qemu-e2k/block/qcow2-cluster.c
Kevin Wolf 5d757b563d qcow2: Don't ignore qcow2_alloc_clusters return value
Now that qcow2_alloc_clusters can return error codes, we must handle them in
the callers of qcow2_alloc_clusters.

Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2010-01-26 14:59:19 -06:00

876 lines
26 KiB
C

/*
* Block driver for the QCOW version 2 format
*
* Copyright (c) 2004-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <zlib.h>
#include "qemu-common.h"
#include "block_int.h"
#include "block/qcow2.h"
int qcow2_grow_l1_table(BlockDriverState *bs, int min_size)
{
BDRVQcowState *s = bs->opaque;
int new_l1_size, new_l1_size2, ret, i;
uint64_t *new_l1_table;
int64_t new_l1_table_offset;
uint8_t data[12];
new_l1_size = s->l1_size;
if (min_size <= new_l1_size)
return 0;
if (new_l1_size == 0) {
new_l1_size = 1;
}
while (min_size > new_l1_size) {
new_l1_size = (new_l1_size * 3 + 1) / 2;
}
#ifdef DEBUG_ALLOC2
printf("grow l1_table from %d to %d\n", s->l1_size, new_l1_size);
#endif
new_l1_size2 = sizeof(uint64_t) * new_l1_size;
new_l1_table = qemu_mallocz(align_offset(new_l1_size2, 512));
memcpy(new_l1_table, s->l1_table, s->l1_size * sizeof(uint64_t));
/* write new table (align to cluster) */
new_l1_table_offset = qcow2_alloc_clusters(bs, new_l1_size2);
if (new_l1_table_offset < 0) {
qemu_free(new_l1_table);
return new_l1_table_offset;
}
for(i = 0; i < s->l1_size; i++)
new_l1_table[i] = cpu_to_be64(new_l1_table[i]);
ret = bdrv_pwrite(s->hd, new_l1_table_offset, new_l1_table, new_l1_size2);
if (ret != new_l1_size2)
goto fail;
for(i = 0; i < s->l1_size; i++)
new_l1_table[i] = be64_to_cpu(new_l1_table[i]);
/* set new table */
cpu_to_be32w((uint32_t*)data, new_l1_size);
cpu_to_be64w((uint64_t*)(data + 4), new_l1_table_offset);
ret = bdrv_pwrite(s->hd, offsetof(QCowHeader, l1_size), data,sizeof(data));
if (ret != sizeof(data)) {
goto fail;
}
qemu_free(s->l1_table);
qcow2_free_clusters(bs, s->l1_table_offset, s->l1_size * sizeof(uint64_t));
s->l1_table_offset = new_l1_table_offset;
s->l1_table = new_l1_table;
s->l1_size = new_l1_size;
return 0;
fail:
qemu_free(new_l1_table);
qcow2_free_clusters(bs, new_l1_table_offset, new_l1_size2);
return ret < 0 ? ret : -EIO;
}
void qcow2_l2_cache_reset(BlockDriverState *bs)
{
BDRVQcowState *s = bs->opaque;
memset(s->l2_cache, 0, s->l2_size * L2_CACHE_SIZE * sizeof(uint64_t));
memset(s->l2_cache_offsets, 0, L2_CACHE_SIZE * sizeof(uint64_t));
memset(s->l2_cache_counts, 0, L2_CACHE_SIZE * sizeof(uint32_t));
}
static inline int l2_cache_new_entry(BlockDriverState *bs)
{
BDRVQcowState *s = bs->opaque;
uint32_t min_count;
int min_index, i;
/* find a new entry in the least used one */
min_index = 0;
min_count = 0xffffffff;
for(i = 0; i < L2_CACHE_SIZE; i++) {
if (s->l2_cache_counts[i] < min_count) {
min_count = s->l2_cache_counts[i];
min_index = i;
}
}
return min_index;
}
/*
* seek_l2_table
*
* seek l2_offset in the l2_cache table
* if not found, return NULL,
* if found,
* increments the l2 cache hit count of the entry,
* if counter overflow, divide by two all counters
* return the pointer to the l2 cache entry
*
*/
static uint64_t *seek_l2_table(BDRVQcowState *s, uint64_t l2_offset)
{
int i, j;
for(i = 0; i < L2_CACHE_SIZE; i++) {
if (l2_offset == s->l2_cache_offsets[i]) {
/* increment the hit count */
if (++s->l2_cache_counts[i] == 0xffffffff) {
for(j = 0; j < L2_CACHE_SIZE; j++) {
s->l2_cache_counts[j] >>= 1;
}
}
return s->l2_cache + (i << s->l2_bits);
}
}
return NULL;
}
/*
* l2_load
*
* Loads a L2 table into memory. If the table is in the cache, the cache
* is used; otherwise the L2 table is loaded from the image file.
