qemu-e2k/vl.c

5917 lines
152 KiB
C

/*
* QEMU System Emulator
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include <unistd.h>
#include <fcntl.h>
#include <signal.h>
#include <time.h>
#include <errno.h>
#include <sys/time.h>
#include <zlib.h>
/* Needed early for CONFIG_BSD etc. */
#include "config-host.h"
#ifndef _WIN32
#include <libgen.h>
#include <pwd.h>
#include <sys/times.h>
#include <sys/wait.h>
#include <termios.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/resource.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <net/if.h>
#include <arpa/inet.h>
#include <dirent.h>
#include <netdb.h>
#include <sys/select.h>
#ifdef CONFIG_BSD
#include <sys/stat.h>
#if defined(__FreeBSD__) || defined(__DragonFly__)
#include <libutil.h>
#else
#include <util.h>
#endif
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
#include <freebsd/stdlib.h>
#else
#ifdef __linux__
#include <pty.h>
#include <malloc.h>
#include <linux/rtc.h>
#include <sys/prctl.h>
/* For the benefit of older linux systems which don't supply it,
we use a local copy of hpet.h. */
/* #include <linux/hpet.h> */
#include "hpet.h"
#include <linux/ppdev.h>
#include <linux/parport.h>
#endif
#ifdef __sun__
#include <sys/stat.h>
#include <sys/ethernet.h>
#include <sys/sockio.h>
#include <netinet/arp.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/ip_icmp.h> // must come after ip.h
#include <netinet/udp.h>
#include <netinet/tcp.h>
#include <net/if.h>
#include <syslog.h>
#include <stropts.h>
/* See MySQL bug #7156 (http://bugs.mysql.com/bug.php?id=7156) for
discussion about Solaris header problems */
extern int madvise(caddr_t, size_t, int);
#endif
#endif
#endif
#if defined(__OpenBSD__)
#include <util.h>
#endif
#if defined(CONFIG_VDE)
#include <libvdeplug.h>
#endif
#ifdef _WIN32
#include <windows.h>
#include <mmsystem.h>
#endif
#ifdef CONFIG_SDL
#if defined(__APPLE__) || defined(main)
#include <SDL.h>
int qemu_main(int argc, char **argv, char **envp);
int main(int argc, char **argv)
{
return qemu_main(argc, argv, NULL);
}
#undef main
#define main qemu_main
#endif
#endif /* CONFIG_SDL */
#ifdef CONFIG_COCOA
#undef main
#define main qemu_main
#endif /* CONFIG_COCOA */
#include "hw/hw.h"
#include "hw/boards.h"
#include "hw/usb.h"
#include "hw/pcmcia.h"
#include "hw/pc.h"
#include "hw/audiodev.h"
#include "hw/isa.h"
#include "hw/baum.h"
#include "hw/bt.h"
#include "hw/watchdog.h"
#include "hw/smbios.h"
#include "hw/xen.h"
#include "hw/qdev.h"
#include "hw/loader.h"
#include "bt-host.h"
#include "net.h"
#include "monitor.h"
#include "console.h"
#include "sysemu.h"
#include "gdbstub.h"
#include "qemu-timer.h"
#include "qemu-char.h"
#include "cache-utils.h"
#include "block.h"
#include "block_int.h"
#include "block-migration.h"
#include "dma.h"
#include "audio/audio.h"
#include "migration.h"
#include "kvm.h"
#include "balloon.h"
#include "qemu-option.h"
#include "qemu-config.h"
#include "disas.h"
#include "exec-all.h"
#include "qemu_socket.h"
#include "slirp/libslirp.h"
#include "qemu-queue.h"
//#define DEBUG_NET
//#define DEBUG_SLIRP
#define DEFAULT_RAM_SIZE 128
/* Maximum number of monitor devices */
#define MAX_MONITOR_DEVICES 10
static const char *data_dir;
const char *bios_name = NULL;
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
to store the VM snapshots */
struct drivelist drives = QTAILQ_HEAD_INITIALIZER(drives);
struct driveoptlist driveopts = QTAILQ_HEAD_INITIALIZER(driveopts);
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
static DisplayState *display_state;
DisplayType display_type = DT_DEFAULT;
const char* keyboard_layout = NULL;
ram_addr_t ram_size;
int nb_nics;
NICInfo nd_table[MAX_NICS];
int vm_running;
int autostart;
static int rtc_utc = 1;
static int rtc_date_offset = -1; /* -1 means no change */
QEMUClock *rtc_clock;
int vga_interface_type = VGA_CIRRUS;
#ifdef TARGET_SPARC
int graphic_width = 1024;
int graphic_height = 768;
int graphic_depth = 8;
#else
int graphic_width = 800;
int graphic_height = 600;
int graphic_depth = 15;
#endif
static int full_screen = 0;
#ifdef CONFIG_SDL
static int no_frame = 0;
#endif
int no_quit = 0;
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
#ifdef TARGET_I386
int win2k_install_hack = 0;
int rtc_td_hack = 0;
#endif
int usb_enabled = 0;
int singlestep = 0;
int smp_cpus = 1;
int max_cpus = 0;
int smp_cores = 1;
int smp_threads = 1;
const char *vnc_display;
int acpi_enabled = 1;
int no_hpet = 0;
int fd_bootchk = 1;
int no_reboot = 0;
int no_shutdown = 0;
int cursor_hide = 1;
int graphic_rotate = 0;
uint8_t irq0override = 1;
#ifndef _WIN32
int daemonize = 0;
#endif
const char *watchdog;
const char *option_rom[MAX_OPTION_ROMS];
int nb_option_roms;
int semihosting_enabled = 0;
#ifdef TARGET_ARM
int old_param = 0;
#endif
const char *qemu_name;
int alt_grab = 0;
int ctrl_grab = 0;
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
unsigned int nb_prom_envs = 0;
const char *prom_envs[MAX_PROM_ENVS];
#endif
int boot_menu;
int nb_numa_nodes;
uint64_t node_mem[MAX_NODES];
uint64_t node_cpumask[MAX_NODES];
static CPUState *cur_cpu;
static CPUState *next_cpu;
static int timer_alarm_pending = 1;
/* Conversion factor from emulated instructions to virtual clock ticks. */
static int icount_time_shift;
/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
#define MAX_ICOUNT_SHIFT 10
/* Compensate for varying guest execution speed. */
static int64_t qemu_icount_bias;
static QEMUTimer *icount_rt_timer;
static QEMUTimer *icount_vm_timer;
static QEMUTimer *nographic_timer;
uint8_t qemu_uuid[16];
static QEMUBootSetHandler *boot_set_handler;
static void *boot_set_opaque;
/***********************************************************/
/* x86 ISA bus support */
target_phys_addr_t isa_mem_base = 0;
PicState2 *isa_pic;
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
CPUState *env;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
for(env = first_cpu; env != NULL; env = env->next_cpu) {
fprintf(stderr, "CPU #%d:\n", env->cpu_index);
#ifdef TARGET_I386
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
#else
cpu_dump_state(env, stderr, fprintf, 0);
#endif
}
va_end(ap);
abort();
}
static void set_proc_name(const char *s)
{
#if defined(__linux__) && defined(PR_SET_NAME)
char name[16];
if (!s)
return;
name[sizeof(name) - 1] = 0;
strncpy(name, s, sizeof(name));
/* Could rewrite argv[0] too, but that's a bit more complicated.
This simple way is enough for `top'. */
prctl(PR_SET_NAME, name);
#endif
}
/***************/
/* ballooning */
static QEMUBalloonEvent *qemu_balloon_event;
void *qemu_balloon_event_opaque;
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
{
qemu_balloon_event = func;
qemu_balloon_event_opaque = opaque;
}
void qemu_balloon(ram_addr_t target)
{
if (qemu_balloon_event)
qemu_balloon_event(qemu_balloon_event_opaque, target);
}
ram_addr_t qemu_balloon_status(void)
{
if (qemu_balloon_event)
return qemu_balloon_event(qemu_balloon_event_opaque, 0);
return 0;
}
/***********************************************************/
/* keyboard/mouse */
static QEMUPutKBDEvent *qemu_put_kbd_event;
static void *qemu_put_kbd_event_opaque;
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
{
qemu_put_kbd_event_opaque = opaque;
qemu_put_kbd_event = func;
}
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
void *opaque, int absolute,
const char *name)
{
QEMUPutMouseEntry *s, *cursor;
s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
s->qemu_put_mouse_event = func;
s->qemu_put_mouse_event_opaque = opaque;
s->qemu_put_mouse_event_absolute = absolute;
s->qemu_put_mouse_event_name = qemu_strdup(name);
s->next = NULL;
if (!qemu_put_mouse_event_head) {
qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
return s;
}
cursor = qemu_put_mouse_event_head;
while (cursor->next != NULL)
cursor = cursor->next;
cursor->next = s;
qemu_put_mouse_event_current = s;
return s;
}
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
{
QEMUPutMouseEntry *prev = NULL, *cursor;
if (!qemu_put_mouse_event_head || entry == NULL)
return;
cursor = qemu_put_mouse_event_head;
while (cursor != NULL && cursor != entry) {
prev = cursor;
cursor = cursor->next;
}
if (cursor == NULL) // does not exist or list empty
return;
else if (prev == NULL) { // entry is head
qemu_put_mouse_event_head = cursor->next;
if (qemu_put_mouse_event_current == entry)
qemu_put_mouse_event_current = cursor->next;
qemu_free(entry->qemu_put_mouse_event_name);
qemu_free(entry);
return;
}
prev->next = entry->next;
if (qemu_put_mouse_event_current == entry)
qemu_put_mouse_event_current = prev;
qemu_free(entry->qemu_put_mouse_event_name);
qemu_free(entry);
}
void kbd_put_keycode(int keycode)
{
if (qemu_put_kbd_event) {
qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
}
}
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
{
QEMUPutMouseEvent *mouse_event;
void *mouse_event_opaque;
int width;
if (!qemu_put_mouse_event_current) {
return;
}
mouse_event =
qemu_put_mouse_event_current->qemu_put_mouse_event;
mouse_event_opaque =
qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
if (mouse_event) {
if (graphic_rotate) {
if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
width = 0x7fff;
else
width = graphic_width - 1;
mouse_event(mouse_event_opaque,
width - dy, dx, dz, buttons_state);
} else
mouse_event(mouse_event_opaque,
dx, dy, dz, buttons_state);
}
}
int kbd_mouse_is_absolute(void)
{
if (!qemu_put_mouse_event_current)
return 0;
return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
}
void do_info_mice(Monitor *mon)
{
QEMUPutMouseEntry *cursor;
int index = 0;
if (!qemu_put_mouse_event_head) {
monitor_printf(mon, "No mouse devices connected\n");
return;
}
monitor_printf(mon, "Mouse devices available:\n");
cursor = qemu_put_mouse_event_head;
while (cursor != NULL) {
monitor_printf(mon, "%c Mouse #%d: %s\n",
(cursor == qemu_put_mouse_event_current ? '*' : ' '),
index, cursor->qemu_put_mouse_event_name);
index++;
cursor = cursor->next;
}
}
void do_mouse_set(Monitor *mon, const QDict *qdict)
{
QEMUPutMouseEntry *cursor;
int i = 0;
int index = qdict_get_int(qdict, "index");
if (!qemu_put_mouse_event_head) {
monitor_printf(mon, "No mouse devices connected\n");
return;
}
cursor = qemu_put_mouse_event_head;
while (cursor != NULL && index != i) {
i++;
cursor = cursor->next;
}
if (cursor != NULL)
qemu_put_mouse_event_current = cursor;
else
monitor_printf(mon, "Mouse at given index not found\n");
}
/* compute with 96 bit intermediate result: (a*b)/c */
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
{
union {
uint64_t ll;
