|
|
uint32_t dw12 = le32_to_cpu(cmd->cdw12);
|
|
uint32_t dw13 = le32_to_cpu(cmd->cdw13);
|
|
uint8_t lid = dw10 & 0xff;
|
|
uint8_t lsp = (dw10 >> 8) & 0xf;
|
|
uint8_t rae = (dw10 >> 15) & 0x1;
|
|
uint32_t numdl, numdu;
|
|
uint64_t off, lpol, lpou;
|
|
size_t len;
|
|
uint16_t status;
|
|
|
|
numdl = (dw10 >> 16);
|
|
numdu = (dw11 & 0xffff);
|
|
lpol = dw12;
|
|
lpou = dw13;
|
|
|
|
len = (((numdu << 16) | numdl) + 1) << 2;
|
|
off = (lpou << 32ULL) | lpol;
|
|
|
|
if (off & 0x3) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
|
|
|
|
status = nvme_check_mdts(n, len);
|
|
if (status) {
|
|
trace_pci_nvme_err_mdts(nvme_cid(req), len);
|
|
return status;
|
|
}
|
|
|
|
switch (lid) {
|
|
case NVME_LOG_ERROR_INFO:
|
|
return nvme_error_info(n, rae, len, off, req);
|
|
case NVME_LOG_SMART_INFO:
|
|
return nvme_smart_info(n, rae, len, off, req);
|
|
case NVME_LOG_FW_SLOT_INFO:
|
|
return nvme_fw_log_info(n, len, off, req);
|
|
default:
|
|
trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
|
|
{
|
|
n->cq[cq->cqid] = NULL;
|
|
timer_del(cq->timer);
|
|
timer_free(cq->timer);
|
|
msix_vector_unuse(&n->parent_obj, cq->vector);
|
|
if (cq->cqid) {
|
|
g_free(cq);
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
|
|
NvmeCQueue *cq;
|
|
uint16_t qid = le16_to_cpu(c->qid);
|
|
|
|
if (unlikely(!qid || nvme_check_cqid(n, qid))) {
|
|
trace_pci_nvme_err_invalid_del_cq_cqid(qid);
|
|
return NVME_INVALID_CQID | NVME_DNR;
|
|
}
|
|
|
|
cq = n->cq[qid];
|
|
if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
|
|
trace_pci_nvme_err_invalid_del_cq_notempty(qid);
|
|
return NVME_INVALID_QUEUE_DEL;
|
|
}
|
|
nvme_irq_deassert(n, cq);
|
|
trace_pci_nvme_del_cq(qid);
|
|
nvme_free_cq(cq, n);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
|
|
uint16_t cqid, uint16_t vector, uint16_t size,
|
|
uint16_t irq_enabled)
|
|
{
|
|
int ret;
|
|
|
|
ret = msix_vector_use(&n->parent_obj, vector);
|
|
assert(ret == 0);
|
|
cq->ctrl = n;
|
|
cq->cqid = cqid;
|
|
cq->size = size;
|
|
cq->dma_addr = dma_addr;
|
|
cq->phase = 1;
|
|
cq->irq_enabled = irq_enabled;
|
|
cq->vector = vector;
|
|
cq->head = cq->tail = 0;
|
|
QTAILQ_INIT(&cq->req_list);
|
|
QTAILQ_INIT(&cq->sq_list);
|
|
n->cq[cqid] = cq;
|
|
cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
|
|
}
|
|
|
|
static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCQueue *cq;
|
|
NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
|
|
uint16_t cqid = le16_to_cpu(c->cqid);
|
|
uint16_t vector = le16_to_cpu(c->irq_vector);
|
|
uint16_t qsize = le16_to_cpu(c->qsize);
|
|
uint16_t qflags = le16_to_cpu(c->cq_flags);
|
|
uint64_t prp1 = le64_to_cpu(c->prp1);
|
|
|
|
trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
|
|
NVME_CQ_FLAGS_IEN(qflags) != 0);
|
|
|
|
if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
|
|
n->cq[cqid] != NULL)) {
|
|
trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
|
|
return NVME_INVALID_QID | NVME_DNR;
|
|
}
|
|
if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) {
|
|
trace_pci_nvme_err_invalid_create_cq_size(qsize);
|
|
return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
|
|
}
|
|
if (unlikely(prp1 & (n->page_size - 1))) {
|
|
trace_pci_nvme_err_invalid_create_cq_addr(prp1);
|
|
return NVME_INVALID_PRP_OFFSET | NVME_DNR;
|
|
}
|
|
if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
|
|
trace_pci_nvme_err_invalid_create_cq_vector(vector);
|
|
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
|
|
}
|
|
if (unlikely(vector >= n->params.msix_qsize)) {
|
|
trace_pci_nvme_err_invalid_create_cq_vector(vector);
|
|
return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
|
|
}
|
|
if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
|
|
trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
cq = g_malloc0(sizeof(*cq));
|
|
nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
|
|
NVME_CQ_FLAGS_IEN(qflags));
|
|
|
|
/*
|
|
* It is only required to set qs_created when creating a completion queue;
|
|
* creating a submission queue without a matching completion queue will
|
|
* fail.
|
|
*/
|
|
n->qs_created = true;
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
trace_pci_nvme_identify_ctrl();
|
|
|
|
return nvme_dma(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl),
|
|
DMA_DIRECTION_FROM_DEVICE, req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns;
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
NvmeIdNs *id_ns, inactive = { 0 };
|
|
uint32_t nsid = le32_to_cpu(c->nsid);
|
|
|
|
trace_pci_nvme_identify_ns(nsid);
|
|
|
|
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_ns(n, nsid);
|
|
if (unlikely(!ns)) {
|
|
id_ns = &inactive;
|
|
} else {
|
|
id_ns = &ns->id_ns;
|
|
}
|
|
|
|
return nvme_dma(n, (uint8_t *)id_ns, sizeof(NvmeIdNs),
|
|
DMA_DIRECTION_FROM_DEVICE, req);
|
|
}
|
|
|
|
static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
static const int data_len = NVME_IDENTIFY_DATA_SIZE;
|
|
uint32_t min_nsid = le32_to_cpu(c->nsid);
|
|
uint32_t *list;
|
|
uint16_t ret;
|
|
int j = 0;
|
|
|
|
trace_pci_nvme_identify_nslist(min_nsid);
|
|
|
|
/*
|
|
* Both 0xffffffff (NVME_NSID_BROADCAST) and 0xfffffffe are invalid values
|
|
* since the Active Namespace ID List should return namespaces with ids
|
|
* *higher* than the NSID specified in the command. This is also specified
|
|
* in the spec (NVM Express v1.3d, Section 5.15.4).