*
* Returns a pointer to the L2 table on success, or NULL if the read from
* the image file failed.
*/
static uint64_t *l2_load(BlockDriverState *bs, uint64_t l2_offset)
{
BDRVQcowState *s = bs->opaque;
int min_index;
uint64_t *l2_table;
/* seek if the table for the given offset is in the cache */
l2_table = seek_l2_table(s, l2_offset);
if (l2_table != NULL)
return l2_table;
/* not found: load a new entry in the least used one */
min_index = l2_cache_new_entry(bs);
l2_table = s->l2_cache + (min_index << s->l2_bits);
if (bdrv_pread(s->hd, l2_offset, l2_table, s->l2_size * sizeof(uint64_t)) !=
s->l2_size * sizeof(uint64_t))
return NULL;
s->l2_cache_offsets[min_index] = l2_offset;
s->l2_cache_counts[min_index] = 1;
return l2_table;
}
/*
* Writes one sector of the L1 table to the disk (can't update single entries
* and we really don't want bdrv_pread to perform a read-modify-write)
*/
#define L1_ENTRIES_PER_SECTOR (512 / 8)
static int write_l1_entry(BDRVQcowState *s, int l1_index)
{
uint64_t buf[L1_ENTRIES_PER_SECTOR];
int l1_start_index;
int i;
l1_start_index = l1_index & ~(L1_ENTRIES_PER_SECTOR - 1);
for (i = 0; i < L1_ENTRIES_PER_SECTOR; i++) {
buf[i] = cpu_to_be64(s->l1_table[l1_start_index + i]);
}
if (bdrv_pwrite(s->hd, s->l1_table_offset + 8 * l1_start_index,
buf, sizeof(buf)) != sizeof(buf))
{
return -1;
}
return 0;
}
/*
* l2_allocate
*
* Allocate a new l2 entry in the file. If l1_index points to an already
* used entry in the L2 table (i.e. we are doing a copy on write for the L2
* table) copy the contents of the old L2 table into the newly allocated one.
* Otherwise the new table is initialized with zeros.
