qemu-e2k/hw/arm/raspi.c
Philippe Mathieu-Daudé 0f0736933f hw/arm/raspi: Use AddressSpace when using arm_boot::write_secondary_boot
write_secondary_boot() is used in SMP configurations where the
CPU address space might not be the main System Bus.
The rom_add_blob_fixed_as() function allow us to specify an
address space. Use it to write each boot blob in the corresponding
CPU address space.

Signed-off-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20191019234715.25750-11-f4bug@amsat.org
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2019-10-25 13:09:27 +01:00

261 lines
9.3 KiB
C

/*
* Raspberry Pi emulation (c) 2012 Gregory Estrade
* Upstreaming code cleanup [including bcm2835_*] (c) 2013 Jan Petrous
*
* Rasperry Pi 2 emulation Copyright (c) 2015, Microsoft
* Written by Andrew Baumann
*
* Raspberry Pi 3 emulation Copyright (c) 2018 Zoltán Baldaszti
* Upstream code cleanup (c) 2018 Pekka Enberg
*
* This code is licensed under the GNU GPLv2 and later.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "cpu.h"
#include "hw/arm/bcm2836.h"
#include "qemu/error-report.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/arm/boot.h"
#include "sysemu/sysemu.h"
#define SMPBOOT_ADDR 0x300 /* this should leave enough space for ATAGS */
#define MVBAR_ADDR 0x400 /* secure vectors */
#define BOARDSETUP_ADDR (MVBAR_ADDR + 0x20) /* board setup code */
#define FIRMWARE_ADDR_2 0x8000 /* Pi 2 loads kernel.img here by default */
#define FIRMWARE_ADDR_3 0x80000 /* Pi 3 loads kernel.img here by default */
#define SPINTABLE_ADDR 0xd8 /* Pi 3 bootloader spintable */
/* Table of Linux board IDs for different Pi versions */
static const int raspi_boardid[] = {[1] = 0xc42, [2] = 0xc43, [3] = 0xc44};
typedef struct RasPiState {
BCM283XState soc;
MemoryRegion ram;
} RasPiState;
static void write_smpboot(ARMCPU *cpu, const struct arm_boot_info *info)
{
static const uint32_t smpboot[] = {
0xe1a0e00f, /* mov lr, pc */
0xe3a0fe00 + (BOARDSETUP_ADDR >> 4), /* mov pc, BOARDSETUP_ADDR */
0xee100fb0, /* mrc p15, 0, r0, c0, c0, 5;get core ID */
0xe7e10050, /* ubfx r0, r0, #0, #2 ;extract LSB */
0xe59f5014, /* ldr r5, =0x400000CC ;load mbox base */
0xe320f001, /* 1: yield */
0xe7953200, /* ldr r3, [r5, r0, lsl #4] ;read mbox for our core*/
0xe3530000, /* cmp r3, #0 ;spin while zero */
0x0afffffb, /* beq 1b */
0xe7853200, /* str r3, [r5, r0, lsl #4] ;clear mbox */
0xe12fff13, /* bx r3 ;jump to target */
0x400000cc, /* (constant: mailbox 3 read/clear base) */
};
/* check that we don't overrun board setup vectors */
QEMU_BUILD_BUG_ON(SMPBOOT_ADDR + sizeof(smpboot) > MVBAR_ADDR);
/* check that board setup address is correctly relocated */
QEMU_BUILD_BUG_ON((BOARDSETUP_ADDR & 0xf) != 0
|| (BOARDSETUP_ADDR >> 4) >= 0x100);
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start,
arm_boot_address_space(cpu, info));
}
static void write_smpboot64(ARMCPU *cpu, const struct arm_boot_info *info)
{
AddressSpace *as = arm_boot_address_space(cpu, info);
/* Unlike the AArch32 version we don't need to call the board setup hook.
* The mechanism for doing the spin-table is also entirely different.
* We must have four 64-bit fields at absolute addresses
* 0xd8, 0xe0, 0xe8, 0xf0 in RAM, which are the flag variables for
* our CPUs, and which we must ensure are zero initialized before
* the primary CPU goes into the kernel. We put these variables inside
* a rom blob, so that the reset for ROM contents zeroes them for us.
*/
static const uint32_t smpboot[] = {
0xd2801b05, /* mov x5, 0xd8 */
0xd53800a6, /* mrs x6, mpidr_el1 */
0x924004c6, /* and x6, x6, #0x3 */
0xd503205f, /* spin: wfe */
0xf86678a4, /* ldr x4, [x5,x6,lsl #3] */
0xb4ffffc4, /* cbz x4, spin */
0xd2800000, /* mov x0, #0x0 */
0xd2800001, /* mov x1, #0x0 */
0xd2800002, /* mov x2, #0x0 */
0xd2800003, /* mov x3, #0x0 */
0xd61f0080, /* br x4 */
};
static const uint64_t spintables[] = {
0, 0, 0, 0
};
rom_add_blob_fixed_as("raspi_smpboot", smpboot, sizeof(smpboot),
info->smp_loader_start, as);
rom_add_blob_fixed_as("raspi_spintables", spintables, sizeof(spintables),
SPINTABLE_ADDR, as);
}
static void write_board_setup(ARMCPU *cpu, const struct arm_boot_info *info)
{
arm_write_secure_board_setup_dummy_smc(cpu, info, MVBAR_ADDR);
}