|
|
*/
|
|
if (min_nsid >= NVME_NSID_BROADCAST - 1) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
list = g_malloc0(data_len);
|
|
for (int i = 1; i <= n->num_namespaces; i++) {
|
|
if (i <= min_nsid || !nvme_ns(n, i)) {
|
|
continue;
|
|
}
|
|
list[j++] = cpu_to_le32(i);
|
|
if (j == data_len / sizeof(uint32_t)) {
|
|
break;
|
|
}
|
|
}
|
|
ret = nvme_dma(n, (uint8_t *)list, data_len, DMA_DIRECTION_FROM_DEVICE,
|
|
req);
|
|
g_free(list);
|
|
return ret;
|
|
}
|
|
|
|
static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
uint32_t nsid = le32_to_cpu(c->nsid);
|
|
uint8_t list[NVME_IDENTIFY_DATA_SIZE];
|
|
|
|
struct data {
|
|
struct {
|
|
NvmeIdNsDescr hdr;
|
|
uint8_t v[16];
|
|
} uuid;
|
|
};
|
|
|
|
struct data *ns_descrs = (struct data *)list;
|
|
|
|
trace_pci_nvme_identify_ns_descr_list(nsid);
|
|
|
|
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
if (unlikely(!nvme_ns(n, nsid))) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
memset(list, 0x0, sizeof(list));
|
|
|
|
/*
|
|
* Because the NGUID and EUI64 fields are 0 in the Identify Namespace data
|
|
* structure, a Namespace UUID (nidt = 0x3) must be reported in the
|
|
* Namespace Identification Descriptor. Add a very basic Namespace UUID
|
|
* here.
|
|
*/
|
|
ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID;
|
|
ns_descrs->uuid.hdr.nidl = NVME_NIDT_UUID_LEN;
|
|
stl_be_p(&ns_descrs->uuid.v, nsid);
|
|
|
|
return nvme_dma(n, list, NVME_IDENTIFY_DATA_SIZE,
|
|
DMA_DIRECTION_FROM_DEVICE, req);
|
|
}
|
|
|
|
static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
|
|
|
|
switch (le32_to_cpu(c->cns)) {
|
|
case NVME_ID_CNS_NS:
|
|
return nvme_identify_ns(n, req);
|
|
case NVME_ID_CNS_CTRL:
|
|
return nvme_identify_ctrl(n, req);
|
|
case NVME_ID_CNS_NS_ACTIVE_LIST:
|
|
return nvme_identify_nslist(n, req);
|
|
case NVME_ID_CNS_NS_DESCR_LIST:
|
|
return nvme_identify_ns_descr_list(n, req);
|
|
default:
|
|
trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
|
|
|
|
req->cqe.result = 1;
|
|
if (nvme_check_sqid(n, sqid)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
|
|
{
|
|
trace_pci_nvme_setfeat_timestamp(ts);
|
|
|
|
n->host_timestamp = le64_to_cpu(ts);
|
|
n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
}
|
|
|
|
static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
|
|
{
|
|
uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
|
|
|
|
union nvme_timestamp {
|
|
struct {
|
|
uint64_t timestamp:48;
|
|
uint64_t sync:1;
|
|
uint64_t origin:3;
|
|
uint64_t rsvd1:12;
|
|
};
|
|
uint64_t all;
|
|
};
|
|
|
|
union nvme_timestamp ts;
|
|
ts.all = 0;
|
|
ts.timestamp = n->host_timestamp + elapsed_time;
|
|
|
|
/* If the host timestamp is non-zero, set the timestamp origin */
|
|
ts.origin = n->host_timestamp ? 0x01 : 0x00;
|
|
|
|
trace_pci_nvme_getfeat_timestamp(ts.all);
|
|
|
|
return cpu_to_le64(ts.all);
|
|
}
|
|
|
|
static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint64_t timestamp = nvme_get_timestamp(n);
|
|
|
|
return nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp),
|
|
DMA_DIRECTION_FROM_DEVICE, req);
|
|
}
|
|
|
|
static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeCmd *cmd = &req->cmd;
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
|
|
uint32_t nsid = le32_to_cpu(cmd->nsid);
|
|
uint32_t result;
|
|
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
|
|
NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
|
|
uint16_t iv;
|
|
|
|
static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
|
|
[NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
|
|
};
|
|
|
|
trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
|
|
|
|
if (!nvme_feature_support[fid]) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
|
|
if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
|
|
/*
|
|
* The Reservation Notification Mask and Reservation Persistence
|
|
* features require a status code of Invalid Field in Command when
|
|
* NSID is 0xFFFFFFFF. Since the device does not support those
|
|
* features we can always return Invalid Namespace or Format as we
|
|
* should do for all other features.
|
|
*/
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
if (!nvme_ns(n, nsid)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
switch (sel) {
|
|
case NVME_GETFEAT_SELECT_CURRENT:
|
|
break;
|
|
case NVME_GETFEAT_SELECT_SAVED:
|
|
/* no features are saveable by the controller; fallthrough */
|
|
case NVME_GETFEAT_SELECT_DEFAULT:
|
|
goto defaults;
|
|
case NVME_GETFEAT_SELECT_CAP:
|
|
result = nvme_feature_cap[fid];
|
|
goto out;
|
|
}
|
|
|
|
switch (fid) {
|
|
case NVME_TEMPERATURE_THRESHOLD:
|
|
result = 0;
|
|
|
|
/*
|
|
* The controller only implements the Composite Temperature sensor, so
|
|
* return 0 for all other sensors.