*
*/
static uint64_t *l2_allocate(BlockDriverState *bs, int l1_index)
{
BDRVQcowState *s = bs->opaque;
int min_index;
uint64_t old_l2_offset;
uint64_t *l2_table, l2_offset;
old_l2_offset = s->l1_table[l1_index];
/* allocate a new l2 entry */
l2_offset = qcow2_alloc_clusters(bs, s->l2_size * sizeof(uint64_t));
if (l2_offset < 0) {
return NULL;
}
/* update the L1 entry */
s->l1_table[l1_index] = l2_offset | QCOW_OFLAG_COPIED;
if (write_l1_entry(s, l1_index) < 0) {
return NULL;
}
/* allocate a new entry in the l2 cache */
min_index = l2_cache_new_entry(bs);
l2_table = s->l2_cache + (min_index << s->l2_bits);
if (old_l2_offset == 0) {
/* if there was no old l2 table, clear the new table */
memset(l2_table, 0, s->l2_size * sizeof(uint64_t));
} else {
/* if there was an old l2 table, read it from the disk */
if (bdrv_pread(s->hd, old_l2_offset,
l2_table, s->l2_size * sizeof(uint64_t)) !=
s->l2_size * sizeof(uint64_t))
return NULL;
}
/* write the l2 table to the file */
if (bdrv_pwrite(s->hd, l2_offset,
l2_table, s->l2_size * sizeof(uint64_t)) !=
s->l2_size * sizeof(uint64_t))
return NULL;
/* update the l2 cache entry */
s->l2_cache_offsets[min_index] = l2_offset;
s->l2_cache_counts[min_index] = 1;
return l2_table;
}
static int count_contiguous_clusters(uint64_t nb_clusters, int cluster_size,
uint64_t *l2_table, uint64_t start, uint64_t mask)
{
int i;
uint64_t offset = be64_to_cpu(l2_table[0]) & ~mask;
if (!offset)
return 0;
for (i = start; i < start + nb_clusters; i++)
if (offset + (uint64_t) i * cluster_size != (be64_to_cpu(l2_table[i]) & ~mask))
break;
return (i - start);
}
static int count_contiguous_free_clusters(uint64_t nb_clusters, uint64_t *l2_table)
{
int i = 0;
while(nb_clusters-- && l2_table[i] == 0)
i++;
return i;
}
/* The crypt function is compatible with the linux cryptoloop
algorithm for < 4 GB images. NOTE: out_buf == in_buf is
supported */
void qcow2_encrypt_sectors(BDRVQcowState *s, int64_t sector_num,
uint8_t *out_buf, const uint8_t *in_buf,
int nb_sectors, int enc,
const AES_KEY *key)
{
union {
uint64_t ll[2];
uint8_t b[16];
} ivec;
int i;
for(i = 0; i < nb_sectors; i++) {
ivec.ll[0] = cpu_to_le64(sector_num);
ivec.ll[1] = 0;
AES_cbc_encrypt(in_buf, out_buf, 512, key,
ivec.b, enc);
sector_num++;
in_buf += 512;
out_buf += 512;
}
}
static int qcow_read(BlockDriverState *bs, int64_t sector_num,
uint8_t *buf, int nb_sectors)
{
BDRVQcowState *s = bs->opaque;
int ret, index_in_cluster, n, n1;
uint64_t cluster_offset;
while (nb_sectors > 0) {
n = nb_sectors;
cluster_offset = qcow2_get_cluster_offset(bs, sector_num << 9, &n);
index_in_cluster = sector_num & (s->cluster_sectors - 1);
if (!cluster_offset) {
if (bs->backing_hd) {
/* read from the base image */
n1 = qcow2_backing_read1(bs->backing_hd, sector_num, buf, n);
if (n1 > 0) {
ret = bdrv_read(bs->backing_hd, sector_num, buf, n1);
if (ret < 0)
return -1;
}
} else {
memset(buf, 0, 512 * n);
}
} else if (cluster_offset & QCOW_OFLAG_COMPRESSED) {
if (qcow2_decompress_cluster(s, cluster_offset) < 0)
return -1;
memcpy(buf, s->cluster_cache + index_in_cluster * 512, 512 * n);
} else {
ret = bdrv_pread(s->hd, cluster_offset + index_in_cluster * 512, buf, n * 512);
if (ret != n * 512)
return -1;
if (s->crypt_method) {
qcow2_encrypt_sectors(s, sector_num, buf, buf, n, 0,
&s->aes_decrypt_key);
}
}
nb_sectors -= n;
sector_num += n;
buf += n * 512;
}
return 0;
}
static int copy_sectors(BlockDriverState *bs, uint64_t start_sect,
uint64_t cluster_offset, int n_start, int n_end)
{
BDRVQcowState *s = bs->opaque;
int n, ret;
n = n_end - n_start;
if (n <= 0)
return 0;
ret = qcow_read(bs, start_sect + n_start, s->cluster_data, n);
if (ret < 0)
return ret;
if (s->crypt_method) {
qcow2_encrypt_sectors(s, start_sect + n_start,
s->cluster_data,
s->cluster_data, n, 1,
&s->aes_encrypt_key);
}
ret = bdrv_write(s->hd, (cluster_offset >> 9) + n_start,
s->cluster_data, n);
if (ret < 0)
return ret;
return 0;
}
/*
* get_cluster_offset
*
* For a given offset of the disk image, return cluster offset in
* qcow2 file.
