qemu-e2k/target-arm/op.c

1909 lines
35 KiB
C

/*
* ARM micro operations
*
* Copyright (c) 2003 Fabrice Bellard
* Copyright (c) 2005-2007 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "exec.h"
#define REGNAME r0
#define REG (env->regs[0])
#include "op_template.h"
#define REGNAME r1
#define REG (env->regs[1])
#include "op_template.h"
#define REGNAME r2
#define REG (env->regs[2])
#include "op_template.h"
#define REGNAME r3
#define REG (env->regs[3])
#include "op_template.h"
#define REGNAME r4
#define REG (env->regs[4])
#include "op_template.h"
#define REGNAME r5
#define REG (env->regs[5])
#include "op_template.h"
#define REGNAME r6
#define REG (env->regs[6])
#include "op_template.h"
#define REGNAME r7
#define REG (env->regs[7])
#include "op_template.h"
#define REGNAME r8
#define REG (env->regs[8])
#include "op_template.h"
#define REGNAME r9
#define REG (env->regs[9])
#include "op_template.h"
#define REGNAME r10
#define REG (env->regs[10])
#include "op_template.h"
#define REGNAME r11
#define REG (env->regs[11])
#include "op_template.h"
#define REGNAME r12
#define REG (env->regs[12])
#include "op_template.h"
#define REGNAME r13
#define REG (env->regs[13])
#include "op_template.h"
#define REGNAME r14
#define REG (env->regs[14])
#include "op_template.h"
#define REGNAME r15
#define REG (env->regs[15])
#define SET_REG(x) REG = x & ~(uint32_t)1
#include "op_template.h"
void OPPROTO op_bx_T0(void)
{
env->regs[15] = T0 & ~(uint32_t)1;
env->thumb = (T0 & 1) != 0;
}
void OPPROTO op_movl_T0_0(void)
{
T0 = 0;
}
void OPPROTO op_movl_T0_im(void)
{
T0 = PARAM1;
}
void OPPROTO op_movl_T1_im(void)
{
T1 = PARAM1;
}
void OPPROTO op_mov_CF_T1(void)
{
env->CF = ((uint32_t)T1) >> 31;
}
void OPPROTO op_movl_T2_im(void)
{
T2 = PARAM1;
}
void OPPROTO op_addl_T1_im(void)
{
T1 += PARAM1;
}
void OPPROTO op_addl_T1_T2(void)
{
T1 += T2;
}
void OPPROTO op_subl_T1_T2(void)
{
T1 -= T2;
}
void OPPROTO op_addl_T0_T1(void)
{
T0 += T1;
}
void OPPROTO op_addl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
T0 += T1;
env->NZF = T0;
env->CF = T0 < src1;
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
}
void OPPROTO op_adcl_T0_T1(void)
{
T0 += T1 + env->CF;
}
void OPPROTO op_adcl_T0_T1_cc(void)
{
unsigned int src1;
src1 = T0;
if (!env->CF) {
T0 += T1;
env->CF = T0 < src1;
} else {
T0 += T1 + 1;
env->CF = T0 <= src1;
}
env->VF = (src1 ^ T1 ^ -1) & (src1 ^ T0);
env->NZF = T0;
FORCE_RET();
}
#define OPSUB(sub, sbc, res, T0, T1) \
\
void OPPROTO op_ ## sub ## l_T0_T1(void) \
{ \
res = T0 - T1; \
} \
\
void OPPROTO op_ ## sub ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
T0 -= T1; \
env->NZF = T0; \
env->CF = src1 >= T1; \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
res = T0; \
} \
\
void OPPROTO op_ ## sbc ## l_T0_T1(void) \
{ \
res = T0 - T1 + env->CF - 1; \
} \
\
void OPPROTO op_ ## sbc ## l_T0_T1_cc(void) \
{ \
unsigned int src1; \
src1 = T0; \
if (!env->CF) { \
T0 = T0 - T1 - 1; \
env->CF = src1 > T1; \
} else { \
T0 = T0 - T1; \
env->CF = src1 >= T1; \
} \
env->VF = (src1 ^ T1) & (src1 ^ T0); \
env->NZF = T0; \
res = T0; \
FORCE_RET(); \
}
OPSUB(sub, sbc, T0, T0, T1)
OPSUB(rsb, rsc, T0, T1, T0)
void OPPROTO op_andl_T0_T1(void)
{
T0 &= T1;
}
void OPPROTO op_xorl_T0_T1(void)
{
T0 ^= T1;
}
void OPPROTO op_orl_T0_T1(void)
{
T0 |= T1;
}
void OPPROTO op_bicl_T0_T1(void)
{
T0 &= ~T1;
}
void OPPROTO op_notl_T0(void)
{
T0 = ~T0;
}
void OPPROTO op_notl_T1(void)
{
T1 = ~T1;
}