|
|
*/
|
|
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
|
|
goto out;
|
|
}
|
|
|
|
switch (NVME_TEMP_THSEL(dw11)) {
|
|
case NVME_TEMP_THSEL_OVER:
|
|
result = n->features.temp_thresh_hi;
|
|
goto out;
|
|
case NVME_TEMP_THSEL_UNDER:
|
|
result = n->features.temp_thresh_low;
|
|
goto out;
|
|
}
|
|
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
case NVME_VOLATILE_WRITE_CACHE:
|
|
result = n->features.vwc;
|
|
trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
|
|
goto out;
|
|
case NVME_ASYNCHRONOUS_EVENT_CONF:
|
|
result = n->features.async_config;
|
|
goto out;
|
|
case NVME_TIMESTAMP:
|
|
return nvme_get_feature_timestamp(n, req);
|
|
default:
|
|
break;
|
|
}
|
|
|
|
defaults:
|
|
switch (fid) {
|
|
case NVME_TEMPERATURE_THRESHOLD:
|
|
result = 0;
|
|
|
|
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
|
|
break;
|
|
}
|
|
|
|
if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
|
|
result = NVME_TEMPERATURE_WARNING;
|
|
}
|
|
|
|
break;
|
|
case NVME_NUMBER_OF_QUEUES:
|
|
result = (n->params.max_ioqpairs - 1) |
|
|
((n->params.max_ioqpairs - 1) << 16);
|
|
trace_pci_nvme_getfeat_numq(result);
|
|
break;
|
|
case NVME_INTERRUPT_VECTOR_CONF:
|
|
iv = dw11 & 0xffff;
|
|
if (iv >= n->params.max_ioqpairs + 1) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
result = iv;
|
|
if (iv == n->admin_cq.vector) {
|
|
result |= NVME_INTVC_NOCOALESCING;
|
|
}
|
|
|
|
break;
|
|
default:
|
|
result = nvme_feature_default[fid];
|
|
break;
|
|
}
|
|
|
|
out:
|
|
req->cqe.result = cpu_to_le32(result);
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
uint16_t ret;
|
|
uint64_t timestamp;
|
|
|
|
ret = nvme_dma(n, (uint8_t *)×tamp, sizeof(timestamp),
|
|
DMA_DIRECTION_TO_DEVICE, req);
|
|
if (ret != NVME_SUCCESS) {
|
|
return ret;
|
|
}
|
|
|
|
nvme_set_timestamp(n, timestamp);
|
|
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
NvmeNamespace *ns;
|
|
|
|
NvmeCmd *cmd = &req->cmd;
|
|
uint32_t dw10 = le32_to_cpu(cmd->cdw10);
|
|
uint32_t dw11 = le32_to_cpu(cmd->cdw11);
|
|
uint32_t nsid = le32_to_cpu(cmd->nsid);
|
|
uint8_t fid = NVME_GETSETFEAT_FID(dw10);
|
|
uint8_t save = NVME_SETFEAT_SAVE(dw10);
|
|
|
|
trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
|
|
|
|
if (save) {
|
|
return NVME_FID_NOT_SAVEABLE | NVME_DNR;
|
|
}
|
|
|
|
if (!nvme_feature_support[fid]) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
|
|
if (nsid != NVME_NSID_BROADCAST) {
|
|
if (!nvme_nsid_valid(n, nsid)) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
ns = nvme_ns(n, nsid);
|
|
if (unlikely(!ns)) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
}
|
|
} else if (nsid && nsid != NVME_NSID_BROADCAST) {
|
|
if (!nvme_nsid_valid(n, nsid)) {
|
|
return NVME_INVALID_NSID | NVME_DNR;
|
|
}
|
|
|
|
return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
|
|
}
|
|
|
|
if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
|
|
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
|
|
}
|
|
|
|
switch (fid) {
|
|
case NVME_TEMPERATURE_THRESHOLD:
|
|
if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
|
|
break;
|
|
}
|
|
|
|
switch (NVME_TEMP_THSEL(dw11)) {
|
|
case NVME_TEMP_THSEL_OVER:
|
|
n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
|
|
break;
|
|
case NVME_TEMP_THSEL_UNDER:
|
|
n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
|
|
break;
|
|
default:
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
if (((n->temperature >= n->features.temp_thresh_hi) ||
|
|
(n->temperature <= n->features.temp_thresh_low)) &&
|
|
NVME_AEC_SMART(n->features.async_config) & NVME_SMART_TEMPERATURE) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_SMART,
|
|
NVME_AER_INFO_SMART_TEMP_THRESH,
|
|
NVME_LOG_SMART_INFO);
|
|
}
|
|
|
|
break;
|
|
case NVME_VOLATILE_WRITE_CACHE:
|
|
n->features.vwc = dw11 & 0x1;
|
|
|
|
for (int i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
|
|
blk_flush(ns->blkconf.blk);
|
|
}
|
|
|
|
blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
|
|
}
|
|
|
|
break;
|
|
|
|
case NVME_NUMBER_OF_QUEUES:
|
|
if (n->qs_created) {
|
|
return NVME_CMD_SEQ_ERROR | NVME_DNR;
|
|
}
|
|
|
|
/*
|
|
* NVMe v1.3, Section 5.21.1.7: 0xffff is not an allowed value for NCQR
|
|
* and NSQR.
|
|
*/
|
|
if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
|
|
return NVME_INVALID_FIELD | NVME_DNR;
|
|
}
|
|
|
|
trace_pci_nvme_setfeat_numq((dw11 & 0xFFFF) + 1,
|
|
((dw11 >> 16) & 0xFFFF) + 1,
|
|
n->params.max_ioqpairs,
|
|
n->params.max_ioqpairs);
|
|
req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
|
|
((n->params.max_ioqpairs - 1) << 16));
|
|
break;
|
|
case NVME_ASYNCHRONOUS_EVENT_CONF:
|
|
n->features.async_config = dw11;
|
|
break;
|
|
case NVME_TIMESTAMP:
|
|
return nvme_set_feature_timestamp(n, req);
|
|
default:
|
|
return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
|
|
}
|
|
return NVME_SUCCESS;
|
|
}
|
|
|
|
static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
trace_pci_nvme_aer(nvme_cid(req));
|
|
|
|
if (n->outstanding_aers > n->params.aerl) {
|
|
trace_pci_nvme_aer_aerl_exceeded();
|
|
return NVME_AER_LIMIT_EXCEEDED;
|
|
}
|
|
|
|
n->aer_reqs[n->outstanding_aers] = req;
|
|
n->outstanding_aers++;
|
|
|
|
if (!QTAILQ_EMPTY(&n->aer_queue)) {
|
|
nvme_process_aers(n);
|
|
}
|
|
|
|
return NVME_NO_COMPLETE;
|
|
}
|
|
|
|
static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
|
|
{
|
|
trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
|
|
nvme_adm_opc_str(req->cmd.opcode));
|
|
|
|
switch (req->cmd.opcode) {
|
|
case NVME_ADM_CMD_DELETE_SQ:
|
|
return nvme_del_sq(n, req);
|
|
case NVME_ADM_CMD_CREATE_SQ:
|
|
return nvme_create_sq(n, req);
|
|
case NVME_ADM_CMD_GET_LOG_PAGE:
|
|
return nvme_get_log(n, req);
|
|
case NVME_ADM_CMD_DELETE_CQ:
|
|
return nvme_del_cq(n, req);
|
|
case NVME_ADM_CMD_CREATE_CQ:
|
|
return nvme_create_cq(n, req);
|
|
case NVME_ADM_CMD_IDENTIFY:
|
|
return nvme_identify(n, req);
|
|
case NVME_ADM_CMD_ABORT:
|
|
return nvme_abort(n, req);
|
|
case NVME_ADM_CMD_SET_FEATURES:
|
|
return nvme_set_feature(n, req);
|
|
case NVME_ADM_CMD_GET_FEATURES:
|
|
return nvme_get_feature(n, req);
|
|