*
* on entry, *num is the number of contiguous clusters we'd like to
* access following offset.
*
* on exit, *num is the number of contiguous clusters we can read.
*
* Return 1, if the offset is found
* Return 0, otherwise.
*
*/
uint64_t qcow2_get_cluster_offset(BlockDriverState *bs, uint64_t offset,
int *num)
{
BDRVQcowState *s = bs->opaque;
unsigned int l1_index, l2_index;
uint64_t l2_offset, *l2_table, cluster_offset;
int l1_bits, c;
unsigned int index_in_cluster, nb_clusters;
uint64_t nb_available, nb_needed;
index_in_cluster = (offset >> 9) & (s->cluster_sectors - 1);
nb_needed = *num + index_in_cluster;
l1_bits = s->l2_bits + s->cluster_bits;
/* compute how many bytes there are between the offset and
* the end of the l1 entry
*/
nb_available = (1ULL << l1_bits) - (offset & ((1ULL << l1_bits) - 1));
/* compute the number of available sectors */
nb_available = (nb_available >> 9) + index_in_cluster;
if (nb_needed > nb_available) {
nb_needed = nb_available;
}
cluster_offset = 0;
/* seek the the l2 offset in the l1 table */
l1_index = offset >> l1_bits;
if (l1_index >= s->l1_size)
goto out;
l2_offset = s->l1_table[l1_index];
/* seek the l2 table of the given l2 offset */
if (!l2_offset)
goto out;
/* load the l2 table in memory */
l2_offset &= ~QCOW_OFLAG_COPIED;
l2_table = l2_load(bs, l2_offset);
if (l2_table == NULL)
return 0;
/* find the cluster offset for the given disk offset */
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
cluster_offset = be64_to_cpu(l2_table[l2_index]);
nb_clusters = size_to_clusters(s, nb_needed << 9);
if (!cluster_offset) {
/* how many empty clusters ? */
c = count_contiguous_free_clusters(nb_clusters, &l2_table[l2_index]);
} else {
/* how many allocated clusters ? */
c = count_contiguous_clusters(nb_clusters, s->cluster_size,
&l2_table[l2_index], 0, QCOW_OFLAG_COPIED);
}
nb_available = (c * s->cluster_sectors);
out:
if (nb_available > nb_needed)
nb_available = nb_needed;
*num = nb_available - index_in_cluster;
return cluster_offset & ~QCOW_OFLAG_COPIED;
}
/*
* get_cluster_table
*
* for a given disk offset, load (and allocate if needed)
* the l2 table.
*
* the l2 table offset in the qcow2 file and the cluster index
* in the l2 table are given to the caller.