void OPPROTO op_logic_T0_cc(void)
{
env->NZF = T0;
}
void OPPROTO op_logic_T1_cc(void)
{
env->NZF = T1;
}
#define EIP (env->regs[15])
void OPPROTO op_test_eq(void)
{
if (env->NZF == 0)
GOTO_LABEL_PARAM(1);;
FORCE_RET();
}
void OPPROTO op_test_ne(void)
{
if (env->NZF != 0)
GOTO_LABEL_PARAM(1);;
FORCE_RET();
}
void OPPROTO op_test_cs(void)
{
if (env->CF != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_cc(void)
{
if (env->CF == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_mi(void)
{
if ((env->NZF & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_pl(void)
{
if ((env->NZF & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_vs(void)
{
if ((env->VF & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_vc(void)
{
if ((env->VF & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_hi(void)
{
if (env->CF != 0 && env->NZF != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_ls(void)
{
if (env->CF == 0 || env->NZF == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_ge(void)
{
if (((env->VF ^ env->NZF) & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_lt(void)
{
if (((env->VF ^ env->NZF) & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_gt(void)
{
if (env->NZF != 0 && ((env->VF ^ env->NZF) & 0x80000000) == 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_le(void)
{
if (env->NZF == 0 || ((env->VF ^ env->NZF) & 0x80000000) != 0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_test_T0(void)
{
if (T0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_testn_T0(void)
{
if (!T0)
GOTO_LABEL_PARAM(1);
FORCE_RET();
}
void OPPROTO op_movl_T0_cpsr(void)
{
/* Execution state bits always read as zero. */
T0 = cpsr_read(env) & ~CPSR_EXEC;
FORCE_RET();
}
void OPPROTO op_movl_T0_spsr(void)
{
T0 = env->spsr;
}
void OPPROTO op_movl_spsr_T0(void)
{
uint32_t mask = PARAM1;
env->spsr = (env->spsr & ~mask) | (T0 & mask);
}
void OPPROTO op_movl_cpsr_T0(void)
{
cpsr_write(env, T0, PARAM1);
FORCE_RET();
}
void OPPROTO op_mul_T0_T1(void)
{
T0 = T0 * T1;
}
/* 64 bit unsigned mul */
void OPPROTO op_mull_T0_T1(void)
{
uint64_t res;
res = (uint64_t)T0 * (uint64_t)T1;
T1 = res >> 32;
T0 = res;
}
/* 64 bit signed mul */
void OPPROTO op_imull_T0_T1(void)
{
uint64_t res;
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
T1 = res >> 32;
T0 = res;
}
/* 48 bit signed mul, top 32 bits */
void OPPROTO op_imulw_T0_T1(void)
{
uint64_t res;
res = (int64_t)((int32_t)T0) * (int64_t)((int32_t)T1);
T0 = res >> 16;
}
void OPPROTO op_addq_T0_T1(void)
{
uint64_t res;
res = ((uint64_t)T1 << 32) | T0;
res += ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
T1 = res >> 32;
T0 = res;
}
void OPPROTO op_addq_lo_T0_T1(void)
{
uint64_t res;
res = ((uint64_t)T1 << 32) | T0;
res += (uint64_t)(env->regs[PARAM1]);
T1 = res >> 32;
T0 = res;
}
/* Dual 16-bit accumulate. */
void OPPROTO op_addq_T0_T1_dual(void)
{
uint64_t res;
res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
res += (int32_t)T0;
res += (int32_t)T1;
env->regs[PARAM1] = (uint32_t)res;
env->regs[PARAM2] = res >> 32;
}
/* Dual 16-bit subtract accumulate. */
void OPPROTO op_subq_T0_T1_dual(void)
{
uint64_t res;
res = ((uint64_t)(env->regs[PARAM2]) << 32) | (env->regs[PARAM1]);
res += (int32_t)T0;
res -= (int32_t)T1;
env->regs[PARAM1] = (uint32_t)res;
env->regs[PARAM2] = res >> 32;
}
void OPPROTO op_logicq_cc(void)
{
env->NZF = (T1 & 0x80000000) | ((T0 | T1) != 0);
}
/* memory access */
#define MEMSUFFIX _raw
#include "op_mem.h"