case NVME_ADM_CMD_ASYNC_EV_REQ:
|
|
return nvme_aer(n, req);
|
|
default:
|
|
trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
|
|
return NVME_INVALID_OPCODE | NVME_DNR;
|
|
}
|
|
}
|
|
|
|
static void nvme_process_sq(void *opaque)
|
|
{
|
|
NvmeSQueue *sq = opaque;
|
|
NvmeCtrl *n = sq->ctrl;
|
|
NvmeCQueue *cq = n->cq[sq->cqid];
|
|
|
|
uint16_t status;
|
|
hwaddr addr;
|
|
NvmeCmd cmd;
|
|
NvmeRequest *req;
|
|
|
|
while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
|
|
addr = sq->dma_addr + sq->head * n->sqe_size;
|
|
if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
|
|
trace_pci_nvme_err_addr_read(addr);
|
|
trace_pci_nvme_err_cfs();
|
|
n->bar.csts = NVME_CSTS_FAILED;
|
|
break;
|
|
}
|
|
nvme_inc_sq_head(sq);
|
|
|
|
req = QTAILQ_FIRST(&sq->req_list);
|
|
QTAILQ_REMOVE(&sq->req_list, req, entry);
|
|
QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
|
|
nvme_req_clear(req);
|
|
req->cqe.cid = cmd.cid;
|
|
memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
|
|
|
|
status = sq->sqid ? nvme_io_cmd(n, req) :
|
|
nvme_admin_cmd(n, req);
|
|
if (status != NVME_NO_COMPLETE) {
|
|
req->status = status;
|
|
nvme_enqueue_req_completion(cq, req);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nvme_clear_ctrl(NvmeCtrl *n)
|
|
{
|
|
NvmeNamespace *ns;
|
|
int i;
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ns_drain(ns);
|
|
}
|
|
|
|
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
|
|
if (n->sq[i] != NULL) {
|
|
nvme_free_sq(n->sq[i], n);
|
|
}
|
|
}
|
|
for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
|
|
if (n->cq[i] != NULL) {
|
|
nvme_free_cq(n->cq[i], n);
|
|
}
|
|
}
|
|
|
|
while (!QTAILQ_EMPTY(&n->aer_queue)) {
|
|
NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
|
|
QTAILQ_REMOVE(&n->aer_queue, event, entry);
|
|
g_free(event);
|
|
}
|
|
|
|
n->aer_queued = 0;
|
|
n->outstanding_aers = 0;
|
|
n->qs_created = false;
|
|
|
|
for (i = 1; i <= n->num_namespaces; i++) {
|
|
ns = nvme_ns(n, i);
|
|
if (!ns) {
|
|
continue;
|
|
}
|
|
|
|
nvme_ns_flush(ns);
|
|
}
|
|
|
|
n->bar.cc = 0;
|
|
}
|
|
|
|
static int nvme_start_ctrl(NvmeCtrl *n)
|
|
{
|
|
uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12;
|
|
uint32_t page_size = 1 << page_bits;
|
|
|
|
if (unlikely(n->cq[0])) {
|
|
trace_pci_nvme_err_startfail_cq();
|
|
return -1;
|
|
}
|
|
if (unlikely(n->sq[0])) {
|
|
trace_pci_nvme_err_startfail_sq();
|
|
return -1;
|
|
}
|
|
if (unlikely(!n->bar.asq)) {
|
|
trace_pci_nvme_err_startfail_nbarasq();
|
|
return -1;
|
|
}
|
|
if (unlikely(!n->bar.acq)) {
|
|
trace_pci_nvme_err_startfail_nbaracq();
|
|
return -1;
|
|
}
|
|
if (unlikely(n->bar.asq & (page_size - 1))) {
|
|
trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq);
|
|
return -1;
|
|
}
|
|
if (unlikely(n->bar.acq & (page_size - 1))) {
|
|
trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq);
|
|
return -1;
|
|
}
|
|
if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) {
|
|
trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_MPS(n->bar.cc) <
|
|
NVME_CAP_MPSMIN(n->bar.cap))) {
|
|
trace_pci_nvme_err_startfail_page_too_small(
|
|
NVME_CC_MPS(n->bar.cc),
|
|
NVME_CAP_MPSMIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_MPS(n->bar.cc) >
|
|
NVME_CAP_MPSMAX(n->bar.cap))) {
|
|
trace_pci_nvme_err_startfail_page_too_large(
|
|
NVME_CC_MPS(n->bar.cc),
|
|
NVME_CAP_MPSMAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOCQES(n->bar.cc) <
|
|
NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
|
|
trace_pci_nvme_err_startfail_cqent_too_small(
|
|
NVME_CC_IOCQES(n->bar.cc),
|
|
NVME_CTRL_CQES_MIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOCQES(n->bar.cc) >
|
|
NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
|
|
trace_pci_nvme_err_startfail_cqent_too_large(
|
|
NVME_CC_IOCQES(n->bar.cc),
|
|
NVME_CTRL_CQES_MAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOSQES(n->bar.cc) <
|
|
NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
|
|
trace_pci_nvme_err_startfail_sqent_too_small(
|
|
NVME_CC_IOSQES(n->bar.cc),
|
|
NVME_CTRL_SQES_MIN(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(NVME_CC_IOSQES(n->bar.cc) >
|
|
NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
|
|
trace_pci_nvme_err_startfail_sqent_too_large(
|
|
NVME_CC_IOSQES(n->bar.cc),
|
|
NVME_CTRL_SQES_MAX(n->bar.cap));
|
|
return -1;
|
|
}
|
|
if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) {
|
|
trace_pci_nvme_err_startfail_asqent_sz_zero();
|
|
return -1;
|
|
}
|
|
if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) {
|
|
trace_pci_nvme_err_startfail_acqent_sz_zero();
|
|
return -1;
|
|
}
|
|
|
|
n->page_bits = page_bits;
|
|
n->page_size = page_size;
|
|
n->max_prp_ents = n->page_size / sizeof(uint64_t);
|
|
n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc);
|
|
n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc);
|
|
nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0,
|
|
NVME_AQA_ACQS(n->bar.aqa) + 1, 1);
|
|
nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0,
|
|
NVME_AQA_ASQS(n->bar.aqa) + 1);
|
|
|
|
nvme_set_timestamp(n, 0ULL);
|
|
|
|
QTAILQ_INIT(&n->aer_queue);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
if (unlikely(offset & (sizeof(uint32_t) - 1))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
|
|
"MMIO write not 32-bit aligned,"
|
|
" offset=0x%"PRIx64"", offset);
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
|
|
if (unlikely(size < sizeof(uint32_t))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
|
|
"MMIO write smaller than 32-bits,"
|
|
" offset=0x%"PRIx64", size=%u",
|
|
offset, size);
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
|
|
switch (offset) {
|
|
case 0xc: /* INTMS */
|
|
if (unlikely(msix_enabled(&(n->parent_obj)))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
|
|
"undefined access to interrupt mask set"
|
|
" when MSI-X is enabled");
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
n->bar.intms |= data & 0xffffffff;
|
|
n->bar.intmc = n->bar.intms;
|
|
trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc);
|
|
nvme_irq_check(n);
|
|
break;
|
|
case 0x10: /* INTMC */