static void reset_secondary(ARMCPU *cpu, const struct arm_boot_info *info)
{
CPUState *cs = CPU(cpu);
cpu_set_pc(cs, info->smp_loader_start);
}
static void setup_boot(MachineState *machine, int version, size_t ram_size)
{
static struct arm_boot_info binfo;
int r;
binfo.board_id = raspi_boardid[version];
binfo.ram_size = ram_size;
binfo.nb_cpus = machine->smp.cpus;
if (version <= 2) {
/* The rpi1 and 2 require some custom setup code to run in Secure
* mode before booting a kernel (to set up the SMC vectors so
* that we get a no-op SMC; this is used by Linux to call the
* firmware for some cache maintenance operations.
* The rpi3 doesn't need this.
*/
binfo.board_setup_addr = BOARDSETUP_ADDR;
binfo.write_board_setup = write_board_setup;
binfo.secure_board_setup = true;
binfo.secure_boot = true;
}
/* Pi2 and Pi3 requires SMP setup */
if (version >= 2) {
binfo.smp_loader_start = SMPBOOT_ADDR;
if (version == 2) {
binfo.write_secondary_boot = write_smpboot;
} else {
binfo.write_secondary_boot = write_smpboot64;
}
binfo.secondary_cpu_reset_hook = reset_secondary;
}
/* If the user specified a "firmware" image (e.g. UEFI), we bypass
* the normal Linux boot process
*/
if (machine->firmware) {
hwaddr firmware_addr = version == 3 ? FIRMWARE_ADDR_3 : FIRMWARE_ADDR_2;
/* load the firmware image (typically kernel.img) */
r = load_image_targphys(machine->firmware, firmware_addr,
ram_size - firmware_addr);
if (r < 0) {
error_report("Failed to load firmware from %s", machine->firmware);
exit(1);
}
binfo.entry = firmware_addr;
binfo.firmware_loaded = true;
}
arm_load_kernel(ARM_CPU(first_cpu), machine, &binfo);
}
static void raspi_init(MachineState *machine, int version)
{
RasPiState *s = g_new0(RasPiState, 1);
uint32_t vcram_size;
DriveInfo *di;
BlockBackend *blk;
BusState *bus;
DeviceState *carddev;
if (machine->ram_size > 1 * GiB) {
error_report("Requested ram size is too large for this machine: "
"maximum is 1GB");
exit(1);
}
object_initialize_child(OBJECT(machine), "soc", &s->soc, sizeof(s->soc),
version == 3 ? TYPE_BCM2837 : TYPE_BCM2836,
&error_abort, NULL);
/* Allocate and map RAM */
memory_region_allocate_system_memory(&s->ram, OBJECT(machine), "ram",
machine->ram_size);
/* FIXME: Remove when we have custom CPU address space support */
memory_region_add_subregion_overlap(get_system_memory(), 0, &s->ram, 0);
/* Setup the SOC */
object_property_add_const_link(OBJECT(&s->soc), "ram", OBJECT(&s->ram),
&error_abort);
object_property_set_int(OBJECT(&s->soc), machine->smp.cpus, "enabled-cpus",
&error_abort);
int board_rev = version == 3 ? 0xa02082 : 0xa21041;
object_property_set_int(OBJECT(&s->soc), board_rev, "board-rev",
&error_abort);
object_property_set_bool(OBJECT(&s->soc), true, "realized", &error_abort);
/* Create and plug in the SD cards */
di = drive_get_next(IF_SD);
blk = di ? blk_by_legacy_dinfo(di) : NULL;
bus = qdev_get_child_bus(DEVICE(&s->soc), "sd-bus");
if (bus == NULL) {
error_report("No SD bus found in SOC object");
exit(1);
}
carddev = qdev_create(bus, TYPE_SD_CARD);
qdev_prop_set_drive(carddev, "drive", blk, &error_fatal);
object_property_set_bool(OBJECT(carddev), true, "realized", &error_fatal);
vcram_size = object_property_get_uint(OBJECT(&s->soc), "vcram-size",
&error_abort);
setup_boot(machine, version, machine->ram_size - vcram_size);
}
static void raspi2_init(MachineState *machine)
{
raspi_init(machine, 2);
}
static void raspi2_machine_init(MachineClass *mc)
{
mc->desc = "Raspberry Pi 2";
mc->init = raspi2_init;
mc->block_default_type = IF_SD;
mc->no_parallel = 1;
mc->no_floppy = 1;
mc->no_cdrom = 1;
mc->max_cpus = BCM283X_NCPUS;
mc->min_cpus = BCM283X_NCPUS;
mc->default_cpus = BCM283X_NCPUS;
mc->default_ram_size = 1 * GiB;
mc->ignore_memory_transaction_failures = true;
};
DEFINE_MACHINE("raspi2", raspi2_machine_init)
#ifdef TARGET_AARCH64
static void raspi3_init(MachineState *machine)
{
raspi_init(machine, 3);
}
static void raspi3_machine_init(MachineClass *mc)
{
mc->desc = "Raspberry Pi 3";
mc->init = raspi3_init;
mc->block_default_type = IF_SD;
mc->no_parallel = 1;
mc->no_floppy = 1;
mc->no_cdrom = 1;
mc->max_cpus = BCM283X_NCPUS;
mc->min_cpus = BCM283X_NCPUS;
mc->default_cpus = BCM283X_NCPUS;
mc->default_ram_size = 1 * GiB;
}
DEFINE_MACHINE("raspi3", raspi3_machine_init)
#endif