#if !defined(CONFIG_USER_ONLY)
#define MEMSUFFIX _user
#include "op_mem.h"
#define MEMSUFFIX _kernel
#include "op_mem.h"
#endif
void OPPROTO op_clrex(void)
{
cpu_lock();
helper_clrex(env);
cpu_unlock();
}
/* shifts */
/* Used by NEON. */
void OPPROTO op_shll_T0_im(void)
{
T1 = T1 << PARAM1;
}
/* T1 based */
void OPPROTO op_shll_T1_im(void)
{
T1 = T1 << PARAM1;
}
void OPPROTO op_shrl_T1_im(void)
{
T1 = (uint32_t)T1 >> PARAM1;
}
void OPPROTO op_shrl_T1_0(void)
{
T1 = 0;
}
void OPPROTO op_sarl_T1_im(void)
{
T1 = (int32_t)T1 >> PARAM1;
}
void OPPROTO op_sarl_T1_0(void)
{
T1 = (int32_t)T1 >> 31;
}
void OPPROTO op_rorl_T1_im(void)
{
int shift;
shift = PARAM1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
void OPPROTO op_rrxl_T1(void)
{
T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
}
/* T1 based, set C flag */
void OPPROTO op_shll_T1_im_cc(void)
{
env->CF = (T1 >> (32 - PARAM1)) & 1;
T1 = T1 << PARAM1;
}
void OPPROTO op_shrl_T1_im_cc(void)
{
env->CF = (T1 >> (PARAM1 - 1)) & 1;
T1 = (uint32_t)T1 >> PARAM1;
}
void OPPROTO op_shrl_T1_0_cc(void)
{
env->CF = (T1 >> 31) & 1;
T1 = 0;
}
void OPPROTO op_sarl_T1_im_cc(void)
{
env->CF = (T1 >> (PARAM1 - 1)) & 1;
T1 = (int32_t)T1 >> PARAM1;
}
void OPPROTO op_sarl_T1_0_cc(void)
{
env->CF = (T1 >> 31) & 1;
T1 = (int32_t)T1 >> 31;
}
void OPPROTO op_rorl_T1_im_cc(void)
{
int shift;
shift = PARAM1;
env->CF = (T1 >> (shift - 1)) & 1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
void OPPROTO op_rrxl_T1_cc(void)
{
uint32_t c;
c = T1 & 1;
T1 = ((uint32_t)T1 >> 1) | ((uint32_t)env->CF << 31);
env->CF = c;
}
/* T2 based */
void OPPROTO op_shll_T2_im(void)
{
T2 = T2 << PARAM1;
}
void OPPROTO op_shrl_T2_im(void)
{
T2 = (uint32_t)T2 >> PARAM1;
}
void OPPROTO op_shrl_T2_0(void)
{
T2 = 0;
}
void OPPROTO op_sarl_T2_im(void)
{
T2 = (int32_t)T2 >> PARAM1;
}
void OPPROTO op_sarl_T2_0(void)
{
T2 = (int32_t)T2 >> 31;
}
void OPPROTO op_rorl_T2_im(void)
{
int shift;
shift = PARAM1;
T2 = ((uint32_t)T2 >> shift) | (T2 << (32 - shift));
}
void OPPROTO op_rrxl_T2(void)
{
T2 = ((uint32_t)T2 >> 1) | ((uint32_t)env->CF << 31);
}
/* T1 based, use T0 as shift count */
void OPPROTO op_shll_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = T1 << shift;
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
T1 = 0;
else
T1 = (uint32_t)T1 >> shift;
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32)
shift = 31;
T1 = (int32_t)T1 >> shift;
}
void OPPROTO op_rorl_T1_T0(void)
{
int shift;
shift = T0 & 0x1f;
if (shift) {
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* T1 based, use T0 as shift count and compute CF */
void OPPROTO op_shll_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = T1 & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (32 - shift)) & 1;
T1 = T1 << shift;
}
FORCE_RET();
}
void OPPROTO op_shrl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (T1 >> 31) & 1;
else
env->CF = 0;
T1 = 0;
} else if (shift != 0) {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (uint32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_sarl_T1_T0_cc(void)
{
int shift;
shift = T0 & 0xff;
if (shift >= 32) {
env->CF = (T1 >> 31) & 1;
T1 = (int32_t)T1 >> 31;
} else if (shift != 0) {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = (int32_t)T1 >> shift;
}
FORCE_RET();
}
void OPPROTO op_rorl_T1_T0_cc(void)
{
int shift1, shift;
shift1 = T0 & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (T1 >> 31) & 1;
} else {