*
* Returns 0 on success, -errno in failure case
*/
static int get_cluster_table(BlockDriverState *bs, uint64_t offset,
uint64_t **new_l2_table,
uint64_t *new_l2_offset,
int *new_l2_index)
{
BDRVQcowState *s = bs->opaque;
unsigned int l1_index, l2_index;
uint64_t l2_offset, *l2_table;
int ret;
/* seek the the l2 offset in the l1 table */
l1_index = offset >> (s->l2_bits + s->cluster_bits);
if (l1_index >= s->l1_size) {
ret = qcow2_grow_l1_table(bs, l1_index + 1);
if (ret < 0) {
return ret;
}
}
l2_offset = s->l1_table[l1_index];
/* seek the l2 table of the given l2 offset */
if (l2_offset & QCOW_OFLAG_COPIED) {
/* load the l2 table in memory */
l2_offset &= ~QCOW_OFLAG_COPIED;
l2_table = l2_load(bs, l2_offset);
if (l2_table == NULL) {
return -EIO;
}
} else {
if (l2_offset)
qcow2_free_clusters(bs, l2_offset, s->l2_size * sizeof(uint64_t));
l2_table = l2_allocate(bs, l1_index);
if (l2_table == NULL) {
return -EIO;
}
l2_offset = s->l1_table[l1_index] & ~QCOW_OFLAG_COPIED;
}
/* find the cluster offset for the given disk offset */
l2_index = (offset >> s->cluster_bits) & (s->l2_size - 1);
*new_l2_table = l2_table;
*new_l2_offset = l2_offset;
*new_l2_index = l2_index;
return 0;
}
/*
* alloc_compressed_cluster_offset
*
* For a given offset of the disk image, return cluster offset in
* qcow2 file.
*
* If the offset is not found, allocate a new compressed cluster.
*
* Return the cluster offset if successful,
* Return 0, otherwise.
*
*/
uint64_t qcow2_alloc_compressed_cluster_offset(BlockDriverState *bs,
uint64_t offset,
int compressed_size)
{
BDRVQcowState *s = bs->opaque;
int l2_index, ret;
uint64_t l2_offset, *l2_table, cluster_offset;
int nb_csectors;
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
if (ret < 0) {
return 0;
}
cluster_offset = be64_to_cpu(l2_table[l2_index]);
if (cluster_offset & QCOW_OFLAG_COPIED)
return cluster_offset & ~QCOW_OFLAG_COPIED;
if (cluster_offset)
qcow2_free_any_clusters(bs, cluster_offset, 1);
cluster_offset = qcow2_alloc_bytes(bs, compressed_size);
if (cluster_offset < 0) {
return 0;
}
nb_csectors = ((cluster_offset + compressed_size - 1) >> 9) -
(cluster_offset >> 9);
cluster_offset |= QCOW_OFLAG_COMPRESSED |
((uint64_t)nb_csectors << s->csize_shift);
/* update L2 table */
/* compressed clusters never have the copied flag */
l2_table[l2_index] = cpu_to_be64(cluster_offset);
if (bdrv_pwrite(s->hd,
l2_offset + l2_index * sizeof(uint64_t),
l2_table + l2_index,
sizeof(uint64_t)) != sizeof(uint64_t))
return 0;
return cluster_offset;
}
/*
* Write L2 table updates to disk, writing whole sectors to avoid a
* read-modify-write in bdrv_pwrite
*/
#define L2_ENTRIES_PER_SECTOR (512 / 8)
static int write_l2_entries(BDRVQcowState *s, uint64_t *l2_table,
uint64_t l2_offset, int l2_index, int num)
{
int l2_start_index = l2_index & ~(L1_ENTRIES_PER_SECTOR - 1);
int start_offset = (8 * l2_index) & ~511;
int end_offset = (8 * (l2_index + num) + 511) & ~511;
size_t len = end_offset - start_offset;
if (bdrv_pwrite(s->hd, l2_offset + start_offset, &l2_table[l2_start_index],
len) != len)
{
return -1;
}
return 0;
}
int qcow2_alloc_cluster_link_l2(BlockDriverState *bs, QCowL2Meta *m)
{
BDRVQcowState *s = bs->opaque;
int i, j = 0, l2_index, ret;
uint64_t *old_cluster, start_sect, l2_offset, *l2_table;
uint64_t cluster_offset = m->cluster_offset;
if (m->nb_clusters == 0)
return 0;
old_cluster = qemu_malloc(m->nb_clusters * sizeof(uint64_t));
/* copy content of unmodified sectors */
start_sect = (m->offset & ~(s->cluster_size - 1)) >> 9;
if (m->n_start) {
ret = copy_sectors(bs, start_sect, cluster_offset, 0, m->n_start);
if (ret < 0)
goto err;
}
if (m->nb_available & (s->cluster_sectors - 1)) {
uint64_t end = m->nb_available & ~(uint64_t)(s->cluster_sectors - 1);
ret = copy_sectors(bs, start_sect + end, cluster_offset + (end << 9),
m->nb_available - end, s->cluster_sectors);
if (ret < 0)
goto err;
}
/* update L2 table */
ret = get_cluster_table(bs, m->offset, &l2_table, &l2_offset, &l2_index);
if (ret < 0) {
goto err;
}
for (i = 0; i < m->nb_clusters; i++) {
/* if two concurrent writes happen to the same unallocated cluster
* each write allocates separate cluster and writes data concurrently.