struct {
#ifdef HOST_WORDS_BIGENDIAN
uint32_t high, low;
#else
uint32_t low, high;
#endif
} l;
} u, res;
uint64_t rl, rh;
u.ll = a;
rl = (uint64_t)u.l.low * (uint64_t)b;
rh = (uint64_t)u.l.high * (uint64_t)b;
rh += (rl >> 32);
res.l.high = rh / c;
res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
return res.ll;
}
/***********************************************************/
/* real time host monotonic timer */
static int64_t get_clock_realtime(void)
{
struct timeval tv;
gettimeofday(&tv, NULL);
return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
}
#ifdef WIN32
static int64_t clock_freq;
static void init_get_clock(void)
{
LARGE_INTEGER freq;
int ret;
ret = QueryPerformanceFrequency(&freq);
if (ret == 0) {
fprintf(stderr, "Could not calibrate ticks\n");
exit(1);
}
clock_freq = freq.QuadPart;
}
static int64_t get_clock(void)
{
LARGE_INTEGER ti;
QueryPerformanceCounter(&ti);
return muldiv64(ti.QuadPart, get_ticks_per_sec(), clock_freq);
}
#else
static int use_rt_clock;
static void init_get_clock(void)
{
use_rt_clock = 0;
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
|| defined(__DragonFly__)
{
struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
use_rt_clock = 1;
}
}
#endif
}
static int64_t get_clock(void)
{
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
|| defined(__DragonFly__)
if (use_rt_clock) {
struct timespec ts;
clock_gettime(CLOCK_MONOTONIC, &ts);
return ts.tv_sec * 1000000000LL + ts.tv_nsec;
} else
#endif
{
/* XXX: using gettimeofday leads to problems if the date
changes, so it should be avoided. */
return get_clock_realtime();
}
}
#endif
/* Return the virtual CPU time, based on the instruction counter. */
static int64_t cpu_get_icount(void)
{
int64_t icount;
CPUState *env = cpu_single_env;;
icount = qemu_icount;
if (env) {
if (!can_do_io(env))
fprintf(stderr, "Bad clock read\n");
icount -= (env->icount_decr.u16.low + env->icount_extra);
}
return qemu_icount_bias + (icount << icount_time_shift);
}
/***********************************************************/
/* guest cycle counter */
typedef struct TimersState {
int64_t cpu_ticks_prev;
int64_t cpu_ticks_offset;
int64_t cpu_clock_offset;
int32_t cpu_ticks_enabled;
int64_t dummy;
} TimersState;
TimersState timers_state;
/* return the host CPU cycle counter and handle stop/restart */
int64_t cpu_get_ticks(void)
{
if (use_icount) {
return cpu_get_icount();
}
if (!timers_state.cpu_ticks_enabled) {
return timers_state.cpu_ticks_offset;
} else {
int64_t ticks;
ticks = cpu_get_real_ticks();
if (timers_state.cpu_ticks_prev > ticks) {
/* Note: non increasing ticks may happen if the host uses
software suspend */
timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
}
timers_state.cpu_ticks_prev = ticks;
return ticks + timers_state.cpu_ticks_offset;
}
}
/* return the host CPU monotonic timer and handle stop/restart */
static int64_t cpu_get_clock(void)
{
int64_t ti;
if (!timers_state.cpu_ticks_enabled) {
return timers_state.cpu_clock_offset;
} else {
ti = get_clock();
return ti + timers_state.cpu_clock_offset;
}
}
/* enable cpu_get_ticks() */
void cpu_enable_ticks(void)
{
if (!timers_state.cpu_ticks_enabled) {
timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
timers_state.cpu_clock_offset -= get_clock();
timers_state.cpu_ticks_enabled = 1;
}
}
/* disable cpu_get_ticks() : the clock is stopped. You must not call
cpu_get_ticks() after that. */
void cpu_disable_ticks(void)
{
if (timers_state.cpu_ticks_enabled) {
timers_state.cpu_ticks_offset = cpu_get_ticks();
timers_state.cpu_clock_offset = cpu_get_clock();
timers_state.cpu_ticks_enabled = 0;
}
}
/***********************************************************/
/* timers */
#define QEMU_CLOCK_REALTIME 0
#define QEMU_CLOCK_VIRTUAL 1
#define QEMU_CLOCK_HOST 2
struct QEMUClock {
int type;
/* XXX: add frequency */
};
struct QEMUTimer {
QEMUClock *clock;
int64_t expire_time;
QEMUTimerCB *cb;
void *opaque;
struct QEMUTimer *next;
};
struct qemu_alarm_timer {
char const *name;
unsigned int flags;
int (*start)(struct qemu_alarm_timer *t);
void (*stop)(struct qemu_alarm_timer *t);
void (*rearm)(struct qemu_alarm_timer *t);
void *priv;
};
#define ALARM_FLAG_DYNTICKS 0x1
#define ALARM_FLAG_EXPIRED 0x2
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
{
return t && (t->flags & ALARM_FLAG_DYNTICKS);
}
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
{
if (!alarm_has_dynticks(t))
return;
t->rearm(t);
}
/* TODO: MIN_TIMER_REARM_US should be optimized */
#define MIN_TIMER_REARM_US 250
static struct qemu_alarm_timer *alarm_timer;
#ifdef _WIN32
struct qemu_alarm_win32 {
MMRESULT timerId;
unsigned int period;
} alarm_win32_data = {0, -1};
static int win32_start_timer(struct qemu_alarm_timer *t);
static void win32_stop_timer(struct qemu_alarm_timer *t);
static void win32_rearm_timer(struct qemu_alarm_timer *t);
#else
static int unix_start_timer(struct qemu_alarm_timer *t);
static void unix_stop_timer(struct qemu_alarm_timer *t);
#ifdef __linux__
static int dynticks_start_timer(struct qemu_alarm_timer *t);
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
static int hpet_start_timer(struct qemu_alarm_timer *t);
static void hpet_stop_timer(struct qemu_alarm_timer *t);
static int rtc_start_timer(struct qemu_alarm_timer *t);
static void rtc_stop_timer(struct qemu_alarm_timer *t);
#endif /* __linux__ */
#endif /* _WIN32 */
/* Correlation between real and virtual time is always going to be
fairly approximate, so ignore small variation.
When the guest is idle real and virtual time will be aligned in
the IO wait loop. */
#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
static void icount_adjust(void)
{
int64_t cur_time;
int64_t cur_icount;
int64_t delta;
static int64_t last_delta;
/* If the VM is not running, then do nothing. */
if (!vm_running)
return;
cur_time = cpu_get_clock();
cur_icount = qemu_get_clock(vm_clock);
delta = cur_icount - cur_time;
/* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
if (delta > 0
&& last_delta + ICOUNT_WOBBLE < delta * 2
&& icount_time_shift > 0) {
/* The guest is getting too far ahead. Slow time down. */
icount_time_shift--;
}
if (delta < 0
&& last_delta - ICOUNT_WOBBLE > delta * 2
&& icount_time_shift < MAX_ICOUNT_SHIFT) {
/* The guest is getting too far behind. Speed time up. */
icount_time_shift++;
}
last_delta = delta;
qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
}
static void icount_adjust_rt(void * opaque)
{
qemu_mod_timer(icount_rt_timer,
qemu_get_clock(rt_clock) + 1000);
icount_adjust();
}
static void icount_adjust_vm(void * opaque)
{
qemu_mod_timer(icount_vm_timer,
qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
icount_adjust();
}
static void init_icount_adjust(void)
{
/* Have both realtime and virtual time triggers for speed adjustment.
The realtime trigger catches emulated time passing too slowly,
the virtual time trigger catches emulated time passing too fast.
Realtime triggers occur even when idle, so use them less frequently
than VM triggers. */
icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
qemu_mod_timer(icount_rt_timer,
qemu_get_clock(rt_clock) + 1000);
icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
qemu_mod_timer(icount_vm_timer,
qemu_get_clock(vm_clock) + get_ticks_per_sec() / 10);
}
static struct qemu_alarm_timer alarm_timers[] = {
#ifndef _WIN32
#ifdef __linux__
{"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
dynticks_stop_timer, dynticks_rearm_timer, NULL},
/* HPET - if available - is preferred */
{"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
/* ...otherwise try RTC */
{"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
#endif
{"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
#else
{"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
{"win32", 0, win32_start_timer,
win32_stop_timer, NULL, &alarm_win32_data},
#endif
{NULL, }
};
static void show_available_alarms(void)
{
int i;
printf("Available alarm timers, in order of precedence:\n");
for (i = 0; alarm_timers[i].name; i++)
printf("%s\n", alarm_timers[i].name);
}
static void configure_alarms(char const *opt)
{
int i;
int cur = 0;
int count = ARRAY_SIZE(alarm_timers) - 1;
char *arg;
char *name;
struct qemu_alarm_timer tmp;
if (!strcmp(opt, "?")) {
show_available_alarms();
exit(0);
}
arg = qemu_strdup(opt);
/* Reorder the array */
name = strtok(arg, ",");
while (name) {
for (i = 0; i < count && alarm_timers[i].name; i++) {
if (!strcmp(alarm_timers[i].name, name))
break;
}
if (i == count) {
fprintf(stderr, "Unknown clock %s\n", name);
goto next;
}
if (i < cur)
/* Ignore */
goto next;
/* Swap */
tmp = alarm_timers[i];
alarm_timers[i] = alarm_timers[cur];
alarm_timers[cur] = tmp;
cur++;
next:
name = strtok(NULL, ",");
}
qemu_free(arg);
if (cur) {
/* Disable remaining timers */
for (i = cur; i < count; i++)
alarm_timers[i].name = NULL;
} else {
show_available_alarms();
exit(1);
}
}
#define QEMU_NUM_CLOCKS 3
QEMUClock *rt_clock;
QEMUClock *vm_clock;
QEMUClock *host_clock;
static QEMUTimer *active_timers[QEMU_NUM_CLOCKS];
static QEMUClock *qemu_new_clock(int type)
{
QEMUClock *clock;
clock = qemu_mallocz(sizeof(QEMUClock));
clock->type = type;
return clock;
}
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
{
QEMUTimer *ts;
ts = qemu_mallocz(sizeof(QEMUTimer));
ts->clock = clock;
ts->cb = cb;
ts->opaque = opaque;
return ts;
}
void qemu_free_timer(QEMUTimer *ts)
{
qemu_free(ts);
}
/* stop a timer, but do not dealloc it */
void qemu_del_timer(QEMUTimer *ts)
{
QEMUTimer **pt, *t;
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t == ts) {
*pt = t->next;
break;
}
pt = &t->next;
}
}
/* modify the current timer so that it will be fired when current_time
>= expire_time. The corresponding callback will be called. */
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
{
QEMUTimer **pt, *t;
qemu_del_timer(ts);
/* add the timer in the sorted list */
/* NOTE: this code must be signal safe because
qemu_timer_expired() can be called from a signal. */
pt = &active_timers[ts->clock->type];
for(;;) {
t = *pt;
if (!t)
break;
if (t->expire_time > expire_time)
break;
pt = &t->next;
}
ts->expire_time = expire_time;
ts->next = *pt;
*pt = ts;
/* Rearm if necessary */
if (pt == &active_timers[ts->clock->type]) {
if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
qemu_rearm_alarm_timer(alarm_timer);
}
/* Interrupt execution to force deadline recalculation. */
if (use_icount)
qemu_notify_event();
}
}
int qemu_timer_pending(QEMUTimer *ts)
{
QEMUTimer *t;
for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