env->CF = (T1 >> (shift - 1)) & 1;
T1 = ((uint32_t)T1 >> shift) | (T1 << (32 - shift));
}
FORCE_RET();
}
/* misc */
void OPPROTO op_clz_T0(void)
{
int count;
for (count = 32; T0 > 0; count--)
T0 = T0 >> 1;
T0 = count;
FORCE_RET();
}
void OPPROTO op_sarl_T0_im(void)
{
T0 = (int32_t)T0 >> PARAM1;
}
/* Sign/zero extend */
void OPPROTO op_sxth_T0(void)
{
T0 = (int16_t)T0;
}
void OPPROTO op_sxth_T1(void)
{
T1 = (int16_t)T1;
}
void OPPROTO op_sxtb_T1(void)
{
T1 = (int8_t)T1;
}
void OPPROTO op_uxtb_T1(void)
{
T1 = (uint8_t)T1;
}
void OPPROTO op_uxth_T1(void)
{
T1 = (uint16_t)T1;
}
void OPPROTO op_sxtb16_T1(void)
{
uint32_t res;
res = (uint16_t)(int8_t)T1;
res |= (uint32_t)(int8_t)(T1 >> 16) << 16;
T1 = res;
}
void OPPROTO op_uxtb16_T1(void)
{
uint32_t res;
res = (uint16_t)(uint8_t)T1;
res |= (uint32_t)(uint8_t)(T1 >> 16) << 16;
T1 = res;
}
#define SIGNBIT (uint32_t)0x80000000
/* saturating arithmetic */
void OPPROTO op_addl_T0_T1_setq(void)
{
uint32_t res;
res = T0 + T1;
if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT))
env->QF = 1;
T0 = res;
FORCE_RET();
}
void OPPROTO op_addl_T0_T1_saturate(void)
{
uint32_t res;
res = T0 + T1;
if (((res ^ T0) & SIGNBIT) && !((T0 ^ T1) & SIGNBIT)) {
env->QF = 1;
if (T0 & SIGNBIT)
T0 = 0x80000000;
else
T0 = 0x7fffffff;
}
else
T0 = res;
FORCE_RET();
}
void OPPROTO op_subl_T0_T1_saturate(void)
{
uint32_t res;
res = T0 - T1;
if (((res ^ T0) & SIGNBIT) && ((T0 ^ T1) & SIGNBIT)) {
env->QF = 1;
if (T0 & SIGNBIT)
T0 = 0x80000000;
else
T0 = 0x7fffffff;
}
else
T0 = res;
FORCE_RET();
}
void OPPROTO op_double_T1_saturate(void)
{
int32_t val;
val = T1;
if (val >= 0x40000000) {
T1 = 0x7fffffff;
env->QF = 1;
} else if (val <= (int32_t)0xc0000000) {
T1 = 0x80000000;
env->QF = 1;
} else {
T1 = val << 1;
}
FORCE_RET();
}
/* Unsigned saturating arithmetic for NEON. */
void OPPROTO op_addl_T0_T1_usaturate(void)
{
uint32_t res;
res = T0 + T1;
if (res < T0) {
env->QF = 1;
T0 = 0xffffffff;
} else {
T0 = res;
}
FORCE_RET();
}
void OPPROTO op_subl_T0_T1_usaturate(void)
{
uint32_t res;
res = T0 - T1;
if (res > T0) {
env->QF = 1;
T0 = 0;
} else {
T0 = res;
}
FORCE_RET();
}
/* Thumb shift by immediate */
void OPPROTO op_shll_T0_im_thumb_cc(void)
{
int shift;
shift = PARAM1;
if (shift != 0) {
env->CF = (T0 >> (32 - shift)) & 1;
T0 = T0 << shift;
}
env->NZF = T0;
FORCE_RET();
}
void OPPROTO op_shll_T0_im_thumb(void)
{
T0 = T0 << PARAM1;
FORCE_RET();
}
void OPPROTO op_shrl_T0_im_thumb_cc(void)
{
int shift;
shift = PARAM1;
if (shift == 0) {
env->CF = ((uint32_t)T0) >> 31;
T0 = 0;
} else {
env->CF = (T0 >> (shift - 1)) & 1;
T0 = T0 >> shift;
}
env->NZF = T0;
FORCE_RET();
}
void OPPROTO op_shrl_T0_im_thumb(void)
{
int shift;
shift = PARAM1;
if (shift == 0) {
T0 = 0;
} else {
T0 = T0 >> shift;
}
FORCE_RET();
}
void OPPROTO op_sarl_T0_im_thumb_cc(void)
{
int shift;
shift = PARAM1;
if (shift == 0) {
T0 = ((int32_t)T0) >> 31;
env->CF = T0 & 1;
} else {
env->CF = (T0 >> (shift - 1)) & 1;
T0 = ((int32_t)T0) >> shift;
}
env->NZF = T0;
FORCE_RET();
}
void OPPROTO op_sarl_T0_im_thumb(void)
{
int shift;
shift = PARAM1;
if (shift == 0) {
env->CF = T0 & 1;
} else {
T0 = ((int32_t)T0) >> shift;
}
FORCE_RET();
}
/* exceptions */
void OPPROTO op_swi(void)
{
env->exception_index = EXCP_SWI;
cpu_loop_exit();
}
void OPPROTO op_undef_insn(void)
{
env->exception_index = EXCP_UDEF;
cpu_loop_exit();
}
void OPPROTO op_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
void OPPROTO op_wfi(void)
{
