qemu-e2k/hw/pl011.c
Alexander Graf 2507c12ab0 Add endianness as io mem parameter
As stated before, devices can be little, big or native endian. The
target endianness is not of their concern, so we need to push things
down a level.

This patch adds a parameter to cpu_register_io_memory that allows a
device to choose its endianness. For now, all devices simply choose
native endian, because that's the same behavior as before.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-12-11 15:24:25 +00:00

333 lines
8.2 KiB
C

/*
* Arm PrimeCell PL011 UART
*
* Copyright (c) 2006 CodeSourcery.
* Written by Paul Brook
*
* This code is licenced under the GPL.
*/
#include "sysbus.h"
#include "qemu-char.h"
typedef struct {
SysBusDevice busdev;
uint32_t readbuff;
uint32_t flags;
uint32_t lcr;
uint32_t cr;
uint32_t dmacr;
uint32_t int_enabled;
uint32_t int_level;
uint32_t read_fifo[16];
uint32_t ilpr;
uint32_t ibrd;
uint32_t fbrd;
uint32_t ifl;
int read_pos;
int read_count;
int read_trigger;
CharDriverState *chr;
qemu_irq irq;
const unsigned char *id;
} pl011_state;
#define PL011_INT_TX 0x20
#define PL011_INT_RX 0x10
#define PL011_FLAG_TXFE 0x80
#define PL011_FLAG_RXFF 0x40
#define PL011_FLAG_TXFF 0x20
#define PL011_FLAG_RXFE 0x10
static const unsigned char pl011_id_arm[8] =
{ 0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
static const unsigned char pl011_id_luminary[8] =
{ 0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1 };
static void pl011_update(pl011_state *s)
{
uint32_t flags;
flags = s->int_level & s->int_enabled;
qemu_set_irq(s->irq, flags != 0);
}
static uint32_t pl011_read(void *opaque, target_phys_addr_t offset)
{
pl011_state *s = (pl011_state *)opaque;
uint32_t c;
if (offset >= 0xfe0 && offset < 0x1000) {
return s->id[(offset - 0xfe0) >> 2];
}
switch (offset >> 2) {
case 0: /* UARTDR */
s->flags &= ~PL011_FLAG_RXFF;
c = s->read_fifo[s->read_pos];
if (s->read_count > 0) {
s->read_count--;
if (++s->read_pos == 16)
s->read_pos = 0;
}
if (s->read_count == 0) {
s->flags |= PL011_FLAG_RXFE;
}
if (s->read_count == s->read_trigger - 1)
s->int_level &= ~ PL011_INT_RX;
pl011_update(s);
qemu_chr_accept_input(s->chr);
return c;
case 1: /* UARTCR */
return 0;
case 6: /* UARTFR */
return s->flags;
case 8: /* UARTILPR */
return s->ilpr;
case 9: /* UARTIBRD */
return s->ibrd;
case 10: /* UARTFBRD */
return s->fbrd;
case 11: /* UARTLCR_H */
return s->lcr;
case 12: /* UARTCR */
return s->cr;
case 13: /* UARTIFLS */
return s->ifl;
case 14: /* UARTIMSC */
return s->int_enabled;
case 15: /* UARTRIS */
return s->int_level;
case 16: /* UARTMIS */
return s->int_level & s->int_enabled;
case 18: /* UARTDMACR */
return s->dmacr;
default:
hw_error("pl011_read: Bad offset %x\n", (int)offset);
return 0;
}
}
static void pl011_set_read_trigger(pl011_state *s)
{
#if 0
/* The docs say the RX interrupt is triggered when the FIFO exceeds
the threshold. However linux only reads the FIFO in response to an
interrupt. Triggering the interrupt when the FIFO is non-empty seems
to make things work. */
if (s->lcr & 0x10)
s->read_trigger = (s->ifl >> 1) & 0x1c;
else
#endif
s->read_trigger = 1;
}
static void pl011_write(void *opaque, target_phys_addr_t offset,
uint32_t value)
{
pl011_state *s = (pl011_state *)opaque;
unsigned char ch;
switch (offset >> 2) {
case 0: /* UARTDR */
/* ??? Check if transmitter is enabled. */
ch = value;
if (s->chr)
qemu_chr_write(s->chr, &ch, 1);
s->int_level |= PL011_INT_TX;
pl011_update(s);
break;
case 1: /* UARTCR */
s->cr = value;
break;
case 6: /* UARTFR */
/* Writes to Flag register are ignored. */
break;
case 8: /* UARTUARTILPR */
s->ilpr = value;
break;
case 9: /* UARTIBRD */
s->ibrd = value;
break;
case 10: /* UARTFBRD */
s->fbrd = value;
break;
case 11: /* UARTLCR_H */
