dd8705bdf5
Rd32,Pe4 = sfinvsqrta(Rs32) Square root approx The helper packs the 2 32-bit results into a 64-bit value, and the fGEN_TCG override unpacks them into the proper results. Test cases in tests/tcg/hexagon/multi_result.c FP exception tests added to tests/tcg/hexagon/fpstuff.c Signed-off-by: Taylor Simpson <tsimpson@quicinc.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <1617930474-31979-19-git-send-email-tsimpson@quicinc.com> Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
321 lines
11 KiB
C
321 lines
11 KiB
C
/*
|
|
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "fpu/softfloat.h"
|
|
#include "cpu.h"
|
|
#include "fma_emu.h"
|
|
#include "arch.h"
|
|
#include "macros.h"
|
|
|
|
#define SF_BIAS 127
|
|
#define SF_MAXEXP 254
|
|
#define SF_MANTBITS 23
|
|
#define float32_nan make_float32(0xffffffff)
|
|
|
|
#define BITS_MASK_8 0x5555555555555555ULL
|
|
#define PAIR_MASK_8 0x3333333333333333ULL
|
|
#define NYBL_MASK_8 0x0f0f0f0f0f0f0f0fULL
|
|
#define BYTE_MASK_8 0x00ff00ff00ff00ffULL
|
|
#define HALF_MASK_8 0x0000ffff0000ffffULL
|
|
#define WORD_MASK_8 0x00000000ffffffffULL
|
|
|
|
uint64_t interleave(uint32_t odd, uint32_t even)
|
|
{
|
|
/* Convert to long long */
|
|
uint64_t myodd = odd;
|
|
uint64_t myeven = even;
|
|
/* First, spread bits out */
|
|
myodd = (myodd | (myodd << 16)) & HALF_MASK_8;
|
|
myeven = (myeven | (myeven << 16)) & HALF_MASK_8;
|
|
myodd = (myodd | (myodd << 8)) & BYTE_MASK_8;
|
|
myeven = (myeven | (myeven << 8)) & BYTE_MASK_8;
|
|
myodd = (myodd | (myodd << 4)) & NYBL_MASK_8;
|
|
myeven = (myeven | (myeven << 4)) & NYBL_MASK_8;
|
|
myodd = (myodd | (myodd << 2)) & PAIR_MASK_8;
|
|
myeven = (myeven | (myeven << 2)) & PAIR_MASK_8;
|
|
myodd = (myodd | (myodd << 1)) & BITS_MASK_8;
|
|
myeven = (myeven | (myeven << 1)) & BITS_MASK_8;
|
|
/* Now OR together */
|
|
return myeven | (myodd << 1);
|
|
}
|
|
|
|
uint64_t deinterleave(uint64_t src)
|
|
{
|
|
/* Get odd and even bits */
|
|
uint64_t myodd = ((src >> 1) & BITS_MASK_8);
|
|
uint64_t myeven = (src & BITS_MASK_8);
|
|
|
|
/* Unspread bits */
|
|
myeven = (myeven | (myeven >> 1)) & PAIR_MASK_8;
|
|
myodd = (myodd | (myodd >> 1)) & PAIR_MASK_8;
|
|
myeven = (myeven | (myeven >> 2)) & NYBL_MASK_8;
|
|
myodd = (myodd | (myodd >> 2)) & NYBL_MASK_8;
|
|
myeven = (myeven | (myeven >> 4)) & BYTE_MASK_8;
|
|
myodd = (myodd | (myodd >> 4)) & BYTE_MASK_8;
|
|
myeven = (myeven | (myeven >> 8)) & HALF_MASK_8;
|
|
myodd = (myodd | (myodd >> 8)) & HALF_MASK_8;
|
|
myeven = (myeven | (myeven >> 16)) & WORD_MASK_8;
|
|
myodd = (myodd | (myodd >> 16)) & WORD_MASK_8;
|
|
|
|
/* Return odd bits in upper half */
|
|
return myeven | (myodd << 32);
|
|
}
|
|
|
|
int32_t conv_round(int32_t a, int n)
|
|
{
|
|
int64_t val;
|
|
|
|
if (n == 0) {
|
|
val = a;
|
|
} else if ((a & ((1 << (n - 1)) - 1)) == 0) { /* N-1..0 all zero? */
|
|
/* Add LSB from int part */
|
|
val = ((fSE32_64(a)) + (int64_t) (((uint32_t) ((1 << n) & a)) >> 1));
|
|
} else {
|
|
val = ((fSE32_64(a)) + (1 << (n - 1)));
|
|
}
|
|
|
|
val = val >> n;
|
|
return (int32_t)val;
|
|
}
|
|
|
|
/* Floating Point Stuff */
|
|
|
|
static const FloatRoundMode softfloat_roundingmodes[] = {
|
|
float_round_nearest_even,
|
|
float_round_to_zero,
|
|
float_round_down,
|
|
float_round_up,
|
|
};
|
|
|
|
void arch_fpop_start(CPUHexagonState *env)
|
|
{
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
set_float_rounding_mode(
|
|
softfloat_roundingmodes[fREAD_REG_FIELD(USR, USR_FPRND)],
|
|
&env->fp_status);
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
/*
|
|
* Hexagon Linux kernel only sets the relevant bits in USR (user status
|
|
* register). The exception isn't raised to user mode, so we don't
|
|
* model it in qemu user mode.