* The first one to complete updates l2 table with pointer to its
* cluster the second one has to do RMW (which is done above by
* copy_sectors()), update l2 table with its cluster pointer and free
* old cluster. This is what this loop does */
if(l2_table[l2_index + i] != 0)
old_cluster[j++] = l2_table[l2_index + i];
l2_table[l2_index + i] = cpu_to_be64((cluster_offset +
(i << s->cluster_bits)) | QCOW_OFLAG_COPIED);
}
if (write_l2_entries(s, l2_table, l2_offset, l2_index, m->nb_clusters) < 0) {
ret = -1;
goto err;
}
for (i = 0; i < j; i++)
qcow2_free_any_clusters(bs,
be64_to_cpu(old_cluster[i]) & ~QCOW_OFLAG_COPIED, 1);
ret = 0;
err:
qemu_free(old_cluster);
return ret;
}
/*
* alloc_cluster_offset
*
* For a given offset of the disk image, return cluster offset in qcow2 file.
* If the offset is not found, allocate a new cluster.
*
* If the cluster was already allocated, m->nb_clusters is set to 0,
* m->depends_on is set to NULL and the other fields in m are meaningless.
*
* If the cluster is newly allocated, m->nb_clusters is set to the number of
* contiguous clusters that have been allocated. This may be 0 if the request
* conflict with another write request in flight; in this case, m->depends_on
* is set and the remaining fields of m are meaningless.
*
* If m->nb_clusters is non-zero, the other fields of m are valid and contain
* information about the first allocated cluster.
*
* Return 0 on success and -errno in error cases
*/
uint64_t qcow2_alloc_cluster_offset(BlockDriverState *bs,
uint64_t offset,
int n_start, int n_end,
int *num, QCowL2Meta *m)
{
BDRVQcowState *s = bs->opaque;
int l2_index, ret;
uint64_t l2_offset, *l2_table;
int64_t cluster_offset;
unsigned int nb_clusters, i = 0;
QCowL2Meta *old_alloc;
ret = get_cluster_table(bs, offset, &l2_table, &l2_offset, &l2_index);
if (ret < 0) {
return ret;
}
nb_clusters = size_to_clusters(s, n_end << 9);
nb_clusters = MIN(nb_clusters, s->l2_size - l2_index);
cluster_offset = be64_to_cpu(l2_table[l2_index]);
/* We keep all QCOW_OFLAG_COPIED clusters */
if (cluster_offset & QCOW_OFLAG_COPIED) {
nb_clusters = count_contiguous_clusters(nb_clusters, s->cluster_size,
&l2_table[l2_index], 0, 0);
cluster_offset &= ~QCOW_OFLAG_COPIED;
m->nb_clusters = 0;
m->depends_on = NULL;
goto out;
}
/* for the moment, multiple compressed clusters are not managed */
if (cluster_offset & QCOW_OFLAG_COMPRESSED)
nb_clusters = 1;
/* how many available clusters ? */
while (i < nb_clusters) {
i += count_contiguous_clusters(nb_clusters - i, s->cluster_size,
&l2_table[l2_index], i, 0);
if(be64_to_cpu(l2_table[l2_index + i]))
break;
i += count_contiguous_free_clusters(nb_clusters - i,
&l2_table[l2_index + i]);
cluster_offset = be64_to_cpu(l2_table[l2_index + i]);
if ((cluster_offset & QCOW_OFLAG_COPIED) ||
(cluster_offset & QCOW_OFLAG_COMPRESSED))
break;
}
nb_clusters = i;
/*
* Check if there already is an AIO write request in flight which allocates
* the same cluster. In this case we need to wait until the previous
* request has completed and updated the L2 table accordingly.