env->exception_index = EXCP_HLT;
env->halted = 1;
cpu_loop_exit();
}
void OPPROTO op_bkpt(void)
{
env->exception_index = EXCP_BKPT;
cpu_loop_exit();
}
void OPPROTO op_exception_exit(void)
{
env->exception_index = EXCP_EXCEPTION_EXIT;
cpu_loop_exit();
}
/* VFP support. We follow the convention used for VFP instrunctions:
Single precition routines have a "s" suffix, double precision a
"d" suffix. */
#define VFP_OP(name, p) void OPPROTO op_vfp_##name##p(void)
#define VFP_BINOP(name) \
VFP_OP(name, s) \
{ \
FT0s = float32_ ## name (FT0s, FT1s, &env->vfp.fp_status); \
} \
VFP_OP(name, d) \
{ \
FT0d = float64_ ## name (FT0d, FT1d, &env->vfp.fp_status); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
#undef VFP_BINOP
#define VFP_HELPER(name) \
VFP_OP(name, s) \
{ \
do_vfp_##name##s(); \
} \
VFP_OP(name, d) \
{ \
do_vfp_##name##d(); \
}
VFP_HELPER(abs)
VFP_HELPER(sqrt)
VFP_HELPER(cmp)
VFP_HELPER(cmpe)
#undef VFP_HELPER
/* XXX: Will this do the right thing for NANs. Should invert the signbit
without looking at the rest of the value. */
VFP_OP(neg, s)
{
FT0s = float32_chs(FT0s);
}
VFP_OP(neg, d)
{
FT0d = float64_chs(FT0d);
}
VFP_OP(F1_ld0, s)
{
union {
uint32_t i;
float32 s;
} v;
v.i = 0;
FT1s = v.s;
}
VFP_OP(F1_ld0, d)
{
union {
uint64_t i;
float64 d;
} v;
v.i = 0;
FT1d = v.d;
}
/* Helper routines to perform bitwise copies between float and int. */
static inline float32 vfp_itos(uint32_t i)
{
union {
uint32_t i;
float32 s;
} v;
v.i = i;
return v.s;
}
static inline uint32_t vfp_stoi(float32 s)
{
union {
uint32_t i;
float32 s;
} v;
v.s = s;
return v.i;
}
static inline float64 vfp_itod(uint64_t i)
{
union {
uint64_t i;
float64 d;
} v;
v.i = i;
return v.d;
}
static inline uint64_t vfp_dtoi(float64 d)
{
union {
uint64_t i;
float64 d;
} v;
v.d = d;
return v.i;
}
/* Integer to float conversion. */
VFP_OP(uito, s)
{
FT0s = uint32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(uito, d)
{
FT0d = uint32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(sito, s)
{
FT0s = int32_to_float32(vfp_stoi(FT0s), &env->vfp.fp_status);
}
VFP_OP(sito, d)
{
FT0d = int32_to_float64(vfp_stoi(FT0s), &env->vfp.fp_status);
}
/* Float to integer conversion. */
VFP_OP(toui, s)
{
FT0s = vfp_itos(float32_to_uint32(FT0s, &env->vfp.fp_status));
}
VFP_OP(toui, d)
{
FT0s = vfp_itos(float64_to_uint32(FT0d, &env->vfp.fp_status));
}
VFP_OP(tosi, s)
{
FT0s = vfp_itos(float32_to_int32(FT0s, &env->vfp.fp_status));
}
VFP_OP(tosi, d)
{
FT0s = vfp_itos(float64_to_int32(FT0d, &env->vfp.fp_status));
}
/* TODO: Set rounding mode properly. */
VFP_OP(touiz, s)
{
FT0s = vfp_itos(float32_to_uint32_round_to_zero(FT0s, &env->vfp.fp_status));
}
VFP_OP(touiz, d)
{
FT0s = vfp_itos(float64_to_uint32_round_to_zero(FT0d, &env->vfp.fp_status));
}
VFP_OP(tosiz, s)
{
FT0s = vfp_itos(float32_to_int32_round_to_zero(FT0s, &env->vfp.fp_status));
}
VFP_OP(tosiz, d)
{
FT0s = vfp_itos(float64_to_int32_round_to_zero(FT0d, &env->vfp.fp_status));
}
/* floating point conversion */
VFP_OP(fcvtd, s)
{
FT0d = float32_to_float64(FT0s, &env->vfp.fp_status);
}
VFP_OP(fcvts, d)
{
FT0s = float64_to_float32(FT0d, &env->vfp.fp_status);
}
/* VFP3 fixed point conversion. */
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
VFP_OP(name##to, p) \
{ \
ftype tmp; \
tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(FT0##p), \
&env->vfp.fp_status); \
FT0##p = ftype##_scalbn(tmp, PARAM1, &env->vfp.fp_status); \
} \
VFP_OP(to##name, p) \
{ \
ftype tmp; \