|
|
*/
|
|
#define RAISE_FP_EXCEPTION do {} while (0)
|
|
#endif
|
|
|
|
#define SOFTFLOAT_TEST_FLAG(FLAG, MYF, MYE) \
|
|
do { \
|
|
if (flags & FLAG) { \
|
|
if (GET_USR_FIELD(USR_##MYF) == 0) { \
|
|
SET_USR_FIELD(USR_##MYF, 1); \
|
|
if (GET_USR_FIELD(USR_##MYE)) { \
|
|
RAISE_FP_EXCEPTION; \
|
|
} \
|
|
} \
|
|
} \
|
|
} while (0)
|
|
|
|
void arch_fpop_end(CPUHexagonState *env)
|
|
{
|
|
int flags = get_float_exception_flags(&env->fp_status);
|
|
if (flags != 0) {
|
|
SOFTFLOAT_TEST_FLAG(float_flag_inexact, FPINPF, FPINPE);
|
|
SOFTFLOAT_TEST_FLAG(float_flag_divbyzero, FPDBZF, FPDBZE);
|
|
SOFTFLOAT_TEST_FLAG(float_flag_invalid, FPINVF, FPINVE);
|
|
SOFTFLOAT_TEST_FLAG(float_flag_overflow, FPOVFF, FPOVFE);
|
|
SOFTFLOAT_TEST_FLAG(float_flag_underflow, FPUNFF, FPUNFE);
|
|
}
|
|
}
|
|
|
|
int arch_sf_recip_common(float32 *Rs, float32 *Rt, float32 *Rd, int *adjust,
|
|
float_status *fp_status)
|
|
{
|
|
int n_exp;
|
|
int d_exp;
|
|
int ret = 0;
|
|
float32 RsV, RtV, RdV;
|
|
int PeV = 0;
|
|
RsV = *Rs;
|
|
RtV = *Rt;
|
|
if (float32_is_any_nan(RsV) && float32_is_any_nan(RtV)) {
|
|
if (extract32(RsV & RtV, 22, 1) == 0) {
|
|
float_raise(float_flag_invalid, fp_status);
|
|
}
|
|
RdV = RsV = RtV = float32_nan;
|
|
} else if (float32_is_any_nan(RsV)) {
|
|
if (extract32(RsV, 22, 1) == 0) {
|
|
float_raise(float_flag_invalid, fp_status);
|
|
}
|
|
RdV = RsV = RtV = float32_nan;
|
|
} else if (float32_is_any_nan(RtV)) {
|
|
/* or put NaN in num/den fixup? */
|
|
if (extract32(RtV, 22, 1) == 0) {
|
|
float_raise(float_flag_invalid, fp_status);
|
|
}
|
|
RdV = RsV = RtV = float32_nan;
|
|
} else if (float32_is_infinity(RsV) && float32_is_infinity(RtV)) {
|
|
/* or put Inf in num fixup? */
|
|
RdV = RsV = RtV = float32_nan;
|
|
float_raise(float_flag_invalid, fp_status);
|
|
} else if (float32_is_zero(RsV) && float32_is_zero(RtV)) {
|
|
/* or put zero in num fixup? */
|
|
RdV = RsV = RtV = float32_nan;
|
|
float_raise(float_flag_invalid, fp_status);
|
|
} else if (float32_is_zero(RtV)) {
|
|
/* or put Inf in num fixup? */
|
|
uint8_t RsV_sign = float32_is_neg(RsV);
|
|
uint8_t RtV_sign = float32_is_neg(RtV);
|
|
/* Check that RsV is NOT infinite before we overwrite it */
|
|
if (!float32_is_infinity(RsV)) {
|
|
float_raise(float_flag_divbyzero, fp_status);
|
|
}
|
|
RsV = infinite_float32(RsV_sign ^ RtV_sign);
|
|
RtV = float32_one;
|