if (t == ts)
return 1;
}
return 0;
}
int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
{
if (!timer_head)
return 0;
return (timer_head->expire_time <= current_time);
}
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
{
QEMUTimer *ts;
for(;;) {
ts = *ptimer_head;
if (!ts || ts->expire_time > current_time)
break;
/* remove timer from the list before calling the callback */
*ptimer_head = ts->next;
ts->next = NULL;
/* run the callback (the timer list can be modified) */
ts->cb(ts->opaque);
}
}
int64_t qemu_get_clock(QEMUClock *clock)
{
switch(clock->type) {
case QEMU_CLOCK_REALTIME:
return get_clock() / 1000000;
default:
case QEMU_CLOCK_VIRTUAL:
if (use_icount) {
return cpu_get_icount();
} else {
return cpu_get_clock();
}
case QEMU_CLOCK_HOST:
return get_clock_realtime();
}
}
static void init_clocks(void)
{
init_get_clock();
rt_clock = qemu_new_clock(QEMU_CLOCK_REALTIME);
vm_clock = qemu_new_clock(QEMU_CLOCK_VIRTUAL);
host_clock = qemu_new_clock(QEMU_CLOCK_HOST);
rtc_clock = host_clock;
}
/* save a timer */
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
if (qemu_timer_pending(ts)) {
expire_time = ts->expire_time;
} else {
expire_time = -1;
}
qemu_put_be64(f, expire_time);
}
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
{
uint64_t expire_time;
expire_time = qemu_get_be64(f);
if (expire_time != -1) {
qemu_mod_timer(ts, expire_time);
} else {
qemu_del_timer(ts);
}
}
static const VMStateDescription vmstate_timers = {
.name = "timer",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_INT64(cpu_ticks_offset, TimersState),
VMSTATE_INT64(dummy, TimersState),
VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
VMSTATE_END_OF_LIST()
}
};
static void qemu_event_increment(void);
#ifdef _WIN32
static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
DWORD_PTR dwUser, DWORD_PTR dw1,
DWORD_PTR dw2)
#else
static void host_alarm_handler(int host_signum)
#endif
{
#if 0
#define DISP_FREQ 1000
{
static int64_t delta_min = INT64_MAX;
static int64_t delta_max, delta_cum, last_clock, delta, ti;
static int count;
ti = qemu_get_clock(vm_clock);
if (last_clock != 0) {
delta = ti - last_clock;
if (delta < delta_min)
delta_min = delta;
if (delta > delta_max)
delta_max = delta;
delta_cum += delta;
if (++count == DISP_FREQ) {
printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
muldiv64(delta_min, 1000000, get_ticks_per_sec()),
muldiv64(delta_max, 1000000, get_ticks_per_sec()),
muldiv64(delta_cum, 1000000 / DISP_FREQ, get_ticks_per_sec()),
(double)get_ticks_per_sec() / ((double)delta_cum / DISP_FREQ));
count = 0;
delta_min = INT64_MAX;
delta_max = 0;
delta_cum = 0;
}
}
last_clock = ti;
}
#endif
if (alarm_has_dynticks(alarm_timer) ||
(!use_icount &&
qemu_timer_expired(active_timers[QEMU_CLOCK_VIRTUAL],
qemu_get_clock(vm_clock))) ||
qemu_timer_expired(active_timers[QEMU_CLOCK_REALTIME],
qemu_get_clock(rt_clock)) ||
qemu_timer_expired(active_timers[QEMU_CLOCK_HOST],
qemu_get_clock(host_clock))) {
qemu_event_increment();
if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
#ifndef CONFIG_IOTHREAD
if (next_cpu) {
/* stop the currently executing cpu because a timer occured */
cpu_exit(next_cpu);
}
#endif
timer_alarm_pending = 1;
qemu_notify_event();
}
}
static int64_t qemu_next_deadline(void)
{
/* To avoid problems with overflow limit this to 2^32. */
int64_t delta = INT32_MAX;
if (active_timers[QEMU_CLOCK_VIRTUAL]) {
delta = active_timers[QEMU_CLOCK_VIRTUAL]->expire_time -
qemu_get_clock(vm_clock);
}
if (active_timers[QEMU_CLOCK_HOST]) {
int64_t hdelta = active_timers[QEMU_CLOCK_HOST]->expire_time -
qemu_get_clock(host_clock);
if (hdelta < delta)
delta = hdelta;
}
if (delta < 0)
delta = 0;
return delta;
}
#if defined(__linux__)
static uint64_t qemu_next_deadline_dyntick(void)
{
int64_t delta;
int64_t rtdelta;
if (use_icount)
delta = INT32_MAX;
else
delta = (qemu_next_deadline() + 999) / 1000;
if (active_timers[QEMU_CLOCK_REALTIME]) {
rtdelta = (active_timers[QEMU_CLOCK_REALTIME]->expire_time -
qemu_get_clock(rt_clock))*1000;
if (rtdelta < delta)
delta = rtdelta;
}
if (delta < MIN_TIMER_REARM_US)
delta = MIN_TIMER_REARM_US;
return delta;
}
#endif
#ifndef _WIN32
/* Sets a specific flag */
static int fcntl_setfl(int fd, int flag)
{
int flags;
flags = fcntl(fd, F_GETFL);
if (flags == -1)
return -errno;
if (fcntl(fd, F_SETFL, flags | flag) == -1)
return -errno;
return 0;
}
#if defined(__linux__)
#define RTC_FREQ 1024
static void enable_sigio_timer(int fd)
{
struct sigaction act;
/* timer signal */
sigfillset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = host_alarm_handler;
sigaction(SIGIO, &act, NULL);
fcntl_setfl(fd, O_ASYNC);
fcntl(fd, F_SETOWN, getpid());
}
static int hpet_start_timer(struct qemu_alarm_timer *t)
{
struct hpet_info info;
int r, fd;
fd = open("/dev/hpet", O_RDONLY);
if (fd < 0)
return -1;
/* Set frequency */
r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
if (r < 0) {
fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
"error, but for better emulation accuracy type:\n"
"'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
goto fail;
}
/* Check capabilities */
r = ioctl(fd, HPET_INFO, &info);
if (r < 0)
goto fail;
/* Enable periodic mode */
r = ioctl(fd, HPET_EPI, 0);
if (info.hi_flags && (r < 0))
goto fail;
/* Enable interrupt */
r = ioctl(fd, HPET_IE_ON, 0);
if (r < 0)
goto fail;
enable_sigio_timer(fd);
t->priv = (void *)(long)fd;
return 0;
fail:
close(fd);
return -1;
}
static void hpet_stop_timer(struct qemu_alarm_timer *t)
{
int fd = (long)t->priv;
close(fd);
}
static int rtc_start_timer(struct qemu_alarm_timer *t)
{
int rtc_fd;
unsigned long current_rtc_freq = 0;
TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
if (rtc_fd < 0)
return -1;
ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
if (current_rtc_freq != RTC_FREQ &&
ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
"error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
"type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
goto fail;
}
if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
fail:
close(rtc_fd);
return -1;
}
enable_sigio_timer(rtc_fd);
t->priv = (void *)(long)rtc_fd;
return 0;
}
static void rtc_stop_timer(struct qemu_alarm_timer *t)
{
int rtc_fd = (long)t->priv;
close(rtc_fd);
}
static int dynticks_start_timer(struct qemu_alarm_timer *t)
{
struct sigevent ev;
timer_t host_timer;
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = host_alarm_handler;
sigaction(SIGALRM, &act, NULL);
/*
* Initialize ev struct to 0 to avoid valgrind complaining
* about uninitialized data in timer_create call
*/
memset(&ev, 0, sizeof(ev));
ev.sigev_value.sival_int = 0;
ev.sigev_notify = SIGEV_SIGNAL;
ev.sigev_signo = SIGALRM;
if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
perror("timer_create");
/* disable dynticks */
fprintf(stderr, "Dynamic Ticks disabled\n");
return -1;
}
t->priv = (void *)(long)host_timer;
return 0;
}
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
{
timer_t host_timer = (timer_t)(long)t->priv;
timer_delete(host_timer);
}
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
{
timer_t host_timer = (timer_t)(long)t->priv;
struct itimerspec timeout;
int64_t nearest_delta_us = INT64_MAX;
int64_t current_us;
if (!active_timers[QEMU_CLOCK_REALTIME] &&
!active_timers[QEMU_CLOCK_VIRTUAL] &&
!active_timers[QEMU_CLOCK_HOST])
return;
nearest_delta_us = qemu_next_deadline_dyntick();
/* check whether a timer is already running */
if (timer_gettime(host_timer, &timeout)) {
perror("gettime");
fprintf(stderr, "Internal timer error: aborting\n");
exit(1);
}
current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
if (current_us && current_us <= nearest_delta_us)
return;
timeout.it_interval.tv_sec = 0;
timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
timeout.it_value.tv_sec = nearest_delta_us / 1000000;
timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
perror("settime");
fprintf(stderr, "Internal timer error: aborting\n");
exit(1);
}
}
#endif /* defined(__linux__) */
static int unix_start_timer(struct qemu_alarm_timer *t)
{
struct sigaction act;
struct itimerval itv;
int err;
/* timer signal */
sigfillset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = host_alarm_handler;
sigaction(SIGALRM, &act, NULL);
itv.it_interval.tv_sec = 0;
/* for i386 kernel 2.6 to get 1 ms */
itv.it_interval.tv_usec = 999;
itv.it_value.tv_sec = 0;
itv.it_value.tv_usec = 10 * 1000;
err = setitimer(ITIMER_REAL, &itv, NULL);
if (err)
return -1;
return 0;
}
static void unix_stop_timer(struct qemu_alarm_timer *t)
{
struct itimerval itv;
memset(&itv, 0, sizeof(itv));
setitimer(ITIMER_REAL, &itv, NULL);
}
#endif /* !defined(_WIN32) */
#ifdef _WIN32
static int win32_start_timer(struct qemu_alarm_timer *t)
{
TIMECAPS tc;
struct qemu_alarm_win32 *data = t->priv;
UINT flags;
memset(&tc, 0, sizeof(tc));
timeGetDevCaps(&tc, sizeof(tc));
if (data->period < tc.wPeriodMin)
data->period = tc.wPeriodMin;
timeBeginPeriod(data->period);
flags = TIME_CALLBACK_FUNCTION;
if (alarm_has_dynticks(t))
flags |= TIME_ONESHOT;
else
flags |= TIME_PERIODIC;
data->timerId = timeSetEvent(1, // interval (ms)
data->period, // resolution
host_alarm_handler, // function
(DWORD)t, // parameter
flags);
if (!data->timerId) {
fprintf(stderr, "Failed to initialize win32 alarm timer: %ld\n",
GetLastError());
timeEndPeriod(data->period);
return -1;
}
return 0;
}
static void win32_stop_timer(struct qemu_alarm_timer *t)
{
struct qemu_alarm_win32 *data = t->priv;
timeKillEvent(data->timerId);
timeEndPeriod(data->period);
}
static void win32_rearm_timer(struct qemu_alarm_timer *t)
{
struct qemu_alarm_win32 *data = t->priv;
if (!active_timers[QEMU_CLOCK_REALTIME] &&
!active_timers[QEMU_CLOCK_VIRTUAL] &&
!active_timers[QEMU_CLOCK_HOST])
return;
timeKillEvent(data->timerId);
data->timerId = timeSetEvent(1,
data->period,
host_alarm_handler,
(DWORD)t,
TIME_ONESHOT | TIME_PERIODIC);
if (!data->timerId) {
fprintf(stderr, "Failed to re-arm win32 alarm timer %ld\n",
GetLastError());
timeEndPeriod(data->period);
exit(1);
}
}
#endif /* _WIN32 */
static int init_timer_alarm(void)
{
struct qemu_alarm_timer *t = NULL;
int i, err = -1;
for (i = 0; alarm_timers[i].name; i++) {
t = &alarm_timers[i];
err = t->start(t);
if (!err)
break;
}
if (err) {
err = -ENOENT;
goto fail;
}
alarm_timer = t;
return 0;
fail:
return err;
}
static void quit_timers(void)
{
alarm_timer->stop(alarm_timer);
alarm_timer = NULL;
}
/***********************************************************/
/* host time/date access */
void qemu_get_timedate(struct tm *tm, int offset)