s->lcr = value;
pl011_set_read_trigger(s);
break;
case 12: /* UARTCR */
/* ??? Need to implement the enable and loopback bits. */
s->cr = value;
break;
case 13: /* UARTIFS */
s->ifl = value;
pl011_set_read_trigger(s);
break;
case 14: /* UARTIMSC */
s->int_enabled = value;
pl011_update(s);
break;
case 17: /* UARTICR */
s->int_level &= ~value;
pl011_update(s);
break;
case 18: /* UARTDMACR */
s->dmacr = value;
if (value & 3)
hw_error("PL011: DMA not implemented\n");
break;
default:
hw_error("pl011_write: Bad offset %x\n", (int)offset);
}
}
static int pl011_can_receive(void *opaque)
{
pl011_state *s = (pl011_state *)opaque;
if (s->lcr & 0x10)
return s->read_count < 16;
else
return s->read_count < 1;
}
static void pl011_put_fifo(void *opaque, uint32_t value)
{
pl011_state *s = (pl011_state *)opaque;
int slot;
slot = s->read_pos + s->read_count;
if (slot >= 16)
slot -= 16;
s->read_fifo[slot] = value;
s->read_count++;
s->flags &= ~PL011_FLAG_RXFE;
if (s->cr & 0x10 || s->read_count == 16) {
s->flags |= PL011_FLAG_RXFF;
}
if (s->read_count == s->read_trigger) {
s->int_level |= PL011_INT_RX;
pl011_update(s);
}
}
static void pl011_receive(void *opaque, const uint8_t *buf, int size)
{
pl011_put_fifo(opaque, *buf);
}
static void pl011_event(void *opaque, int event)
{
if (event == CHR_EVENT_BREAK)
pl011_put_fifo(opaque, 0x400);
}
static CPUReadMemoryFunc * const pl011_readfn[] = {
pl011_read,
pl011_read,
pl011_read
};
static CPUWriteMemoryFunc * const pl011_writefn[] = {
pl011_write,
pl011_write,
pl011_write
};
static void pl011_save(QEMUFile *f, void *opaque)
{
pl011_state *s = (pl011_state *)opaque;
int i;
qemu_put_be32(f, s->readbuff);
qemu_put_be32(f, s->flags);
qemu_put_be32(f, s->lcr);
qemu_put_be32(f, s->cr);
qemu_put_be32(f, s->dmacr);
qemu_put_be32(f, s->int_enabled);
qemu_put_be32(f, s->int_level);
for (i = 0; i < 16; i++)
qemu_put_be32(f, s->read_fifo[i]);
qemu_put_be32(f, s->ilpr);
qemu_put_be32(f, s->ibrd);
qemu_put_be32(f, s->fbrd);
qemu_put_be32(f, s->ifl);
qemu_put_be32(f, s->read_pos);
qemu_put_be32(f, s->read_count);
qemu_put_be32(f, s->read_trigger);
}
static int pl011_load(QEMUFile *f, void *opaque, int version_id)
{
pl011_state *s = (pl011_state *)opaque;
int i;
if (version_id != 1)
return -EINVAL;
s->readbuff = qemu_get_be32(f);
s->flags = qemu_get_be32(f);
s->lcr = qemu_get_be32(f);
s->cr = qemu_get_be32(f);
s->dmacr = qemu_get_be32(f);
s->int_enabled = qemu_get_be32(f);
s->int_level = qemu_get_be32(f);
for (i = 0; i < 16; i++)
s->read_fifo[i] = qemu_get_be32(f);
s->ilpr = qemu_get_be32(f);
s->ibrd = qemu_get_be32(f);
s->fbrd = qemu_get_be32(f);
s->ifl = qemu_get_be32(f);
s->read_pos = qemu_get_be32(f);
s->read_count = qemu_get_be32(f);
s->read_trigger = qemu_get_be32(f);
return 0;
}
static int pl011_init(SysBusDevice *dev, const unsigned char *id)
{
int iomemtype;
pl011_state *s = FROM_SYSBUS(pl011_state, dev);
iomemtype = cpu_register_io_memory(pl011_readfn,
pl011_writefn, s,
DEVICE_NATIVE_ENDIAN);
sysbus_init_mmio(dev, 0x1000,iomemtype);
sysbus_init_irq(dev, &s->irq);
s->id = id;
s->chr = qdev_init_chardev(&dev->qdev);
s->read_trigger = 1;
s->ifl = 0x12;
s->cr = 0x300;
s->flags = 0x90;
if (s->chr) {
qemu_chr_add_handlers(s->chr, pl011_can_receive, pl011_receive,
pl011_event, s);
}
register_savevm(&dev->qdev, "pl011_uart", -1, 1, pl011_save, pl011_load, s);
return 0;
}
static int pl011_init_arm(SysBusDevice *dev)
{
return pl011_init(dev, pl011_id_arm);
}
static int pl011_init_luminary(SysBusDevice *dev)
{
return pl011_init(dev, pl011_id_luminary);
}
static void pl011_register_devices(void)
{
sysbus_register_dev("pl011", sizeof(pl011_state),
pl011_init_arm);
sysbus_register_dev("pl011_luminary", sizeof(pl011_state),
pl011_init_luminary);
}
device_init(pl011_register_devices)