|
|
if (unlikely(msix_enabled(&(n->parent_obj)))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
|
|
"undefined access to interrupt mask clr"
|
|
" when MSI-X is enabled");
|
|
/* should be ignored, fall through for now */
|
|
}
|
|
n->bar.intms &= ~(data & 0xffffffff);
|
|
n->bar.intmc = n->bar.intms;
|
|
trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc);
|
|
nvme_irq_check(n);
|
|
break;
|
|
case 0x14: /* CC */
|
|
trace_pci_nvme_mmio_cfg(data & 0xffffffff);
|
|
/* Windows first sends data, then sends enable bit */
|
|
if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) &&
|
|
!NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc))
|
|
{
|
|
n->bar.cc = data;
|
|
}
|
|
|
|
if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) {
|
|
n->bar.cc = data;
|
|
if (unlikely(nvme_start_ctrl(n))) {
|
|
trace_pci_nvme_err_startfail();
|
|
n->bar.csts = NVME_CSTS_FAILED;
|
|
} else {
|
|
trace_pci_nvme_mmio_start_success();
|
|
n->bar.csts = NVME_CSTS_READY;
|
|
}
|
|
} else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) {
|
|
trace_pci_nvme_mmio_stopped();
|
|
nvme_clear_ctrl(n);
|
|
n->bar.csts &= ~NVME_CSTS_READY;
|
|
}
|
|
if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) {
|
|
trace_pci_nvme_mmio_shutdown_set();
|
|
nvme_clear_ctrl(n);
|
|
n->bar.cc = data;
|
|
n->bar.csts |= NVME_CSTS_SHST_COMPLETE;
|
|
} else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) {
|
|
trace_pci_nvme_mmio_shutdown_cleared();
|
|
n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE;
|
|
n->bar.cc = data;
|
|
}
|
|
break;
|
|
case 0x1C: /* CSTS */
|
|
if (data & (1 << 4)) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
|
|
"attempted to W1C CSTS.NSSRO"
|
|
" but CAP.NSSRS is zero (not supported)");
|
|
} else if (data != 0) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
|
|
"attempted to set a read only bit"
|
|
" of controller status");
|
|
}
|
|
break;
|
|
case 0x20: /* NSSR */
|
|
if (data == 0x4E564D65) {
|
|
trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
|
|
} else {
|
|
/* The spec says that writes of other values have no effect */
|
|
return;
|
|
}
|
|
break;
|
|
case 0x24: /* AQA */
|
|
n->bar.aqa = data & 0xffffffff;
|
|
trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
|
|
break;
|
|
case 0x28: /* ASQ */
|
|
n->bar.asq = data;
|
|
trace_pci_nvme_mmio_asqaddr(data);
|
|
break;
|
|
case 0x2c: /* ASQ hi */
|
|
n->bar.asq |= data << 32;
|
|
trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq);
|
|
break;
|
|
case 0x30: /* ACQ */
|
|
trace_pci_nvme_mmio_acqaddr(data);
|
|
n->bar.acq = data;
|
|
break;
|
|
case 0x34: /* ACQ hi */
|
|
n->bar.acq |= data << 32;
|
|
trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq);
|
|
break;
|
|
case 0x38: /* CMBLOC */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
|
|
"invalid write to reserved CMBLOC"
|
|
" when CMBSZ is zero, ignored");
|
|
return;
|
|
case 0x3C: /* CMBSZ */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
|
|
"invalid write to read only CMBSZ, ignored");
|
|
return;
|
|
case 0xE00: /* PMRCAP */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
|
|
"invalid write to PMRCAP register, ignored");
|
|
return;
|
|
case 0xE04: /* TODO PMRCTL */
|
|
break;
|
|
case 0xE08: /* PMRSTS */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
|
|
"invalid write to PMRSTS register, ignored");
|
|
return;
|
|
case 0xE0C: /* PMREBS */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
|
|
"invalid write to PMREBS register, ignored");
|
|
return;
|
|
case 0xE10: /* PMRSWTP */
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
|
|
"invalid write to PMRSWTP register, ignored");
|
|
return;
|
|
case 0xE14: /* TODO PMRMSC */
|
|
break;
|
|
default:
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
|
|
"invalid MMIO write,"
|
|
" offset=0x%"PRIx64", data=%"PRIx64"",
|
|
offset, data);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
uint8_t *ptr = (uint8_t *)&n->bar;
|
|
uint64_t val = 0;
|
|
|
|
trace_pci_nvme_mmio_read(addr);
|
|
|
|
if (unlikely(addr & (sizeof(uint32_t) - 1))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
|
|
"MMIO read not 32-bit aligned,"
|
|
" offset=0x%"PRIx64"", addr);
|
|
/* should RAZ, fall through for now */
|
|
} else if (unlikely(size < sizeof(uint32_t))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
|
|
"MMIO read smaller than 32-bits,"
|
|
" offset=0x%"PRIx64"", addr);
|
|
/* should RAZ, fall through for now */
|
|
}
|
|
|
|
if (addr < sizeof(n->bar)) {
|
|
/*
|
|
* When PMRWBM bit 1 is set then read from
|
|
* from PMRSTS should ensure prior writes
|
|
* made it to persistent media
|
|
*/
|
|
if (addr == 0xE08 &&
|
|
(NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) {
|
|
memory_region_msync(&n->pmrdev->mr, 0, n->pmrdev->size);
|
|
}
|
|
memcpy(&val, ptr + addr, size);
|
|
} else {
|
|
NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
|
|
"MMIO read beyond last register,"
|
|
" offset=0x%"PRIx64", returning 0", addr);
|
|
}
|
|
|
|
return val;
|
|
}
|
|
|
|
static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
|
|
{
|
|
uint32_t qid;
|
|
|
|
if (unlikely(addr & ((1 << 2) - 1))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
|
|
"doorbell write not 32-bit aligned,"
|
|
" offset=0x%"PRIx64", ignoring", addr);
|
|
return;
|
|
}
|
|
|
|
if (((addr - 0x1000) >> 2) & 1) {
|
|
/* Completion queue doorbell write */
|
|
|
|
uint16_t new_head = val & 0xffff;
|
|
int start_sqs;
|
|
NvmeCQueue *cq;
|
|
|
|
qid = (addr - (0x1000 + (1 << 2))) >> 3;
|
|
if (unlikely(nvme_check_cqid(n, qid))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
|
|
"completion queue doorbell write"
|
|
" for nonexistent queue,"
|
|
" sqid=%"PRIu32", ignoring", qid);
|
|
|
|
/*
|
|
* NVM Express v1.3d, Section 4.1 state: "If host software writes
|
|
* an invalid value to the Submission Queue Tail Doorbell or
|
|
* Completion Queue Head Doorbell regiter and an Asynchronous Event
|
|
* Request command is outstanding, then an asynchronous event is
|
|
* posted to the Admin Completion Queue with a status code of
|
|
* Invalid Doorbell Write Value."