{
time_t ti;
struct tm *ret;
time(&ti);
ti += offset;
if (rtc_date_offset == -1) {
if (rtc_utc)
ret = gmtime(&ti);
else
ret = localtime(&ti);
} else {
ti -= rtc_date_offset;
ret = gmtime(&ti);
}
memcpy(tm, ret, sizeof(struct tm));
}
int qemu_timedate_diff(struct tm *tm)
{
time_t seconds;
if (rtc_date_offset == -1)
if (rtc_utc)
seconds = mktimegm(tm);
else
seconds = mktime(tm);
else
seconds = mktimegm(tm) + rtc_date_offset;
return seconds - time(NULL);
}
static void configure_rtc_date_offset(const char *startdate, int legacy)
{
time_t rtc_start_date;
struct tm tm;
if (!strcmp(startdate, "now") && legacy) {
rtc_date_offset = -1;
} else {
if (sscanf(startdate, "%d-%d-%dT%d:%d:%d",
&tm.tm_year,
&tm.tm_mon,
&tm.tm_mday,
&tm.tm_hour,
&tm.tm_min,
&tm.tm_sec) == 6) {
/* OK */
} else if (sscanf(startdate, "%d-%d-%d",
&tm.tm_year,
&tm.tm_mon,
&tm.tm_mday) == 3) {
tm.tm_hour = 0;
tm.tm_min = 0;
tm.tm_sec = 0;
} else {
goto date_fail;
}
tm.tm_year -= 1900;
tm.tm_mon--;
rtc_start_date = mktimegm(&tm);
if (rtc_start_date == -1) {
date_fail:
fprintf(stderr, "Invalid date format. Valid formats are:\n"
"'2006-06-17T16:01:21' or '2006-06-17'\n");
exit(1);
}
rtc_date_offset = time(NULL) - rtc_start_date;
}
}
static void configure_rtc(QemuOpts *opts)
{
const char *value;
value = qemu_opt_get(opts, "base");
if (value) {
if (!strcmp(value, "utc")) {
rtc_utc = 1;
} else if (!strcmp(value, "localtime")) {
rtc_utc = 0;
} else {
configure_rtc_date_offset(value, 0);
}
}
value = qemu_opt_get(opts, "clock");
if (value) {
if (!strcmp(value, "host")) {
rtc_clock = host_clock;
} else if (!strcmp(value, "vm")) {
rtc_clock = vm_clock;
} else {
fprintf(stderr, "qemu: invalid option value '%s'\n", value);
exit(1);
}
}
#ifdef CONFIG_TARGET_I386
value = qemu_opt_get(opts, "driftfix");
if (value) {
if (!strcmp(buf, "slew")) {
rtc_td_hack = 1;
} else if (!strcmp(buf, "none")) {
rtc_td_hack = 0;
} else {
fprintf(stderr, "qemu: invalid option value '%s'\n", value);
exit(1);
}
}
#endif
}
#ifdef _WIN32
static void socket_cleanup(void)
{
WSACleanup();
}
static int socket_init(void)
{
WSADATA Data;
int ret, err;
ret = WSAStartup(MAKEWORD(2,2), &Data);
if (ret != 0) {
err = WSAGetLastError();
fprintf(stderr, "WSAStartup: %d\n", err);
return -1;
}
atexit(socket_cleanup);
return 0;
}
#endif
/***********************************************************/
/* Bluetooth support */
static int nb_hcis;
static int cur_hci;
static struct HCIInfo *hci_table[MAX_NICS];
static struct bt_vlan_s {
struct bt_scatternet_s net;
int id;
struct bt_vlan_s *next;
} *first_bt_vlan;
/* find or alloc a new bluetooth "VLAN" */
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
{
struct bt_vlan_s **pvlan, *vlan;
for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
if (vlan->id == id)
return &vlan->net;
}
vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
vlan->id = id;
pvlan = &first_bt_vlan;
while (*pvlan != NULL)
pvlan = &(*pvlan)->next;
*pvlan = vlan;
return &vlan->net;
}
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
{
}
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
{
return -ENOTSUP;
}
static struct HCIInfo null_hci = {
.cmd_send = null_hci_send,
.sco_send = null_hci_send,
.acl_send = null_hci_send,
.bdaddr_set = null_hci_addr_set,
};
struct HCIInfo *qemu_next_hci(void)
{
if (cur_hci == nb_hcis)
return &null_hci;
return hci_table[cur_hci++];
}
static struct HCIInfo *hci_init(const char *str)
{
char *endp;
struct bt_scatternet_s *vlan = 0;
if (!strcmp(str, "null"))
/* null */
return &null_hci;
else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
/* host[:hciN] */
return bt_host_hci(str[4] ? str + 5 : "hci0");
else if (!strncmp(str, "hci", 3)) {
/* hci[,vlan=n] */
if (str[3]) {
if (!strncmp(str + 3, ",vlan=", 6)) {
vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
if (*endp)
vlan = 0;
}
} else
vlan = qemu_find_bt_vlan(0);
if (vlan)
return bt_new_hci(vlan);
}
fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
return 0;
}
static int bt_hci_parse(const char *str)
{
struct HCIInfo *hci;
bdaddr_t bdaddr;
if (nb_hcis >= MAX_NICS) {
fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
return -1;
}
hci = hci_init(str);
if (!hci)
return -1;
bdaddr.b[0] = 0x52;
bdaddr.b[1] = 0x54;
bdaddr.b[2] = 0x00;
bdaddr.b[3] = 0x12;
bdaddr.b[4] = 0x34;
bdaddr.b[5] = 0x56 + nb_hcis;
hci->bdaddr_set(hci, bdaddr.b);
hci_table[nb_hcis++] = hci;
return 0;
}
static void bt_vhci_add(int vlan_id)
{
struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
if (!vlan->slave)
fprintf(stderr, "qemu: warning: adding a VHCI to "
"an empty scatternet %i\n", vlan_id);
bt_vhci_init(bt_new_hci(vlan));
}
static struct bt_device_s *bt_device_add(const char *opt)
{
struct bt_scatternet_s *vlan;
int vlan_id = 0;
char *endp = strstr(opt, ",vlan=");
int len = (endp ? endp - opt : strlen(opt)) + 1;
char devname[10];
pstrcpy(devname, MIN(sizeof(devname), len), opt);
if (endp) {
vlan_id = strtol(endp + 6, &endp, 0);
if (*endp) {
fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
return 0;
}
}
vlan = qemu_find_bt_vlan(vlan_id);
if (!vlan->slave)
fprintf(stderr, "qemu: warning: adding a slave device to "
"an empty scatternet %i\n", vlan_id);
if (!strcmp(devname, "keyboard"))
return bt_keyboard_init(vlan);
fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
return 0;
}
static int bt_parse(const char *opt)
{
const char *endp, *p;
int vlan;
if (strstart(opt, "hci", &endp)) {
if (!*endp || *endp == ',') {
if (*endp)
if (!strstart(endp, ",vlan=", 0))
opt = endp + 1;
return bt_hci_parse(opt);
}
} else if (strstart(opt, "vhci", &endp)) {
if (!*endp || *endp == ',') {
if (*endp) {
if (strstart(endp, ",vlan=", &p)) {
vlan = strtol(p, (char **) &endp, 0);
if (*endp) {
fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
return 1;
}
} else {
fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
return 1;
}
} else
vlan = 0;
bt_vhci_add(vlan);
return 0;
}
} else if (strstart(opt, "device:", &endp))
return !bt_device_add(endp);
fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
return 1;
}
/***********************************************************/
/* QEMU Block devices */
#define HD_ALIAS "index=%d,media=disk"
#define CDROM_ALIAS "index=2,media=cdrom"
#define FD_ALIAS "index=%d,if=floppy"
#define PFLASH_ALIAS "if=pflash"
#define MTD_ALIAS "if=mtd"
#define SD_ALIAS "index=0,if=sd"
QemuOpts *drive_add(const char *file, const char *fmt, ...)
{
va_list ap;
char optstr[1024];
QemuOpts *opts;
va_start(ap, fmt);
vsnprintf(optstr, sizeof(optstr), fmt, ap);
va_end(ap);
opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
if (!opts) {
fprintf(stderr, "%s: huh? duplicate? (%s)\n",
__FUNCTION__, optstr);
return NULL;
}
if (file)
qemu_opt_set(opts, "file", file);
return opts;
}
DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
{
DriveInfo *dinfo;
/* seek interface, bus and unit */
QTAILQ_FOREACH(dinfo, &drives, next) {
if (dinfo->type == type &&
dinfo->bus == bus &&
dinfo->unit == unit)
return dinfo;
}
return NULL;
}
DriveInfo *drive_get_by_id(const char *id)
{
DriveInfo *dinfo;
QTAILQ_FOREACH(dinfo, &drives, next) {
if (strcmp(id, dinfo->id))
continue;
return dinfo;
}
return NULL;
}
int drive_get_max_bus(BlockInterfaceType type)
{
int max_bus;
DriveInfo *dinfo;
max_bus = -1;
QTAILQ_FOREACH(dinfo, &drives, next) {
if(dinfo->type == type &&
dinfo->bus > max_bus)
max_bus = dinfo->bus;
}
return max_bus;
}
const char *drive_get_serial(BlockDriverState *bdrv)
{
DriveInfo *dinfo;
QTAILQ_FOREACH(dinfo, &drives, next) {
if (dinfo->bdrv == bdrv)
return dinfo->serial;
}
return "\0";
}
BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
{
DriveInfo *dinfo;
QTAILQ_FOREACH(dinfo, &drives, next) {
if (dinfo->bdrv == bdrv)
return dinfo->onerror;
}
return BLOCK_ERR_STOP_ENOSPC;
}
static void bdrv_format_print(void *opaque, const char *name)
{
fprintf(stderr, " %s", name);
}
void drive_uninit(DriveInfo *dinfo)
{
qemu_opts_del(dinfo->opts);
bdrv_delete(dinfo->bdrv);
QTAILQ_REMOVE(&drives, dinfo, next);
qemu_free(dinfo);
}
DriveInfo *drive_init(QemuOpts *opts, void *opaque,
int *fatal_error)
{
const char *buf;
const char *file = NULL;
char devname[128];
const char *serial;
const char *mediastr = "";
BlockInterfaceType type;
enum { MEDIA_DISK, MEDIA_CDROM } media;
int bus_id, unit_id;
int cyls, heads, secs, translation;
BlockDriver *drv = NULL;
QEMUMachine *machine = opaque;
int max_devs;
int index;
int cache;
int aio = 0;
int ro = 0;
int bdrv_flags, onerror;
const char *devaddr;
DriveInfo *dinfo;
int snapshot = 0;
*fatal_error = 1;
translation = BIOS_ATA_TRANSLATION_AUTO;
cache = 1;
if (machine && machine->use_scsi) {
type = IF_SCSI;
max_devs = MAX_SCSI_DEVS;
pstrcpy(devname, sizeof(devname), "scsi");
} else {
type = IF_IDE;
max_devs = MAX_IDE_DEVS;
pstrcpy(devname, sizeof(devname), "ide");
}
media = MEDIA_DISK;
/* extract parameters */
bus_id = qemu_opt_get_number(opts, "bus", 0);
unit_id = qemu_opt_get_number(opts, "unit", -1);
index = qemu_opt_get_number(opts, "index", -1);
cyls = qemu_opt_get_number(opts, "cyls", 0);
heads = qemu_opt_get_number(opts, "heads", 0);
secs = qemu_opt_get_number(opts, "secs", 0);
snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
ro = qemu_opt_get_bool(opts, "readonly", 0);
file = qemu_opt_get(opts, "file");
serial = qemu_opt_get(opts, "serial");
if ((buf = qemu_opt_get(opts, "if")) != NULL) {
pstrcpy(devname, sizeof(devname), buf);
if (!strcmp(buf, "ide")) {
type = IF_IDE;
max_devs = MAX_IDE_DEVS;
} else if (!strcmp(buf, "scsi")) {
type = IF_SCSI;
max_devs = MAX_SCSI_DEVS;
} else if (!strcmp(buf, "floppy")) {
type = IF_FLOPPY;
max_devs = 0;
} else if (!strcmp(buf, "pflash")) {
type = IF_PFLASH;
max_devs = 0;
} else if (!strcmp(buf, "mtd")) {
type = IF_MTD;
max_devs = 0;
} else if (!strcmp(buf, "sd")) {
type = IF_SD;
max_devs = 0;
} else if (!strcmp(buf, "virtio")) {
type = IF_VIRTIO;
max_devs = 0;
} else if (!strcmp(buf, "xen")) {
type = IF_XEN;
max_devs = 0;
} else if (!strcmp(buf, "none")) {
type = IF_NONE;
max_devs = 0;
} else {
fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
return NULL;
}
}
if (cyls || heads || secs) {
if (cyls < 1 || (type == IF_IDE && cyls > 16383)) {
fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
return NULL;
}
if (heads < 1 || (type == IF_IDE && heads > 16)) {
fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
return NULL;
}
if (secs < 1 || (type == IF_IDE && secs > 63)) {
fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
return NULL;
}
}
if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