|
RdV = float32_one;
|
|
} else if (float32_is_infinity(RtV)) {
|
|
RsV = make_float32(0x80000000 & (RsV ^ RtV));
|
|
RtV = float32_one;
|
|
RdV = float32_one;
|
|
} else if (float32_is_zero(RsV)) {
|
|
/* Does this just work itself out? */
|
|
/* No, 0/Inf causes problems. */
|
|
RsV = make_float32(0x80000000 & (RsV ^ RtV));
|
|
RtV = float32_one;
|
|
RdV = float32_one;
|
|
} else if (float32_is_infinity(RsV)) {
|
|
uint8_t RsV_sign = float32_is_neg(RsV);
|
|
uint8_t RtV_sign = float32_is_neg(RtV);
|
|
RsV = infinite_float32(RsV_sign ^ RtV_sign);
|
|
RtV = float32_one;
|
|
RdV = float32_one;
|
|
} else {
|
|
PeV = 0x00;
|
|
/* Basic checks passed */
|
|
n_exp = float32_getexp(RsV);
|
|
d_exp = float32_getexp(RtV);
|
|
if ((n_exp - d_exp + SF_BIAS) <= SF_MANTBITS) {
|
|
/* Near quotient underflow / inexact Q */
|
|
PeV = 0x80;
|
|
RtV = float32_scalbn(RtV, -64, fp_status);
|
|
RsV = float32_scalbn(RsV, 64, fp_status);
|
|
} else if ((n_exp - d_exp + SF_BIAS) > (SF_MAXEXP - 24)) {
|
|
/* Near quotient overflow */
|
|
PeV = 0x40;
|
|
RtV = float32_scalbn(RtV, 32, fp_status);
|
|
RsV = float32_scalbn(RsV, -32, fp_status);
|
|
} else if (n_exp <= SF_MANTBITS + 2) {
|
|
RtV = float32_scalbn(RtV, 64, fp_status);
|
|
RsV = float32_scalbn(RsV, 64, fp_status);
|
|
} else if (d_exp <= 1) {
|
|
RtV = float32_scalbn(RtV, 32, fp_status);
|
|
RsV = float32_scalbn(RsV, 32, fp_status);
|
|
} else if (d_exp > 252) {
|
|
RtV = float32_scalbn(RtV, -32, fp_status);
|
|
RsV = float32_scalbn(RsV, -32, fp_status);
|
|
}
|
|
RdV = 0;
|
|
ret = 1;
|
|
}
|
|
*Rs = RsV;
|
|
*Rt = RtV;
|
|
*Rd = RdV;
|
|
*adjust = PeV;
|
|
return ret;
|
|
}
|
|
|
|
int arch_sf_invsqrt_common(float32 *Rs, float32 *Rd, int *adjust,
|
|
float_status *fp_status)
|
|
{
|
|
float32 RsV, RdV;
|
|
int PeV = 0;
|
|
int r_exp;
|
|
int ret = 0;
|
|
RsV = *Rs;
|
|
if (float32_is_any_nan(RsV)) {
|
|
if (extract32(RsV, 22, 1) == 0) {
|
|
float_raise(float_flag_invalid, fp_status);
|
|
}
|
|
RdV = RsV = float32_nan;
|
|
} else if (float32_lt(RsV, float32_zero, fp_status)) {
|
|
/* Negative nonzero values are NaN */
|
|
float_raise(float_flag_invalid, fp_status);
|
|
RsV = float32_nan;
|
|
RdV = float32_nan;
|
|
} else if (float32_is_infinity(RsV)) {
|
|
/* or put Inf in num fixup? */
|
|
RsV = infinite_float32(1);
|
|
RdV = infinite_float32(1);
|
|
} else if (float32_is_zero(RsV)) {
|
|