tmp = ftype##_scalbn(FT0##p, PARAM1, &env->vfp.fp_status); \
FT0##p = vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
&env->vfp.fp_status)); \
}
VFP_CONV_FIX(sh, d, float64, int16, )
VFP_CONV_FIX(sl, d, float64, int32, )
VFP_CONV_FIX(uh, d, float64, uint16, u)
VFP_CONV_FIX(ul, d, float64, uint32, u)
VFP_CONV_FIX(sh, s, float32, int16, )
VFP_CONV_FIX(sl, s, float32, int32, )
VFP_CONV_FIX(uh, s, float32, uint16, u)
VFP_CONV_FIX(ul, s, float32, uint32, u)
/* Get and Put values from registers. */
VFP_OP(getreg_F0, d)
{
FT0d = *(float64 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F0, s)
{
FT0s = *(float32 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, d)
{
FT1d = *(float64 *)((char *) env + PARAM1);
}
VFP_OP(getreg_F1, s)
{
FT1s = *(float32 *)((char *) env + PARAM1);
}
VFP_OP(setreg_F0, d)
{
*(float64 *)((char *) env + PARAM1) = FT0d;
}
VFP_OP(setreg_F0, s)
{
*(float32 *)((char *) env + PARAM1) = FT0s;
}
void OPPROTO op_vfp_movl_T0_fpscr(void)
{
do_vfp_get_fpscr ();
}
void OPPROTO op_vfp_movl_T0_fpscr_flags(void)
{
T0 = env->vfp.xregs[ARM_VFP_FPSCR] & (0xf << 28);
}
void OPPROTO op_vfp_movl_fpscr_T0(void)
{
do_vfp_set_fpscr();
}
void OPPROTO op_vfp_movl_T0_xreg(void)
{
T0 = env->vfp.xregs[PARAM1];
}
void OPPROTO op_vfp_movl_xreg_T0(void)
{
env->vfp.xregs[PARAM1] = T0;
}
/* Move between FT0s to T0 */
void OPPROTO op_vfp_mrs(void)
{
T0 = vfp_stoi(FT0s);
}
void OPPROTO op_vfp_msr(void)
{
FT0s = vfp_itos(T0);
}
/* Move between FT0d and {T0,T1} */
void OPPROTO op_vfp_mrrd(void)
{
CPU_DoubleU u;
u.d = FT0d;
T0 = u.l.lower;
T1 = u.l.upper;
}
void OPPROTO op_vfp_mdrr(void)
{
CPU_DoubleU u;
u.l.lower = T0;
u.l.upper = T1;
FT0d = u.d;
}
/* Load immediate. PARAM1 is the 32 most significant bits of the value. */
void OPPROTO op_vfp_fconstd(void)
{
CPU_DoubleU u;
u.l.upper = PARAM1;
u.l.lower = 0;
FT0d = u.d;
}
void OPPROTO op_vfp_fconsts(void)
{
FT0s = vfp_itos(PARAM1);
}
/* Copy the most significant bit of T0 to all bits of T1. */
void OPPROTO op_signbit_T1_T0(void)
{
T1 = (int32_t)T0 >> 31;
}
void OPPROTO op_movl_cp_T0(void)
{
helper_set_cp(env, PARAM1, T0);
FORCE_RET();
}
void OPPROTO op_movl_T0_cp(void)
{
T0 = helper_get_cp(env, PARAM1);
FORCE_RET();
}
void OPPROTO op_movl_cp15_T0(void)
{
helper_set_cp15(env, PARAM1, T0);
FORCE_RET();
}
void OPPROTO op_movl_T0_cp15(void)
{
T0 = helper_get_cp15(env, PARAM1);
FORCE_RET();
}
/* Access to user mode registers from privileged modes. */
void OPPROTO op_movl_T0_user(void)
{
int regno = PARAM1;
if (regno == 13) {
T0 = env->banked_r13[0];
} else if (regno == 14) {
T0 = env->banked_r14[0];
} else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
T0 = env->usr_regs[regno - 8];
} else {
T0 = env->regs[regno];
}
FORCE_RET();
}
void OPPROTO op_movl_user_T0(void)
{
int regno = PARAM1;
if (regno == 13) {
env->banked_r13[0] = T0;
} else if (regno == 14) {
env->banked_r14[0] = T0;
} else if ((env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
env->usr_regs[regno - 8] = T0;
} else {
env->regs[regno] = T0;
}
FORCE_RET();
}
void OPPROTO op_movl_T0_T1(void)
{
T0 = T1;
}
void OPPROTO op_movl_T0_T2(void)
{
T0 = T2;
}
void OPPROTO op_movl_T1_T0(void)
{
T1 = T0;
}
void OPPROTO op_movl_T1_T2(void)
{
T1 = T2;
}
void OPPROTO op_movl_T2_T0(void)
{
T2 = T0;
}
/* ARMv6 Media instructions. */
/* Note that signed overflow is undefined in C. The following routines are
careful to use unsigned types where modulo arithmetic is required.