if (!cyls) {
fprintf(stderr,
"qemu: '%s' trans must be used with cyls,heads and secs\n",
buf);
return NULL;
}
if (!strcmp(buf, "none"))
translation = BIOS_ATA_TRANSLATION_NONE;
else if (!strcmp(buf, "lba"))
translation = BIOS_ATA_TRANSLATION_LBA;
else if (!strcmp(buf, "auto"))
translation = BIOS_ATA_TRANSLATION_AUTO;
else {
fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
return NULL;
}
}
if ((buf = qemu_opt_get(opts, "media")) != NULL) {
if (!strcmp(buf, "disk")) {
media = MEDIA_DISK;
} else if (!strcmp(buf, "cdrom")) {
if (cyls || secs || heads) {
fprintf(stderr,
"qemu: '%s' invalid physical CHS format\n", buf);
return NULL;
}
media = MEDIA_CDROM;
} else {
fprintf(stderr, "qemu: '%s' invalid media\n", buf);
return NULL;
}
}
if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
if (!strcmp(buf, "off") || !strcmp(buf, "none"))
cache = 0;
else if (!strcmp(buf, "writethrough"))
cache = 1;
else if (!strcmp(buf, "writeback"))
cache = 2;
else {
fprintf(stderr, "qemu: invalid cache option\n");
return NULL;
}
}
#ifdef CONFIG_LINUX_AIO
if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
if (!strcmp(buf, "threads"))
aio = 0;
else if (!strcmp(buf, "native"))
aio = 1;
else {
fprintf(stderr, "qemu: invalid aio option\n");
return NULL;
}
}
#endif
if ((buf = qemu_opt_get(opts, "format")) != NULL) {
if (strcmp(buf, "?") == 0) {
fprintf(stderr, "qemu: Supported formats:");
bdrv_iterate_format(bdrv_format_print, NULL);
fprintf(stderr, "\n");
return NULL;
}
drv = bdrv_find_whitelisted_format(buf);
if (!drv) {
fprintf(stderr, "qemu: '%s' invalid format\n", buf);
return NULL;
}
}
onerror = BLOCK_ERR_STOP_ENOSPC;
if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
fprintf(stderr, "werror is no supported by this format\n");
return NULL;
}
if (!strcmp(buf, "ignore"))
onerror = BLOCK_ERR_IGNORE;
else if (!strcmp(buf, "enospc"))
onerror = BLOCK_ERR_STOP_ENOSPC;
else if (!strcmp(buf, "stop"))
onerror = BLOCK_ERR_STOP_ANY;
else if (!strcmp(buf, "report"))
onerror = BLOCK_ERR_REPORT;
else {
fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
return NULL;
}
}
if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
if (type != IF_VIRTIO) {
fprintf(stderr, "addr is not supported\n");
return NULL;
}
}
/* compute bus and unit according index */
if (index != -1) {
if (bus_id != 0 || unit_id != -1) {
fprintf(stderr,
"qemu: index cannot be used with bus and unit\n");
return NULL;
}
if (max_devs == 0)
{
unit_id = index;
bus_id = 0;
} else {
unit_id = index % max_devs;
bus_id = index / max_devs;
}
}
/* if user doesn't specify a unit_id,
* try to find the first free
*/
if (unit_id == -1) {
unit_id = 0;
while (drive_get(type, bus_id, unit_id) != NULL) {
unit_id++;
if (max_devs && unit_id >= max_devs) {
unit_id -= max_devs;
bus_id++;
}
}
}
/* check unit id */
if (max_devs && unit_id >= max_devs) {
fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
unit_id, max_devs - 1);
return NULL;
}
/*
* ignore multiple definitions
*/
if (drive_get(type, bus_id, unit_id) != NULL) {
*fatal_error = 0;
return NULL;
}
/* init */
dinfo = qemu_mallocz(sizeof(*dinfo));
if ((buf = qemu_opts_id(opts)) != NULL) {
dinfo->id = qemu_strdup(buf);
} else {
/* no id supplied -> create one */
dinfo->id = qemu_mallocz(32);
if (type == IF_IDE || type == IF_SCSI)
mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
if (max_devs)
snprintf(dinfo->id, 32, "%s%i%s%i",
devname, bus_id, mediastr, unit_id);
else
snprintf(dinfo->id, 32, "%s%s%i",
devname, mediastr, unit_id);
}
dinfo->bdrv = bdrv_new(dinfo->id);
dinfo->devaddr = devaddr;
dinfo->type = type;
dinfo->bus = bus_id;
dinfo->unit = unit_id;
dinfo->onerror = onerror;
dinfo->opts = opts;
if (serial)
strncpy(dinfo->serial, serial, sizeof(serial));
QTAILQ_INSERT_TAIL(&drives, dinfo, next);
switch(type) {
case IF_IDE:
case IF_SCSI:
case IF_XEN:
case IF_NONE:
switch(media) {
case MEDIA_DISK:
if (cyls != 0) {
bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
bdrv_set_translation_hint(dinfo->bdrv, translation);
}
break;
case MEDIA_CDROM:
bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
break;
}
break;
case IF_SD:
/* FIXME: This isn't really a floppy, but it's a reasonable
approximation. */
case IF_FLOPPY:
bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
break;
case IF_PFLASH:
case IF_MTD:
break;
case IF_VIRTIO:
/* add virtio block device */
opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
qemu_opt_set(opts, "driver", "virtio-blk-pci");
qemu_opt_set(opts, "drive", dinfo->id);
if (devaddr)
qemu_opt_set(opts, "addr", devaddr);
break;
case IF_COUNT:
abort();
}
if (!file) {
*fatal_error = 0;
return NULL;
}
bdrv_flags = 0;
if (snapshot) {
bdrv_flags |= BDRV_O_SNAPSHOT;
cache = 2; /* always use write-back with snapshot */
}
if (cache == 0) /* no caching */
bdrv_flags |= BDRV_O_NOCACHE;
else if (cache == 2) /* write-back */
bdrv_flags |= BDRV_O_CACHE_WB;
if (aio == 1) {
bdrv_flags |= BDRV_O_NATIVE_AIO;
} else {
bdrv_flags &= ~BDRV_O_NATIVE_AIO;
}
if (ro == 1) {
if (type == IF_IDE) {
fprintf(stderr, "qemu: readonly flag not supported for drive with ide interface\n");
return NULL;
}
(void)bdrv_set_read_only(dinfo->bdrv, 1);
}
if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
fprintf(stderr, "qemu: could not open disk image %s: %s\n",
file, strerror(errno));
return NULL;
}
if (bdrv_key_required(dinfo->bdrv))
autostart = 0;
*fatal_error = 0;
return dinfo;
}
static int drive_init_func(QemuOpts *opts, void *opaque)
{
QEMUMachine *machine = opaque;
int fatal_error = 0;
if (drive_init(opts, machine, &fatal_error) == NULL) {
if (fatal_error)
return 1;
}
return 0;
}
static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
{
if (NULL == qemu_opt_get(opts, "snapshot")) {
qemu_opt_set(opts, "snapshot", "on");
}
return 0;
}
void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
{
boot_set_handler = func;
boot_set_opaque = opaque;
}
int qemu_boot_set(const char *boot_devices)
{
if (!boot_set_handler) {
return -EINVAL;
}
return boot_set_handler(boot_set_opaque, boot_devices);
}
static int parse_bootdevices(char *devices)
{
/* We just do some generic consistency checks */
const char *p;
int bitmap = 0;
for (p = devices; *p != '\0'; p++) {
/* Allowed boot devices are:
* a-b: floppy disk drives
* c-f: IDE disk drives
* g-m: machine implementation dependant drives
* n-p: network devices
* It's up to each machine implementation to check if the given boot
* devices match the actual hardware implementation and firmware
* features.
*/
if (*p < 'a' || *p > 'p') {
fprintf(stderr, "Invalid boot device '%c'\n", *p);
exit(1);
}
if (bitmap & (1 << (*p - 'a'))) {
fprintf(stderr, "Boot device '%c' was given twice\n", *p);
exit(1);
}
bitmap |= 1 << (*p - 'a');
}
return bitmap;
}
static void restore_boot_devices(void *opaque)
{
char *standard_boot_devices = opaque;
qemu_boot_set(standard_boot_devices);
qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
qemu_free(standard_boot_devices);
}
static void numa_add(const char *optarg)
{
char option[128];
char *endptr;
unsigned long long value, endvalue;
int nodenr;
optarg = get_opt_name(option, 128, optarg, ',') + 1;
if (!strcmp(option, "node")) {
if (get_param_value(option, 128, "nodeid", optarg) == 0) {
nodenr = nb_numa_nodes;
} else {
nodenr = strtoull(option, NULL, 10);
}
if (get_param_value(option, 128, "mem", optarg) == 0) {
node_mem[nodenr] = 0;
} else {
value = strtoull(option, &endptr, 0);
switch (*endptr) {
case 0: case 'M': case 'm':
value <<= 20;
break;
case 'G': case 'g':
value <<= 30;
break;
}
node_mem[nodenr] = value;
}
if (get_param_value(option, 128, "cpus", optarg) == 0) {
node_cpumask[nodenr] = 0;
} else {
value = strtoull(option, &endptr, 10);
if (value >= 64) {
value = 63;
fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
} else {
if (*endptr == '-') {
endvalue = strtoull(endptr+1, &endptr, 10);
if (endvalue >= 63) {
endvalue = 62;
fprintf(stderr,
"only 63 CPUs in NUMA mode supported.\n");
}
value = (1 << (endvalue + 1)) - (1 << value);
} else {
value = 1 << value;
}
}
node_cpumask[nodenr] = value;
}
nb_numa_nodes++;
}
return;
}
static void smp_parse(const char *optarg)
{
int smp, sockets = 0, threads = 0, cores = 0;
char *endptr;
char option[128];
smp = strtoul(optarg, &endptr, 10);
if (endptr != optarg) {
if (*endptr == ',') {
endptr++;
}
}
if (get_param_value(option, 128, "sockets", endptr) != 0)
sockets = strtoull(option, NULL, 10);
if (get_param_value(option, 128, "cores", endptr) != 0)
cores = strtoull(option, NULL, 10);
if (get_param_value(option, 128, "threads", endptr) != 0)
threads = strtoull(option, NULL, 10);
if (get_param_value(option, 128, "maxcpus", endptr) != 0)
max_cpus = strtoull(option, NULL, 10);
/* compute missing values, prefer sockets over cores over threads */
if (smp == 0 || sockets == 0) {
sockets = sockets > 0 ? sockets : 1;
cores = cores > 0 ? cores : 1;
threads = threads > 0 ? threads : 1;
if (smp == 0) {
smp = cores * threads * sockets;
} else {
sockets = smp / (cores * threads);
}
} else {
if (cores == 0) {
threads = threads > 0 ? threads : 1;
cores = smp / (sockets * threads);
} else {
if (sockets == 0) {
sockets = smp / (cores * threads);
} else {
threads = smp / (cores * sockets);
}
}
}
smp_cpus = smp;
smp_cores = cores > 0 ? cores : 1;
smp_threads = threads > 0 ? threads : 1;
if (max_cpus == 0)
max_cpus = smp_cpus;
}
/***********************************************************/
/* USB devices */
static int usb_device_add(const char *devname, int is_hotplug)
{
const char *p;
USBDevice *dev = NULL;
if (!usb_enabled)
return -1;
/* drivers with .usbdevice_name entry in USBDeviceInfo */
dev = usbdevice_create(devname);
if (dev)
goto done;
/* the other ones */
if (strstart(devname, "host:", &p)) {
dev = usb_host_device_open(p);
} else if (strstart(devname, "net:", &p)) {
QemuOpts *opts;
int idx;
opts = qemu_opts_parse(&qemu_net_opts, p, NULL);
if (!opts) {
return -1;
}
qemu_opt_set(opts, "type", "nic");
qemu_opt_set(opts, "model", "usb");
idx = net_client_init(NULL, opts, 0);
if (idx == -1) {
return -1;
}
dev = usb_net_init(&nd_table[idx]);
} else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
dev = usb_bt_init(devname[2] ? hci_init(p) :
bt_new_hci(qemu_find_bt_vlan(0)));
} else {
return -1;
}
if (!dev)
return -1;
done:
return 0;
}
static int usb_device_del(const char *devname)
{
int bus_num, addr;
const char *p;
if (strstart(devname, "host:", &p))
return usb_host_device_close(p);
if (!usb_enabled)
return -1;
p = strchr(devname, '.');
if (!p)
return -1;
bus_num = strtoul(devname, NULL, 0);