/* or put zero in num fixup? */
|
|
RdV = float32_one;
|
|
} else {
|
|
PeV = 0x00;
|
|
/* Basic checks passed */
|
|
r_exp = float32_getexp(RsV);
|
|
if (r_exp <= 24) {
|
|
RsV = float32_scalbn(RsV, 64, fp_status);
|
|
PeV = 0xe0;
|
|
}
|
|
RdV = 0;
|
|
ret = 1;
|
|
}
|
|
*Rs = RsV;
|
|
*Rd = RdV;
|
|
*adjust = PeV;
|
|
return ret;
|
|
}
|
|
|
|
const uint8_t recip_lookup_table[128] = {
|
|
0x0fe, 0x0fa, 0x0f6, 0x0f2, 0x0ef, 0x0eb, 0x0e7, 0x0e4,
|
|
0x0e0, 0x0dd, 0x0d9, 0x0d6, 0x0d2, 0x0cf, 0x0cc, 0x0c9,
|
|
0x0c6, 0x0c2, 0x0bf, 0x0bc, 0x0b9, 0x0b6, 0x0b3, 0x0b1,
|
|
0x0ae, 0x0ab, 0x0a8, 0x0a5, 0x0a3, 0x0a0, 0x09d, 0x09b,
|
|
0x098, 0x096, 0x093, 0x091, 0x08e, 0x08c, 0x08a, 0x087,
|
|
0x085, 0x083, 0x080, 0x07e, 0x07c, 0x07a, 0x078, 0x075,
|
|
0x073, 0x071, 0x06f, 0x06d, 0x06b, 0x069, 0x067, 0x065,
|
|
0x063, 0x061, 0x05f, 0x05e, 0x05c, 0x05a, 0x058, 0x056,
|
|
0x054, 0x053, 0x051, 0x04f, 0x04e, 0x04c, 0x04a, 0x049,
|
|
0x047, 0x045, 0x044, 0x042, 0x040, 0x03f, 0x03d, 0x03c,
|
|
0x03a, 0x039, 0x037, 0x036, 0x034, 0x033, 0x032, 0x030,
|
|
0x02f, 0x02d, 0x02c, 0x02b, 0x029, 0x028, 0x027, 0x025,
|
|
0x024, 0x023, 0x021, 0x020, 0x01f, 0x01e, 0x01c, 0x01b,
|
|
0x01a, 0x019, 0x017, 0x016, 0x015, 0x014, 0x013, 0x012,
|
|
0x011, 0x00f, 0x00e, 0x00d, 0x00c, 0x00b, 0x00a, 0x009,
|
|
0x008, 0x007, 0x006, 0x005, 0x004, 0x003, 0x002, 0x000,
|
|
};
|
|
|
|
const uint8_t invsqrt_lookup_table[128] = {
|
|
0x069, 0x066, 0x063, 0x061, 0x05e, 0x05b, 0x059, 0x057,
|
|
0x054, 0x052, 0x050, 0x04d, 0x04b, 0x049, 0x047, 0x045,
|
|
0x043, 0x041, 0x03f, 0x03d, 0x03b, 0x039, 0x037, 0x036,
|
|
0x034, 0x032, 0x030, 0x02f, 0x02d, 0x02c, 0x02a, 0x028,
|
|
0x027, 0x025, 0x024, 0x022, 0x021, 0x01f, 0x01e, 0x01d,
|
|
0x01b, 0x01a, 0x019, 0x017, 0x016, 0x015, 0x014, 0x012,
|
|
0x011, 0x010, 0x00f, 0x00d, 0x00c, 0x00b, 0x00a, 0x009,
|
|
0x008, 0x007, 0x006, 0x005, 0x004, 0x003, 0x002, 0x001,
|
|
0x0fe, 0x0fa, 0x0f6, 0x0f3, 0x0ef, 0x0eb, 0x0e8, 0x0e4,
|
|
0x0e1, 0x0de, 0x0db, 0x0d7, 0x0d4, 0x0d1, 0x0ce, 0x0cb,
|
|
0x0c9, 0x0c6, 0x0c3, 0x0c0, 0x0be, 0x0bb, 0x0b8, 0x0b6,
|
|
0x0b3, 0x0b1, 0x0af, 0x0ac, 0x0aa, 0x0a8, 0x0a5, 0x0a3,
|
|
0x0a1, 0x09f, 0x09d, 0x09b, 0x099, 0x097, 0x095, 0x093,
|
|
0x091, 0x08f, 0x08d, 0x08b, 0x089, 0x087, 0x086, 0x084,
|
|
0x082, 0x080, 0x07f, 0x07d, 0x07b, 0x07a, 0x078, 0x077,
|
|
0x075, 0x074, 0x072, 0x071, 0x06f, 0x06e, 0x06c, 0x06b,
|
|
};
|