Failure to do so _will_ break on newer gcc. */
/* Signed saturating arithmetic. */
/* Perform 16-bit signed satruating addition. */
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a + b;
if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed satruating addition. */
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
/* Perform 16-bit signed satruating subtraction. */
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
{
uint16_t res;
res = a - b;
if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
if (a & 0x8000)
res = 0x8000;
else
res = 0x7fff;
}
return res;
}
/* Perform 8-bit signed satruating subtraction. */
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a - b;
if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
if (a & 0x80)
res = 0x80;
else
res = 0x7f;
}
return res;
}
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
#define PFX q
#include "op_addsub.h"
/* Unsigned saturating arithmetic. */
static inline uint16_t add16_usat(uint16_t a, uint8_t b)
{
uint16_t res;
res = a + b;
if (res < a)
res = 0xffff;
return res;
}
static inline uint16_t sub16_usat(uint16_t a, uint8_t b)
{
if (a < b)
return a - b;
else
return 0;
}
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
{
uint8_t res;
res = a + b;
if (res < a)
res = 0xff;
return res;
}
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
{
if (a < b)
return a - b;
else
return 0;
}
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
#define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
#define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
#define PFX uq
#include "op_addsub.h"
/* Signed modulo arithmetic. */
#define SARITH16(a, b, n, op) do { \
int32_t sum; \
sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
RESULT(sum, n, 16); \
if (sum >= 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SARITH8(a, b, n, op) do { \
int32_t sum; \
sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
RESULT(sum, n, 8); \
if (sum >= 0) \
ge |= 1 << n; \
} while(0)
#define ADD16(a, b, n) SARITH16(a, b, n, +)
#define SUB16(a, b, n) SARITH16(a, b, n, -)
#define ADD8(a, b, n) SARITH8(a, b, n, +)
#define SUB8(a, b, n) SARITH8(a, b, n, -)
#define PFX s
#define ARITH_GE
#include "op_addsub.h"
/* Unsigned modulo arithmetic. */
#define ADD16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define ADD8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SUB16(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
RESULT(sum, n, 16); \
if ((sum >> 16) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define SUB8(a, b, n) do { \
uint32_t sum; \
sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
RESULT(sum, n, 8); \
if ((sum >> 8) == 0) \
ge |= 3 << (n * 2); \
} while(0)
#define PFX u
#define ARITH_GE
#include "op_addsub.h"
/* Halved signed arithmetic. */
#define ADD16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
#define PFX sh
#include "op_addsub.h"
/* Halved unsigned arithmetic. */
#define ADD16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define SUB16(a, b, n) \
RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
#define ADD8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define SUB8(a, b, n) \
RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
#define PFX uh
#include "op_addsub.h"
void OPPROTO op_pkhtb_T0_T1(void)
{
T0 = (T0 & 0xffff0000) | (T1 & 0xffff);
}
void OPPROTO op_pkhbt_T0_T1(void)
{
T0 = (T0 & 0xffff) | (T1 & 0xffff0000);
}
void OPPROTO op_rev_T0(void)
{
T0 = ((T0 & 0xff000000) >> 24)
| ((T0 & 0x00ff0000) >> 8)
| ((T0 & 0x0000ff00) << 8)
| ((T0 & 0x000000ff) << 24);
}
void OPPROTO op_revh_T0(void)
{
T0 = (T0 >> 16) | (T0 << 16);
}
void OPPROTO op_rev16_T0(void)
{
T0 = ((T0 & 0xff000000) >> 8)
| ((T0 & 0x00ff0000) << 8)
| ((T0 & 0x0000ff00) >> 8)
| ((T0 & 0x000000ff) << 8);
}
void OPPROTO op_revsh_T0(void)
{
T0 = (int16_t)( ((T0 & 0x0000ff00) >> 8)
| ((T0 & 0x000000ff) << 8));
}
void OPPROTO op_rbit_T0(void)
{
T0 = ((T0 & 0xff000000) >> 24)
| ((T0 & 0x00ff0000) >> 8)
| ((T0 & 0x0000ff00) << 8)
| ((T0 & 0x000000ff) << 24);
T0 = ((T0 & 0xf0f0f0f0) >> 4)