addr = strtoul(p + 1, NULL, 0);
return usb_device_delete_addr(bus_num, addr);
}
static int usb_parse(const char *cmdline)
{
return usb_device_add(cmdline, 0);
}
void do_usb_add(Monitor *mon, const QDict *qdict)
{
usb_device_add(qdict_get_str(qdict, "devname"), 1);
}
void do_usb_del(Monitor *mon, const QDict *qdict)
{
usb_device_del(qdict_get_str(qdict, "devname"));
}
/***********************************************************/
/* PCMCIA/Cardbus */
static struct pcmcia_socket_entry_s {
PCMCIASocket *socket;
struct pcmcia_socket_entry_s *next;
} *pcmcia_sockets = 0;
void pcmcia_socket_register(PCMCIASocket *socket)
{
struct pcmcia_socket_entry_s *entry;
entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
entry->socket = socket;
entry->next = pcmcia_sockets;
pcmcia_sockets = entry;
}
void pcmcia_socket_unregister(PCMCIASocket *socket)
{
struct pcmcia_socket_entry_s *entry, **ptr;
ptr = &pcmcia_sockets;
for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
if (entry->socket == socket) {
*ptr = entry->next;
qemu_free(entry);
}
}
void pcmcia_info(Monitor *mon)
{
struct pcmcia_socket_entry_s *iter;
if (!pcmcia_sockets)
monitor_printf(mon, "No PCMCIA sockets\n");
for (iter = pcmcia_sockets; iter; iter = iter->next)
monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
iter->socket->attached ? iter->socket->card_string :
"Empty");
}
/***********************************************************/
/* register display */
struct DisplayAllocator default_allocator = {
defaultallocator_create_displaysurface,
defaultallocator_resize_displaysurface,
defaultallocator_free_displaysurface
};
void register_displaystate(DisplayState *ds)
{
DisplayState **s;
s = &display_state;
while (*s != NULL)
s = &(*s)->next;
ds->next = NULL;
*s = ds;
}
DisplayState *get_displaystate(void)
{
return display_state;
}
DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
{
if(ds->allocator == &default_allocator) ds->allocator = da;
return ds->allocator;
}
/* dumb display */
static void dumb_display_init(void)
{
DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
ds->allocator = &default_allocator;
ds->surface = qemu_create_displaysurface(ds, 640, 480);
register_displaystate(ds);
}
/***********************************************************/
/* I/O handling */
typedef struct IOHandlerRecord {
int fd;
IOCanRWHandler *fd_read_poll;
IOHandler *fd_read;
IOHandler *fd_write;
int deleted;
void *opaque;
/* temporary data */
struct pollfd *ufd;
struct IOHandlerRecord *next;
} IOHandlerRecord;
static IOHandlerRecord *first_io_handler;
/* XXX: fd_read_poll should be suppressed, but an API change is
necessary in the character devices to suppress fd_can_read(). */
int qemu_set_fd_handler2(int fd,
IOCanRWHandler *fd_read_poll,
IOHandler *fd_read,
IOHandler *fd_write,
void *opaque)
{
IOHandlerRecord **pioh, *ioh;
if (!fd_read && !fd_write) {
pioh = &first_io_handler;
for(;;) {
ioh = *pioh;
if (ioh == NULL)
break;
if (ioh->fd == fd) {
ioh->deleted = 1;
break;
}
pioh = &ioh->next;
}
} else {
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (ioh->fd == fd)
goto found;
}
ioh = qemu_mallocz(sizeof(IOHandlerRecord));
ioh->next = first_io_handler;
first_io_handler = ioh;
found:
ioh->fd = fd;
ioh->fd_read_poll = fd_read_poll;
ioh->fd_read = fd_read;
ioh->fd_write = fd_write;
ioh->opaque = opaque;
ioh->deleted = 0;
}
return 0;
}
int qemu_set_fd_handler(int fd,
IOHandler *fd_read,
IOHandler *fd_write,
void *opaque)
{
return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
}
#ifdef _WIN32
/***********************************************************/
/* Polling handling */
typedef struct PollingEntry {
PollingFunc *func;
void *opaque;
struct PollingEntry *next;
} PollingEntry;
static PollingEntry *first_polling_entry;
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
{
PollingEntry **ppe, *pe;
pe = qemu_mallocz(sizeof(PollingEntry));
pe->func = func;
pe->opaque = opaque;
for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
*ppe = pe;
return 0;
}
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
{
PollingEntry **ppe, *pe;
for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
pe = *ppe;
if (pe->func == func && pe->opaque == opaque) {
*ppe = pe->next;
qemu_free(pe);
break;
}
}
}
/***********************************************************/
/* Wait objects support */
typedef struct WaitObjects {
int num;
HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
} WaitObjects;
static WaitObjects wait_objects = {0};
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
WaitObjects *w = &wait_objects;
if (w->num >= MAXIMUM_WAIT_OBJECTS)
return -1;
w->events[w->num] = handle;
w->func[w->num] = func;
w->opaque[w->num] = opaque;
w->num++;
return 0;
}
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
{
int i, found;
WaitObjects *w = &wait_objects;
found = 0;
for (i = 0; i < w->num; i++) {
if (w->events[i] == handle)
found = 1;
if (found) {
w->events[i] = w->events[i + 1];
w->func[i] = w->func[i + 1];
w->opaque[i] = w->opaque[i + 1];
}
}
if (found)
w->num--;
}
#endif
/***********************************************************/
/* ram save/restore */
#define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
#define RAM_SAVE_FLAG_COMPRESS 0x02
#define RAM_SAVE_FLAG_MEM_SIZE 0x04
#define RAM_SAVE_FLAG_PAGE 0x08
#define RAM_SAVE_FLAG_EOS 0x10
static int is_dup_page(uint8_t *page, uint8_t ch)
{
uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
uint32_t *array = (uint32_t *)page;
int i;
for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
if (array[i] != val)
return 0;
}
return 1;
}
static int ram_save_block(QEMUFile *f)
{
static ram_addr_t current_addr = 0;
ram_addr_t saved_addr = current_addr;
ram_addr_t addr = 0;
int found = 0;
while (addr < last_ram_offset) {
if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
uint8_t *p;
cpu_physical_memory_reset_dirty(current_addr,
current_addr + TARGET_PAGE_SIZE,
MIGRATION_DIRTY_FLAG);
p = qemu_get_ram_ptr(current_addr);
if (is_dup_page(p, *p)) {
qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
qemu_put_byte(f, *p);
} else {
qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
}
found = 1;
break;
}
addr += TARGET_PAGE_SIZE;
current_addr = (saved_addr + addr) % last_ram_offset;
}
return found;
}
static uint64_t bytes_transferred = 0;
static ram_addr_t ram_save_remaining(void)
{
ram_addr_t addr;
ram_addr_t count = 0;
for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
count++;
}
return count;
}
uint64_t ram_bytes_remaining(void)
{
return ram_save_remaining() * TARGET_PAGE_SIZE;
}
uint64_t ram_bytes_transferred(void)
{
return bytes_transferred;
}
uint64_t ram_bytes_total(void)
{
return last_ram_offset;
}
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
{
ram_addr_t addr;
uint64_t bytes_transferred_last;
double bwidth = 0;
uint64_t expected_time = 0;
if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
qemu_file_set_error(f);
return 0;
}
if (stage == 1) {
/* Make sure all dirty bits are set */
for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
cpu_physical_memory_set_dirty(addr);
}
/* Enable dirty memory tracking */
cpu_physical_memory_set_dirty_tracking(1);
qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
}
bytes_transferred_last = bytes_transferred;
bwidth = get_clock();
while (!qemu_file_rate_limit(f)) {
int ret;
ret = ram_save_block(f);
bytes_transferred += ret * TARGET_PAGE_SIZE;
if (ret == 0) /* no more blocks */
break;
}
bwidth = get_clock() - bwidth;
bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
/* if we haven't transferred anything this round, force expected_time to a
* a very high value, but without crashing */
if (bwidth == 0)
bwidth = 0.000001;
/* try transferring iterative blocks of memory */
if (stage == 3) {
/* flush all remaining blocks regardless of rate limiting */
while (ram_save_block(f) != 0) {
bytes_transferred += TARGET_PAGE_SIZE;
}
cpu_physical_memory_set_dirty_tracking(0);
}
qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
return (stage == 2) && (expected_time <= migrate_max_downtime());
}
static int ram_load(QEMUFile *f, void *opaque, int version_id)
{
ram_addr_t addr;
int flags;
if (version_id != 3)
return -EINVAL;
do {
addr = qemu_get_be64(f);
flags = addr & ~TARGET_PAGE_MASK;
addr &= TARGET_PAGE_MASK;
if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
if (addr != last_ram_offset)
return -EINVAL;
}
if (flags & RAM_SAVE_FLAG_COMPRESS) {
uint8_t ch = qemu_get_byte(f);
memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
#ifndef _WIN32
if (ch == 0 &&
(!kvm_enabled() || kvm_has_sync_mmu())) {
madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
}
#endif
} else if (flags & RAM_SAVE_FLAG_PAGE)
qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
} while (!(flags & RAM_SAVE_FLAG_EOS));
return 0;
}
void qemu_service_io(void)
{
qemu_notify_event();
}
/***********************************************************/
/* machine registration */
static QEMUMachine *first_machine = NULL;
QEMUMachine *current_machine = NULL;
int qemu_register_machine(QEMUMachine *m)
{
QEMUMachine **pm;
pm = &first_machine;
while (*pm != NULL)
pm = &(*pm)->next;
m->next = NULL;
*pm = m;
return 0;
}
static QEMUMachine *find_machine(const char *name)
{
QEMUMachine *m;
for(m = first_machine; m != NULL; m = m->next) {
if (!strcmp(m->name, name))
return m;
if (m->alias && !strcmp(m->alias, name))
return m;
}
return NULL;
}
static QEMUMachine *find_default_machine(void)
{
QEMUMachine *m;
for(m = first_machine; m != NULL; m = m->next) {
if (m->is_default) {
return m;
}
}
return NULL;
}
/***********************************************************/
/* main execution loop */
static void gui_update(void *opaque)
{
uint64_t interval = GUI_REFRESH_INTERVAL;
DisplayState *ds = opaque;
DisplayChangeListener *dcl = ds->listeners;
dpy_refresh(ds);
while (dcl != NULL) {
if (dcl->gui_timer_interval &&
dcl->gui_timer_interval < interval)
interval = dcl->gui_timer_interval;
dcl = dcl->next;
}
qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
}
static void nographic_update(void *opaque)
{
uint64_t interval = GUI_REFRESH_INTERVAL;
qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
}
struct vm_change_state_entry {
VMChangeStateHandler *cb;
void *opaque;
QLIST_ENTRY (vm_change_state_entry) entries;
};
static QLIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
void *opaque)
{
VMChangeStateEntry *e;
e = qemu_mallocz(sizeof (*e));
e->cb = cb;
e->opaque = opaque;
QLIST_INSERT_HEAD(&vm_change_state_head, e, entries);
return e;
}