|
|
*
|
|
* Also note that the spec includes the "Invalid Doorbell Register"
|
|
* status code, but nowhere does it specify when to use it.
|
|
* However, it seems reasonable to use it here in a similar
|
|
* fashion.
|
|
*/
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
cq = n->cq[qid];
|
|
if (unlikely(new_head >= cq->size)) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
|
|
"completion queue doorbell write value"
|
|
" beyond queue size, sqid=%"PRIu32","
|
|
" new_head=%"PRIu16", ignoring",
|
|
qid, new_head);
|
|
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
|
|
|
|
start_sqs = nvme_cq_full(cq) ? 1 : 0;
|
|
cq->head = new_head;
|
|
if (start_sqs) {
|
|
NvmeSQueue *sq;
|
|
QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
|
|
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
|
|
if (cq->tail == cq->head) {
|
|
nvme_irq_deassert(n, cq);
|
|
}
|
|
} else {
|
|
/* Submission queue doorbell write */
|
|
|
|
uint16_t new_tail = val & 0xffff;
|
|
NvmeSQueue *sq;
|
|
|
|
qid = (addr - 0x1000) >> 3;
|
|
if (unlikely(nvme_check_sqid(n, qid))) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
|
|
"submission queue doorbell write"
|
|
" for nonexistent queue,"
|
|
" sqid=%"PRIu32", ignoring", qid);
|
|
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
sq = n->sq[qid];
|
|
if (unlikely(new_tail >= sq->size)) {
|
|
NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
|
|
"submission queue doorbell write value"
|
|
" beyond queue size, sqid=%"PRIu32","
|
|
" new_tail=%"PRIu16", ignoring",
|
|
qid, new_tail);
|
|
|
|
if (n->outstanding_aers) {
|
|
nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
|
|
NVME_AER_INFO_ERR_INVALID_DB_VALUE,
|
|
NVME_LOG_ERROR_INFO);
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
|
|
|
|
sq->tail = new_tail;
|
|
timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
|
|
}
|
|
}
|
|
|
|
static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
|
|
trace_pci_nvme_mmio_write(addr, data);
|
|
|
|
if (addr < sizeof(n->bar)) {
|
|
nvme_write_bar(n, addr, data, size);
|
|
} else {
|
|
nvme_process_db(n, addr, data);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps nvme_mmio_ops = {
|
|
.read = nvme_mmio_read,
|
|
.write = nvme_mmio_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 2,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
stn_le_p(&n->cmbuf[addr], size, data);
|
|
}
|
|
|
|
static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
|
|
{
|
|
NvmeCtrl *n = (NvmeCtrl *)opaque;
|
|
return ldn_le_p(&n->cmbuf[addr], size);
|
|
}
|
|
|
|
static const MemoryRegionOps nvme_cmb_ops = {
|
|
.read = nvme_cmb_read,
|
|
.write = nvme_cmb_write,
|
|
.endianness = DEVICE_LITTLE_ENDIAN,
|
|
.impl = {
|
|
.min_access_size = 1,
|
|
.max_access_size = 8,
|
|
},
|
|
};
|
|
|
|
static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
|
|
{
|
|
NvmeParams *params = &n->params;
|
|
|
|
if (params->num_queues) {
|
|
warn_report("num_queues is deprecated; please use max_ioqpairs "
|
|
"instead");
|
|
|
|
params->max_ioqpairs = params->num_queues - 1;
|
|
}
|
|
|
|
if (n->conf.blk) {
|
|
warn_report("drive property is deprecated; "
|
|
"please use an nvme-ns device instead");
|
|
}
|
|
|
|
if (params->max_ioqpairs < 1 ||
|
|
params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
|
|
error_setg(errp, "max_ioqpairs must be between 1 and %d",
|
|
NVME_MAX_IOQPAIRS);
|
|
return;
|
|
}
|
|
|
|
if (params->msix_qsize < 1 ||
|
|
params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
|
|
error_setg(errp, "msix_qsize must be between 1 and %d",
|
|
PCI_MSIX_FLAGS_QSIZE + 1);
|
|
return;
|
|
}
|
|
|
|
if (!params->serial) {
|
|
error_setg(errp, "serial property not set");
|
|
return;
|
|
}
|
|
|
|
if (!n->params.cmb_size_mb && n->pmrdev) {
|
|
if (host_memory_backend_is_mapped(n->pmrdev)) {
|
|
error_setg(errp, "can't use already busy memdev: %s",
|
|
object_get_canonical_path_component(OBJECT(n->pmrdev)));
|
|
return;
|
|
}
|
|
|
|
if (!is_power_of_2(n->pmrdev->size)) {
|
|
error_setg(errp, "pmr backend size needs to be power of 2 in size");
|
|
return;
|
|
}
|
|
|
|
host_memory_backend_set_mapped(n->pmrdev, true);
|
|
}
|
|
}
|
|
|
|
static void nvme_init_state(NvmeCtrl *n)
|
|
{
|
|
n->num_namespaces = NVME_MAX_NAMESPACES;
|
|
/* add one to max_ioqpairs to account for the admin queue pair */
|
|
n->reg_size = pow2ceil(sizeof(NvmeBar) +
|
|
2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
|
|
n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
|
|
n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
|
|
n->temperature = NVME_TEMPERATURE;
|
|
n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
|
|
n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
|
|
n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
|
|
}
|
|
|
|
int nvme_register_namespace(NvmeCtrl *n, NvmeNamespace *ns, Error **errp)
|
|
{
|
|
uint32_t nsid = nvme_nsid(ns);
|
|
|
|
if (nsid > NVME_MAX_NAMESPACES) {
|
|
error_setg(errp, "invalid namespace id (must be between 0 and %d)",
|
|
NVME_MAX_NAMESPACES);
|
|
return -1;
|
|
}
|
|
|
|
if (!nsid) {
|
|
for (int i = 1; i <= n->num_namespaces; i++) {