| ((T0 & 0x0f0f0f0f) << 4);
T0 = ((T0 & 0x88888888) >> 3)
| ((T0 & 0x44444444) >> 1)
| ((T0 & 0x22222222) << 1)
| ((T0 & 0x11111111) << 3);
}
/* Swap low and high halfwords. */
void OPPROTO op_swap_half_T1(void)
{
T1 = (T1 >> 16) | (T1 << 16);
FORCE_RET();
}
/* Dual 16-bit signed multiply. */
void OPPROTO op_mul_dual_T0_T1(void)
{
int32_t low;
int32_t high;
low = (int32_t)(int16_t)T0 * (int32_t)(int16_t)T1;
high = (((int32_t)T0) >> 16) * (((int32_t)T1) >> 16);
T0 = low;
T1 = high;
}
void OPPROTO op_sel_T0_T1(void)
{
uint32_t mask;
uint32_t flags;
flags = env->GE;
mask = 0;
if (flags & 1)
mask |= 0xff;
if (flags & 2)
mask |= 0xff00;
if (flags & 4)
mask |= 0xff0000;
if (flags & 8)
mask |= 0xff000000;
T0 = (T0 & mask) | (T1 & ~mask);
FORCE_RET();
}
void OPPROTO op_roundqd_T0_T1(void)
{
T0 = T1 + ((uint32_t)T0 >> 31);
}
/* Signed saturation. */
static inline uint32_t do_ssat(int32_t val, int shift)
{
int32_t top;
uint32_t mask;
shift = PARAM1;
top = val >> shift;
mask = (1u << shift) - 1;
if (top > 0) {
env->QF = 1;
return mask;
} else if (top < -1) {
env->QF = 1;
return ~mask;
}
return val;
}
/* Unsigned saturation. */
static inline uint32_t do_usat(int32_t val, int shift)
{
uint32_t max;
shift = PARAM1;
max = (1u << shift) - 1;
if (val < 0) {
env->QF = 1;
return 0;
} else if (val > max) {
env->QF = 1;
return max;
}
return val;
}
/* Signed saturate. */
void OPPROTO op_ssat_T1(void)
{
T0 = do_ssat(T0, PARAM1);
FORCE_RET();
}
/* Dual halfword signed saturate. */
void OPPROTO op_ssat16_T1(void)
{
uint32_t res;
res = (uint16_t)do_ssat((int16_t)T0, PARAM1);
res |= do_ssat(((int32_t)T0) >> 16, PARAM1) << 16;
T0 = res;
FORCE_RET();
}
/* Unsigned saturate. */
void OPPROTO op_usat_T1(void)
{
T0 = do_usat(T0, PARAM1);
FORCE_RET();
}
/* Dual halfword unsigned saturate. */
void OPPROTO op_usat16_T1(void)
{
uint32_t res;
res = (uint16_t)do_usat((int16_t)T0, PARAM1);
res |= do_usat(((int32_t)T0) >> 16, PARAM1) << 16;
T0 = res;
FORCE_RET();
}
/* Dual 16-bit add. */
void OPPROTO op_add16_T1_T2(void)
{
uint32_t mask;
mask = (T0 & T1) & 0x8000;
T0 ^= ~0x8000;
T1 ^= ~0x8000;
T0 = (T0 + T1) ^ mask;
}
static inline uint8_t do_usad(uint8_t a, uint8_t b)
{
if (a > b)
return a - b;
else
return b - a;
}
/* Unsigned sum of absolute byte differences. */
void OPPROTO op_usad8_T0_T1(void)
{
uint32_t sum;
sum = do_usad(T0, T1);
sum += do_usad(T0 >> 8, T1 >> 8);
sum += do_usad(T0 >> 16, T1 >>16);
sum += do_usad(T0 >> 24, T1 >> 24);
T0 = sum;
}
/* Thumb-2 instructions. */
/* Insert T1 into T0. Result goes in T1. */
void OPPROTO op_bfi_T1_T0(void)
{
int shift = PARAM1;
uint32_t mask = PARAM2;
uint32_t bits;
bits = (T1 << shift) & mask;
T1 = (T0 & ~mask) | bits;
}
/* Unsigned bitfield extract. */
void OPPROTO op_ubfx_T1(void)
{
uint32_t shift = PARAM1;
uint32_t mask = PARAM2;
T1 >>= shift;
T1 &= mask;
}
/* Signed bitfield extract. */
void OPPROTO op_sbfx_T1(void)
{
uint32_t shift = PARAM1;
uint32_t width = PARAM2;
int32_t val;
val = T1 << (32 - (shift + width));
T1 = val >> (32 - width);
}
void OPPROTO op_movtop_T0_im(void)
{
T0 = (T0 & 0xffff) | PARAM1;
}
/* Used by table branch instructions. */
void OPPROTO op_jmp_T0_im(void)
{
env->regs[15] = PARAM1 + (T0 << 1);
}
void OPPROTO op_set_condexec(void)
{
env->condexec_bits = PARAM1;
}
void OPPROTO op_sdivl_T0_T1(void)
{
int32_t num;
int32_t den;
num = T0;
den = T1;
if (den == 0)
T0 = 0;
else
T0 = num / den;
FORCE_RET();
}
void OPPROTO op_udivl_T0_T1(void)
{
uint32_t num;
uint32_t den;
num = T0;
den = T1;
if (den == 0)
T0 = 0;
else
T0 = num / den;
FORCE_RET();
}
void OPPROTO op_movl_T1_r13_banked(void)
{
T1 = helper_get_r13_banked(env, PARAM1);
}
void OPPROTO op_movl_r13_T1_banked(void)
{
helper_set_r13_banked(env, PARAM1, T1);
}
void OPPROTO op_v7m_mrs_T0(void)
{
T0 = helper_v7m_mrs(env, PARAM1);
}
void OPPROTO op_v7m_msr_T0(void)
{
helper_v7m_msr(env, PARAM1, T0);
}
void OPPROTO op_movl_T0_sp(void)
{
if (PARAM1 == env->v7m.current_sp)
T0 = env->regs[13];
else
T0 = env->v7m.other_sp;
FORCE_RET();
}
#include "op_neon.h"
/* iwMMXt support */
#include "op_iwmmxt.c"