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
{
QLIST_REMOVE (e, entries);
qemu_free (e);
}
static void vm_state_notify(int running, int reason)
{
VMChangeStateEntry *e;
for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
e->cb(e->opaque, running, reason);
}
}
static void resume_all_vcpus(void);
static void pause_all_vcpus(void);
void vm_start(void)
{
if (!vm_running) {
cpu_enable_ticks();
vm_running = 1;
vm_state_notify(1, 0);
qemu_rearm_alarm_timer(alarm_timer);
resume_all_vcpus();
}
}
/* reset/shutdown handler */
typedef struct QEMUResetEntry {
QTAILQ_ENTRY(QEMUResetEntry) entry;
QEMUResetHandler *func;
void *opaque;
} QEMUResetEntry;
static QTAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
QTAILQ_HEAD_INITIALIZER(reset_handlers);
static int reset_requested;
static int shutdown_requested;
static int powerdown_requested;
static int debug_requested;
static int vmstop_requested;
int qemu_shutdown_requested(void)
{
int r = shutdown_requested;
shutdown_requested = 0;
return r;
}
int qemu_reset_requested(void)
{
int r = reset_requested;
reset_requested = 0;
return r;
}
int qemu_powerdown_requested(void)
{
int r = powerdown_requested;
powerdown_requested = 0;
return r;
}
static int qemu_debug_requested(void)
{
int r = debug_requested;
debug_requested = 0;
return r;
}
static int qemu_vmstop_requested(void)
{
int r = vmstop_requested;
vmstop_requested = 0;
return r;
}
static void do_vm_stop(int reason)
{
if (vm_running) {
cpu_disable_ticks();
vm_running = 0;
pause_all_vcpus();
vm_state_notify(0, reason);
}
}
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
re->func = func;
re->opaque = opaque;
QTAILQ_INSERT_TAIL(&reset_handlers, re, entry);
}
void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
{
QEMUResetEntry *re;
QTAILQ_FOREACH(re, &reset_handlers, entry) {
if (re->func == func && re->opaque == opaque) {
QTAILQ_REMOVE(&reset_handlers, re, entry);
qemu_free(re);
return;
}
}
}
void qemu_system_reset(void)
{
QEMUResetEntry *re, *nre;
/* reset all devices */
QTAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
re->func(re->opaque);
}
}
void qemu_system_reset_request(void)
{
if (no_reboot) {
shutdown_requested = 1;
} else {
reset_requested = 1;
}
qemu_notify_event();
}
void qemu_system_shutdown_request(void)
{
shutdown_requested = 1;
qemu_notify_event();
}
void qemu_system_powerdown_request(void)
{
powerdown_requested = 1;
qemu_notify_event();
}
#ifdef CONFIG_IOTHREAD
static void qemu_system_vmstop_request(int reason)
{
vmstop_requested = reason;
qemu_notify_event();
}
#endif
#ifndef _WIN32
static int io_thread_fd = -1;
static void qemu_event_increment(void)
{
static const char byte = 0;
if (io_thread_fd == -1)
return;
write(io_thread_fd, &byte, sizeof(byte));
}
static void qemu_event_read(void *opaque)
{
int fd = (unsigned long)opaque;
ssize_t len;
/* Drain the notify pipe */
do {
char buffer[512];
len = read(fd, buffer, sizeof(buffer));
} while ((len == -1 && errno == EINTR) || len > 0);
}
static int qemu_event_init(void)
{
int err;
int fds[2];
err = pipe(fds);
if (err == -1)
return -errno;
err = fcntl_setfl(fds[0], O_NONBLOCK);
if (err < 0)
goto fail;
err = fcntl_setfl(fds[1], O_NONBLOCK);
if (err < 0)
goto fail;
qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
(void *)(unsigned long)fds[0]);
io_thread_fd = fds[1];
return 0;
fail:
close(fds[0]);
close(fds[1]);
return err;
}
#else
HANDLE qemu_event_handle;
static void dummy_event_handler(void *opaque)
{
}
static int qemu_event_init(void)
{
qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
if (!qemu_event_handle) {
fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
return -1;
}
qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
return 0;
}
static void qemu_event_increment(void)
{
if (!SetEvent(qemu_event_handle)) {
fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
GetLastError());
exit (1);
}
}
#endif
static int cpu_can_run(CPUState *env)
{
if (env->stop)
return 0;
if (env->stopped)
return 0;
return 1;
}
#ifndef CONFIG_IOTHREAD
static int qemu_init_main_loop(void)
{
return qemu_event_init();
}
void qemu_init_vcpu(void *_env)
{
CPUState *env = _env;
if (kvm_enabled())
kvm_init_vcpu(env);
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
return;
}
int qemu_cpu_self(void *env)
{
return 1;
}
static void resume_all_vcpus(void)
{
}
static void pause_all_vcpus(void)
{
}
void qemu_cpu_kick(void *env)
{
return;
}
void qemu_notify_event(void)
{
CPUState *env = cpu_single_env;
if (env) {
cpu_exit(env);
}
}
void qemu_mutex_lock_iothread(void) {}
void qemu_mutex_unlock_iothread(void) {}
void vm_stop(int reason)
{
do_vm_stop(reason);
}
#else /* CONFIG_IOTHREAD */
#include "qemu-thread.h"
QemuMutex qemu_global_mutex;
static QemuMutex qemu_fair_mutex;
static QemuThread io_thread;
static QemuThread *tcg_cpu_thread;
static QemuCond *tcg_halt_cond;
static int qemu_system_ready;
/* cpu creation */
static QemuCond qemu_cpu_cond;
/* system init */
static QemuCond qemu_system_cond;
static QemuCond qemu_pause_cond;
static void block_io_signals(void);
static void unblock_io_signals(void);
static int tcg_has_work(void);
static int qemu_init_main_loop(void)
{
int ret;
ret = qemu_event_init();
if (ret)
return ret;
qemu_cond_init(&qemu_pause_cond);
qemu_mutex_init(&qemu_fair_mutex);
qemu_mutex_init(&qemu_global_mutex);
qemu_mutex_lock(&qemu_global_mutex);
unblock_io_signals();
qemu_thread_self(&io_thread);
return 0;
}
static void qemu_wait_io_event(CPUState *env)
{
while (!tcg_has_work())
qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
qemu_mutex_unlock(&qemu_global_mutex);
/*
* Users of qemu_global_mutex can be starved, having no chance
* to acquire it since this path will get to it first.
* So use another lock to provide fairness.
*/
qemu_mutex_lock(&qemu_fair_mutex);
qemu_mutex_unlock(&qemu_fair_mutex);
qemu_mutex_lock(&qemu_global_mutex);
if (env->stop) {
env->stop = 0;
env->stopped = 1;
qemu_cond_signal(&qemu_pause_cond);
}
}
static int qemu_cpu_exec(CPUState *env);
static void *kvm_cpu_thread_fn(void *arg)
{
CPUState *env = arg;
block_io_signals();
qemu_thread_self(env->thread);
if (kvm_enabled())
kvm_init_vcpu(env);
/* signal CPU creation */
qemu_mutex_lock(&qemu_global_mutex);
env->created = 1;
qemu_cond_signal(&qemu_cpu_cond);
/* and wait for machine initialization */
while (!qemu_system_ready)
qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
while (1) {
if (cpu_can_run(env))
qemu_cpu_exec(env);
qemu_wait_io_event(env);
}
return NULL;
}
static void tcg_cpu_exec(void);
static void *tcg_cpu_thread_fn(void *arg)
{
CPUState *env = arg;
block_io_signals();
qemu_thread_self(env->thread);
/* signal CPU creation */
qemu_mutex_lock(&qemu_global_mutex);
for (env = first_cpu; env != NULL; env = env->next_cpu)
env->created = 1;
qemu_cond_signal(&qemu_cpu_cond);
/* and wait for machine initialization */
while (!qemu_system_ready)
qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
while (1) {
tcg_cpu_exec();
qemu_wait_io_event(cur_cpu);
}
return NULL;
}
void qemu_cpu_kick(void *_env)
{
CPUState *env = _env;
qemu_cond_broadcast(env->halt_cond);
if (kvm_enabled())
qemu_thread_signal(env->thread, SIGUSR1);
}
int qemu_cpu_self(void *_env)
{
CPUState *env = _env;
QemuThread this;
qemu_thread_self(&this);
return qemu_thread_equal(&this, env->thread);
}
static void cpu_signal(int sig)
{
if (cpu_single_env)
cpu_exit(cpu_single_env);
}
static void block_io_signals(void)
{
sigset_t set;
struct sigaction sigact;
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
pthread_sigmask(SIG_BLOCK, &set, NULL);
sigemptyset(&set);
sigaddset(&set, SIGUSR1);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
memset(&sigact, 0, sizeof(sigact));
sigact.sa_handler = cpu_signal;
sigaction(SIGUSR1, &sigact, NULL);
}
static void unblock_io_signals(void)
{
sigset_t set;
sigemptyset(&set);
sigaddset(&set, SIGUSR2);
sigaddset(&set, SIGIO);
sigaddset(&set, SIGALRM);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
sigemptyset(&set);
sigaddset(&set, SIGUSR1);
pthread_sigmask(SIG_BLOCK, &set, NULL);
}
static void qemu_signal_lock(unsigned int msecs)
{
qemu_mutex_lock(&qemu_fair_mutex);
while (qemu_mutex_trylock(&qemu_global_mutex)) {
qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
break;
}
qemu_mutex_unlock(&qemu_fair_mutex);
}
void qemu_mutex_lock_iothread(void)
{
if (kvm_enabled()) {
qemu_mutex_lock(&qemu_fair_mutex);
qemu_mutex_lock(&qemu_global_mutex);
qemu_mutex_unlock(&qemu_fair_mutex);
} else
qemu_signal_lock(100);
}
void qemu_mutex_unlock_iothread(void)
{
qemu_mutex_unlock(&qemu_global_mutex);
}
static int all_vcpus_paused(void)
{
CPUState *penv = first_cpu;
while (penv) {
if (!penv->stopped)
return 0;
penv = (CPUState *)penv->next_cpu;
}
return 1;
}
static void pause_all_vcpus(void)
{
CPUState *penv = first_cpu;
while (penv) {
penv->stop = 1;
qemu_thread_signal(penv->thread, SIGUSR1);
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
}
while (!all_vcpus_paused()) {
qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
penv = first_cpu;
while (penv) {
qemu_thread_signal(penv->thread, SIGUSR1);
penv = (CPUState *)penv->next_cpu;
}
}
}
static void resume_all_vcpus(void)
{
CPUState *penv = first_cpu;
while (penv) {
penv->stop = 0;
penv->stopped = 0;
qemu_thread_signal(penv->thread, SIGUSR1);
qemu_cpu_kick(penv);
penv = (CPUState *)penv->next_cpu;
}
}
static void tcg_init_vcpu(void *_env)
{
CPUState *env = _env;
/* share a single thread for all cpus with TCG */
if (!tcg_cpu_thread) {
env->thread = qemu_mallocz(sizeof(QemuThread));
env->halt_cond = qemu_mallocz(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
while (env->created == 0)
qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
tcg_cpu_thread = env->thread;
tcg_halt_cond = env->halt_cond;
} else {
env->thread = tcg_cpu_thread;
env->halt_cond = tcg_halt_cond;
}
}
static void kvm_start_vcpu(CPUState *env)
{
env->thread = qemu_mallocz(sizeof(QemuThread));
env->halt_cond = qemu_mallocz(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
while (env->created == 0)
qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
}
void qemu_init_vcpu(void *_env)
{
CPUState *env = _env;
if (kvm_enabled())
kvm_start_vcpu(env);
else
tcg_init_vcpu(env);
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
}
void qemu_notify_event(void)
{
qemu_event_increment();
}
void vm_stop(int reason)
{
QemuThread me;
qemu_thread_self(&me);
if (!qemu_thread_equal(&me, &io_thread)) {
qemu_system_vmstop_request(reason);
/*
* FIXME: should not return to device code in case
* vm_stop() has been requested.