*/
QLIST_FOREACH(old_alloc, &s->cluster_allocs, next_in_flight) {
uint64_t end_offset = offset + nb_clusters * s->cluster_size;
uint64_t old_offset = old_alloc->offset;
uint64_t old_end_offset = old_alloc->offset +
old_alloc->nb_clusters * s->cluster_size;
if (end_offset < old_offset || offset > old_end_offset) {
/* No intersection */
} else {
if (offset < old_offset) {
/* Stop at the start of a running allocation */
nb_clusters = (old_offset - offset) >> s->cluster_bits;
} else {
nb_clusters = 0;
}
if (nb_clusters == 0) {
/* Set dependency and wait for a callback */
m->depends_on = old_alloc;
m->nb_clusters = 0;
*num = 0;
return 0;
}
}
}
if (!nb_clusters) {
abort();
}
QLIST_INSERT_HEAD(&s->cluster_allocs, m, next_in_flight);
/* allocate a new cluster */
cluster_offset = qcow2_alloc_clusters(bs, nb_clusters * s->cluster_size);
if (cluster_offset < 0) {
return cluster_offset;
}
/* save info needed for meta data update */
m->offset = offset;
m->n_start = n_start;
m->nb_clusters = nb_clusters;
out:
m->nb_available = MIN(nb_clusters << (s->cluster_bits - 9), n_end);
m->cluster_offset = cluster_offset;
*num = m->nb_available - n_start;
return 0;
}
static int decompress_buffer(uint8_t *out_buf, int out_buf_size,
const uint8_t *buf, int buf_size)
{
z_stream strm1, *strm = &strm1;
int ret, out_len;
memset(strm, 0, sizeof(*strm));
strm->next_in = (uint8_t *)buf;
strm->avail_in = buf_size;
strm->next_out = out_buf;
strm->avail_out = out_buf_size;
ret = inflateInit2(strm, -12);
if (ret != Z_OK)
return -1;
ret = inflate(strm, Z_FINISH);
out_len = strm->next_out - out_buf;
if ((ret != Z_STREAM_END && ret != Z_BUF_ERROR) ||
out_len != out_buf_size) {
inflateEnd(strm);
return -1;
}
inflateEnd(strm);
return 0;
}
int qcow2_decompress_cluster(BDRVQcowState *s, uint64_t cluster_offset)
{
int ret, csize, nb_csectors, sector_offset;
uint64_t coffset;
coffset = cluster_offset & s->cluster_offset_mask;
if (s->cluster_cache_offset != coffset) {
nb_csectors = ((cluster_offset >> s->csize_shift) & s->csize_mask) + 1;
sector_offset = coffset & 511;
csize = nb_csectors * 512 - sector_offset;
ret = bdrv_read(s->hd, coffset >> 9, s->cluster_data, nb_csectors);
if (ret < 0) {
return -1;
}
if (decompress_buffer(s->cluster_cache, s->cluster_size,
s->cluster_data + sector_offset, csize) < 0) {
return -1;
}
s->cluster_cache_offset = coffset;
}
return 0;
}