|
|
if (!nvme_ns(n, i)) {
|
|
nsid = ns->params.nsid = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!nsid) {
|
|
error_setg(errp, "no free namespace id");
|
|
return -1;
|
|
}
|
|
} else {
|
|
if (n->namespaces[nsid - 1]) {
|
|
error_setg(errp, "namespace id '%d' is already in use", nsid);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
trace_pci_nvme_register_namespace(nsid);
|
|
|
|
n->namespaces[nsid - 1] = ns;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
|
|
{
|
|
NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR);
|
|
NVME_CMBLOC_SET_OFST(n->bar.cmbloc, 0);
|
|
|
|
NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0);
|
|
NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1);
|
|
NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */
|
|
NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb);
|
|
|
|
n->cmbuf = g_malloc0(NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
|
|
memory_region_init_io(&n->ctrl_mem, OBJECT(n), &nvme_cmb_ops, n,
|
|
"nvme-cmb", NVME_CMBSZ_GETSIZE(n->bar.cmbsz));
|
|
pci_register_bar(pci_dev, NVME_CMBLOC_BIR(n->bar.cmbloc),
|
|
PCI_BASE_ADDRESS_SPACE_MEMORY |
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64 |
|
|
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->ctrl_mem);
|
|
}
|
|
|
|
static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
|
|
{
|
|
/* Controller Capabilities register */
|
|
NVME_CAP_SET_PMRS(n->bar.cap, 1);
|
|
|
|
/* PMR Capabities register */
|
|
n->bar.pmrcap = 0;
|
|
NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 0);
|
|
NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 0);
|
|
NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR);
|
|
NVME_PMRCAP_SET_PMRTU(n->bar.pmrcap, 0);
|
|
/* Turn on bit 1 support */
|
|
NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02);
|
|
NVME_PMRCAP_SET_PMRTO(n->bar.pmrcap, 0);
|
|
NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 0);
|
|
|
|
/* PMR Control register */
|
|
n->bar.pmrctl = 0;
|
|
NVME_PMRCTL_SET_EN(n->bar.pmrctl, 0);
|
|
|
|
/* PMR Status register */
|
|
n->bar.pmrsts = 0;
|
|
NVME_PMRSTS_SET_ERR(n->bar.pmrsts, 0);
|
|
NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 0);
|
|
NVME_PMRSTS_SET_HSTS(n->bar.pmrsts, 0);
|
|
NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 0);
|
|
|
|
/* PMR Elasticity Buffer Size register */
|
|
n->bar.pmrebs = 0;
|
|
NVME_PMREBS_SET_PMRSZU(n->bar.pmrebs, 0);
|
|
NVME_PMREBS_SET_RBB(n->bar.pmrebs, 0);
|
|
NVME_PMREBS_SET_PMRWBZ(n->bar.pmrebs, 0);
|
|
|
|
/* PMR Sustained Write Throughput register */
|
|
n->bar.pmrswtp = 0;
|
|
NVME_PMRSWTP_SET_PMRSWTU(n->bar.pmrswtp, 0);
|
|
NVME_PMRSWTP_SET_PMRSWTV(n->bar.pmrswtp, 0);
|
|
|
|
/* PMR Memory Space Control register */
|
|
n->bar.pmrmsc = 0;
|
|
NVME_PMRMSC_SET_CMSE(n->bar.pmrmsc, 0);
|
|
NVME_PMRMSC_SET_CBA(n->bar.pmrmsc, 0);
|
|
|
|
pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap),
|
|
PCI_BASE_ADDRESS_SPACE_MEMORY |
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64 |
|
|
PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmrdev->mr);
|
|
}
|
|
|
|
static void nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
|
|
{
|
|
uint8_t *pci_conf = pci_dev->config;
|
|
|
|
pci_conf[PCI_INTERRUPT_PIN] = 1;
|
|
pci_config_set_prog_interface(pci_conf, 0x2);
|
|
|
|
if (n->params.use_intel_id) {
|
|
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
|
|
pci_config_set_device_id(pci_conf, 0x5845);
|
|
} else {
|
|
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
|
|
pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
|
|
}
|
|
|
|
pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
|
|
pcie_endpoint_cap_init(pci_dev, 0x80);
|
|
|
|
memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
|
|
n->reg_size);
|
|
pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
|
|
PCI_BASE_ADDRESS_MEM_TYPE_64, &n->iomem);
|
|
if (msix_init_exclusive_bar(pci_dev, n->params.msix_qsize, 4, errp)) {
|
|
return;
|
|
}
|
|
|
|
if (n->params.cmb_size_mb) {
|
|
nvme_init_cmb(n, pci_dev);
|
|
} else if (n->pmrdev) {
|
|
nvme_init_pmr(n, pci_dev);
|
|
}
|
|
}
|
|
|
|
static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
|
|
{
|
|
NvmeIdCtrl *id = &n->id_ctrl;
|
|
uint8_t *pci_conf = pci_dev->config;
|
|
char *subnqn;
|
|
|
|
id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
|
|
id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
|
|
strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
|
|
strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
|
|
strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
|
|
id->rab = 6;
|
|
id->ieee[0] = 0x00;
|
|
id->ieee[1] = 0x02;
|
|
id->ieee[2] = 0xb3;
|
|
id->mdts = n->params.mdts;
|
|
id->ver = cpu_to_le32(NVME_SPEC_VER);
|
|
id->oacs = cpu_to_le16(0);
|
|
|
|
/*
|
|
* Because the controller always completes the Abort command immediately,
|
|
* there can never be more than one concurrently executing Abort command,
|
|
* so this value is never used for anything. Note that there can easily be
|
|
* many Abort commands in the queues, but they are not considered
|
|
* "executing" until processed by nvme_abort.
|
|
*
|
|
* The specification recommends a value of 3 for Abort Command Limit (four
|
|
* concurrently outstanding Abort commands), so lets use that though it is
|
|
* inconsequential.
|
|
*/
|
|
id->acl = 3;
|
|
id->aerl = n->params.aerl;
|
|
id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
|
|
id->lpa = NVME_LPA_NS_SMART | NVME_LPA_EXTENDED;
|
|
|
|
/* recommended default value (~70 C) */
|
|
id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
|
|
id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
|
|
|
|
id->sqes = (0x6 << 4) | 0x6;
|
|
id->cqes = (0x4 << 4) | 0x4;
|
|
id->nn = cpu_to_le32(n->num_namespaces);
|
|
id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
|
|
NVME_ONCS_FEATURES);
|
|
|
|
id->vwc = 0x1;
|
|
id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
|
|
NVME_CTRL_SGLS_BITBUCKET);
|
|
|
|
subnqn = g_strdup_printf("nqn.2019-08.org.qemu:%s", n->params.serial);
|
|
strpadcpy((char *)id->subnqn, sizeof(id->subnqn), subnqn, '\0');
|
|
g_free(subnqn);
|
|
|
|
id->psd[0].mp = cpu_to_le16(0x9c4);
|
|
id->psd[0].enlat = cpu_to_le32(0x10);
|
|
id->psd[0].exlat = cpu_to_le32(0x4);
|
|
|
|
n->bar.cap = 0;
|
|
NVME_CAP_SET_MQES(n->bar.cap, 0x7ff);
|
|
NVME_CAP_SET_CQR(n->bar.cap, 1);
|
|
NVME_CAP_SET_TO(n->bar.cap, 0xf);
|
|
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM);
|
|
NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY);
|
|
NVME_CAP_SET_MPSMAX(n->bar.cap, 4);
|
|
|
|
n->bar.vs = NVME_SPEC_VER;
|
|
n->bar.intmc = n->bar.intms = 0;
|
|
}
|
|
|
|
static void nvme_realize(PCIDevice *pci_dev, Error **errp)
|
|
{
|
|
NvmeCtrl *n = NVME(pci_dev);
|
|
NvmeNamespace *ns;
|
|
Error *local_err = NULL;
|
|
|
|
nvme_check_constraints(n, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
|
|
&pci_dev->qdev, n->parent_obj.qdev.id);
|
|
|
|
nvme_init_state(n);
|
|
nvme_init_pci(n, pci_dev, &local_err);
|
|
if (local_err) {
|
|
error_propagate(errp, local_err);
|
|
return;
|
|
}
|
|
|
|
nvme_init_ctrl(n, pci_dev);
|
|
|
|
/* setup a namespace if the controller drive property was given */
|
|
if (n->namespace.blkconf.blk) {
|
|
ns = &n->namespace;
|
|
ns->params.nsid = 1;
|
|
|
|
if (nvme_ns_setup(n, ns, errp)) {
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void nvme_exit(PCIDevice *pci_dev)
|
|
{
|
|
NvmeCtrl *n = NVME(pci_dev);
|
|
|
|
nvme_clear_ctrl(n);
|
|
g_free(n->cq);
|
|
g_free(n->sq);
|
|
g_free(n->aer_reqs);
|
|
|
|
if (n->params.cmb_size_mb) {
|
|
g_free(n->cmbuf);
|
|
}
|
|
|
|
if (n->pmrdev) {
|
|
host_memory_backend_set_mapped(n->pmrdev, false);
|
|
}
|
|
msix_uninit_exclusive_bar(pci_dev);
|
|
}
|
|
|
|
static Property nvme_props[] = {
|
|
DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
|
|
DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmrdev, TYPE_MEMORY_BACKEND,
|
|
HostMemoryBackend *),
|
|
DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
|
|
DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
|
|
DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
|
|
DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
|
|
DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
|
|
DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
|
|
DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
|
|
DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
|
|
DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
|
|
DEFINE_PROP_END_OF_LIST(),
|
|
};
|
|
|
|
static const VMStateDescription nvme_vmstate = {
|
|
.name = "nvme",
|
|
.unmigratable = 1,
|
|
};
|
|
|
|
static void nvme_class_init(ObjectClass *oc, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(oc);
|
|
PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
|
|
|
|
pc->realize = nvme_realize;
|
|
pc->exit = nvme_exit;
|
|
pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
|
|
pc->revision = 2;
|
|
|
|
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
|
|
dc->desc = "Non-Volatile Memory Express";
|
|
device_class_set_props(dc, nvme_props);
|
|
dc->vmsd = &nvme_vmstate;
|
|
}
|
|
|
|
static void nvme_instance_init(Object *obj)
|
|
{
|
|
NvmeCtrl *s = NVME(obj);
|
|
|
|
if (s->namespace.blkconf.blk) {
|
|
device_add_bootindex_property(obj, &s->namespace.blkconf.bootindex,
|
|
"bootindex", "/namespace@1,0",
|
|
DEVICE(obj));
|
|
}
|
|
}
|
|
|
|
static const TypeInfo nvme_info = {
|
|
.name = TYPE_NVME,
|
|
.parent = TYPE_PCI_DEVICE,
|
|
.instance_size = sizeof(NvmeCtrl),
|
|
.instance_init = nvme_instance_init,
|
|
.class_init = nvme_class_init,
|
|
.interfaces = (InterfaceInfo[]) {
|
|
{ INTERFACE_PCIE_DEVICE },
|
|
{ }
|
|
},
|
|
};
|
|
|
|
static const TypeInfo nvme_bus_info = {
|
|
.name = TYPE_NVME_BUS,
|
|
.parent = TYPE_BUS,
|
|
.instance_size = sizeof(NvmeBus),
|
|
};
|
|
|
|
static void nvme_register_types(void)
|
|
{
|
|
type_register_static(&nvme_info);
|
|
type_register_static(&nvme_bus_info);
|
|
}
|
|
|
|
type_init(nvme_register_types)
|