*/
if (cpu_single_env) {
cpu_exit(cpu_single_env);
cpu_single_env->stop = 1;
}
return;
}
do_vm_stop(reason);
}
#endif
#ifdef _WIN32
static void host_main_loop_wait(int *timeout)
{
int ret, ret2, i;
PollingEntry *pe;
/* XXX: need to suppress polling by better using win32 events */
ret = 0;
for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
ret |= pe->func(pe->opaque);
}
if (ret == 0) {
int err;
WaitObjects *w = &wait_objects;
ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
if (w->func[ret - WAIT_OBJECT_0])
w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
/* Check for additional signaled events */
for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
/* Check if event is signaled */
ret2 = WaitForSingleObject(w->events[i], 0);
if(ret2 == WAIT_OBJECT_0) {
if (w->func[i])
w->func[i](w->opaque[i]);
} else if (ret2 == WAIT_TIMEOUT) {
} else {
err = GetLastError();
fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
}
}
} else if (ret == WAIT_TIMEOUT) {
} else {
err = GetLastError();
fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
}
}
*timeout = 0;
}
#else
static void host_main_loop_wait(int *timeout)
{
}
#endif
void main_loop_wait(int timeout)
{
IOHandlerRecord *ioh;
fd_set rfds, wfds, xfds;
int ret, nfds;
struct timeval tv;
qemu_bh_update_timeout(&timeout);
host_main_loop_wait(&timeout);
/* poll any events */
/* XXX: separate device handlers from system ones */
nfds = -1;
FD_ZERO(&rfds);
FD_ZERO(&wfds);
FD_ZERO(&xfds);
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (ioh->deleted)
continue;
if (ioh->fd_read &&
(!ioh->fd_read_poll ||
ioh->fd_read_poll(ioh->opaque) != 0)) {
FD_SET(ioh->fd, &rfds);
if (ioh->fd > nfds)
nfds = ioh->fd;
}
if (ioh->fd_write) {
FD_SET(ioh->fd, &wfds);
if (ioh->fd > nfds)
nfds = ioh->fd;
}
}
tv.tv_sec = timeout / 1000;
tv.tv_usec = (timeout % 1000) * 1000;
slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
qemu_mutex_unlock_iothread();
ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
qemu_mutex_lock_iothread();
if (ret > 0) {
IOHandlerRecord **pioh;
for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
ioh->fd_read(ioh->opaque);
}
if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
ioh->fd_write(ioh->opaque);
}
}
/* remove deleted IO handlers */
pioh = &first_io_handler;
while (*pioh) {
ioh = *pioh;
if (ioh->deleted) {
*pioh = ioh->next;
qemu_free(ioh);
} else
pioh = &ioh->next;
}
}
slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
/* rearm timer, if not periodic */
if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
qemu_rearm_alarm_timer(alarm_timer);
}
/* vm time timers */
if (vm_running) {
if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
qemu_run_timers(&active_timers[QEMU_CLOCK_VIRTUAL],
qemu_get_clock(vm_clock));
}
/* real time timers */
qemu_run_timers(&active_timers[QEMU_CLOCK_REALTIME],
qemu_get_clock(rt_clock));
qemu_run_timers(&active_timers[QEMU_CLOCK_HOST],
qemu_get_clock(host_clock));
/* Check bottom-halves last in case any of the earlier events triggered
them. */
qemu_bh_poll();
}
static int qemu_cpu_exec(CPUState *env)
{
int ret;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
if (use_icount) {
int64_t count;
int decr;
qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
env->icount_decr.u16.low = 0;
env->icount_extra = 0;
count = qemu_next_deadline();
count = (count + (1 << icount_time_shift) - 1)
>> icount_time_shift;
qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
env->icount_decr.u16.low = decr;
env->icount_extra = count;
}
ret = cpu_exec(env);
#ifdef CONFIG_PROFILER
qemu_time += profile_getclock() - ti;
#endif
if (use_icount) {
/* Fold pending instructions back into the
instruction counter, and clear the interrupt flag. */
qemu_icount -= (env->icount_decr.u16.low
+ env->icount_extra);
env->icount_decr.u32 = 0;
env->icount_extra = 0;
}
return ret;
}
static void tcg_cpu_exec(void)
{
int ret = 0;
if (next_cpu == NULL)
next_cpu = first_cpu;
for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
CPUState *env = cur_cpu = next_cpu;
if (!vm_running)
break;
if (timer_alarm_pending) {
timer_alarm_pending = 0;
break;
}
if (cpu_can_run(env))
ret = qemu_cpu_exec(env);
if (ret == EXCP_DEBUG) {
gdb_set_stop_cpu(env);
debug_requested = 1;
break;
}
}
}
static int cpu_has_work(CPUState *env)
{
if (env->stop)
return 1;
if (env->stopped)
return 0;
if (!env->halted)
return 1;
if (qemu_cpu_has_work(env))
return 1;
return 0;
}
static int tcg_has_work(void)
{
CPUState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu)
if (cpu_has_work(env))
return 1;
return 0;
}
static int qemu_calculate_timeout(void)
{
#ifndef CONFIG_IOTHREAD
int timeout;
if (!vm_running)
timeout = 5000;
else if (tcg_has_work())
timeout = 0;
else if (!use_icount)
timeout = 5000;
else {
/* XXX: use timeout computed from timers */
int64_t add;
int64_t delta;
/* Advance virtual time to the next event. */
if (use_icount == 1) {
/* When not using an adaptive execution frequency
we tend to get badly out of sync with real time,
so just delay for a reasonable amount of time. */
delta = 0;
} else {
delta = cpu_get_icount() - cpu_get_clock();
}
if (delta > 0) {
/* If virtual time is ahead of real time then just
wait for IO. */
timeout = (delta / 1000000) + 1;
} else {
/* Wait for either IO to occur or the next
timer event. */
add = qemu_next_deadline();
/* We advance the timer before checking for IO.
Limit the amount we advance so that early IO
activity won't get the guest too far ahead. */
if (add > 10000000)
add = 10000000;
delta += add;
add = (add + (1 << icount_time_shift) - 1)
>> icount_time_shift;
qemu_icount += add;
timeout = delta / 1000000;
if (timeout < 0)
timeout = 0;
}
}
return timeout;
#else /* CONFIG_IOTHREAD */
return 1000;
#endif
}
static int vm_can_run(void)
{
if (powerdown_requested)
return 0;
if (reset_requested)
return 0;
if (shutdown_requested)
return 0;
if (debug_requested)
return 0;
return 1;
}
qemu_irq qemu_system_powerdown;
static void main_loop(void)
{
int r;
#ifdef CONFIG_IOTHREAD
qemu_system_ready = 1;
qemu_cond_broadcast(&qemu_system_cond);
#endif
for (;;) {
do {
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
#ifndef CONFIG_IOTHREAD
tcg_cpu_exec();
#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
main_loop_wait(qemu_calculate_timeout());
#ifdef CONFIG_PROFILER
dev_time += profile_getclock() - ti;
#endif
} while (vm_can_run());
if (qemu_debug_requested())
vm_stop(EXCP_DEBUG);
if (qemu_shutdown_requested()) {
if (no_shutdown) {
vm_stop(0);
no_shutdown = 0;
} else
break;
}
if (qemu_reset_requested()) {
pause_all_vcpus();
qemu_system_reset();
resume_all_vcpus();
}
if (qemu_powerdown_requested()) {
qemu_irq_raise(qemu_system_powerdown);
}
if ((r = qemu_vmstop_requested()))
vm_stop(r);
}
pause_all_vcpus();
}
static void version(void)
{
printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
}
static void help(int exitcode)
{
version();
printf("usage: %s [options] [disk_image]\n"
"\n"
"'disk_image' is a raw hard image image for IDE hard disk 0\n"
"\n"
#define DEF(option, opt_arg, opt_enum, opt_help) \
opt_help
#define DEFHEADING(text) stringify(text) "\n"
#include "qemu-options.h"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
"\n"
"During emulation, the following keys are useful:\n"
"ctrl-alt-f toggle full screen\n"
"ctrl-alt-n switch to virtual console 'n'\n"
"ctrl-alt toggle mouse and keyboard grab\n"
"\n"
"When using -nographic, press 'ctrl-a h' to get some help.\n"
,
"qemu",
DEFAULT_RAM_SIZE,
#ifndef _WIN32
DEFAULT_NETWORK_SCRIPT,
DEFAULT_NETWORK_DOWN_SCRIPT,
#endif
DEFAULT_GDBSTUB_PORT,
"/tmp/qemu.log");
exit(exitcode);
}
#define HAS_ARG 0x0001
enum {
#define DEF(option, opt_arg, opt_enum, opt_help) \
opt_enum,
#define DEFHEADING(text)
#include "qemu-options.h"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
};
typedef struct QEMUOption {
const char *name;
int flags;
int index;
} QEMUOption;
static const QEMUOption qemu_options[] = {
{ "h", 0, QEMU_OPTION_h },
#define DEF(option, opt_arg, opt_enum, opt_help) \
{ option, opt_arg, opt_enum },
#define DEFHEADING(text)
#include "qemu-options.h"
#undef DEF
#undef DEFHEADING
#undef GEN_DOCS
{ NULL },
};
#ifdef HAS_AUDIO
struct soundhw soundhw[] = {
#ifdef HAS_AUDIO_CHOICE
#if defined(TARGET_I386) || defined(TARGET_MIPS)
{
"pcspk",
"PC speaker",
0,
1,
{ .init_isa = pcspk_audio_init }
},
#endif
#ifdef CONFIG_SB16
{
"sb16",
"Creative Sound Blaster 16",
0,
1,
{ .init_isa = SB16_init }
},
#endif
#ifdef CONFIG_CS4231A
{
"cs4231a",
"CS4231A",
0,
1,
{ .init_isa = cs4231a_init }
},
#endif
#ifdef CONFIG_ADLIB
{
"adlib",
#ifdef HAS_YMF262
"Yamaha YMF262 (OPL3)",
#else
"Yamaha YM3812 (OPL2)",
#endif
0,
1,
{ .init_isa = Adlib_init }
},
#endif
#ifdef CONFIG_GUS
{
"gus",
"Gravis Ultrasound GF1",
0,
1,
{ .init_isa = GUS_init }
},
#endif
#ifdef CONFIG_AC97
{
"ac97",
"Intel 82801AA AC97 Audio",
0,
0,
{ .init_pci = ac97_init }
},
#endif
#ifdef CONFIG_ES1370
{
"es1370",
"ENSONIQ AudioPCI ES1370",
0,
0,
{ .init_pci = es1370_init }
},
#endif
#endif /* HAS_AUDIO_CHOICE */
{ NULL, NULL, 0, 0, { NULL } }
};
static void select_soundhw (const char *optarg)
{
struct soundhw *c;
if (*optarg == '?') {
show_valid_cards:
printf ("Valid sound card names (comma separated):\n");
for (c = soundhw; c->name; ++c) {
printf ("%-11s %s\n", c->name, c->descr);
}
printf ("\n-soundhw all will enable all of the above\n");
exit (*optarg != '?');
}
else {
size_t l;
const char *p;
char *e;
int bad_card = 0;
if (!strcmp (optarg, "all")) {
for (c = soundhw; c->name; ++c) {
c->enabled = 1;
}
return;
}
p = optarg;
while (*p) {
e = strchr (p, ',');
l = !e ? strlen (p) : (size_t) (e - p);
for (c = soundhw; c->name; ++c) {
if (!strncmp (c->name, p, l) && !c->name[l]) {
c->enabled = 1;
break;
}
}
if (!c->name) {
if (l > 80) {
fprintf (stderr,
"Unknown sound card name (too big to show)\n");
}
else {
fprintf (stderr, "Unknown sound card name `%.*s'\n",
(int) l, p);
}
bad_card = 1;
}
p += l + (e != NULL);
}
if (bad_card)
goto show_valid_cards;
}
}
#endif
static void select_vgahw (const char *p)
{
const char *opts;
vga_interface_type = VGA_NONE;
if (strstart(p, "std", &opts)) {
vga_interface_type = VGA_STD;
} else if (strstart(p, "cirrus", &opts)) {
vga_interface_type = VGA_CIRRUS;
} else if (strstart(p, "vmware", &opts)) {
vga_interface_type = VGA_VMWARE;
} else if (strstart(p, "xenfb", &opts)) {
vga_interface_type = VGA_XENFB;
} else if (!strstart(p, "none", &opts)) {
invalid_vga:
fprintf(stderr, "Unknown vga type: %s\n", p);
exit(1);
}
while (*opts) {
const char *nextopt;
if (strstart(opts, ",retrace=", &nextopt)) {
opts = nextopt;
if (strstart(opts, "dumb", &nextopt))
vga_retrace_method = VGA_RETRACE_DUMB;
else if (strstart(opts, "precise", &nextopt))
vga_retrace_method = VGA_RETRACE_PRECISE;
else goto invalid_vga;
} else goto invalid_vga;
opts = nextopt;
}
}
#ifdef TARGET_I386
static int balloon_parse(const char *arg)
{
QemuOpts *opts;
if (strcmp(arg, "none") == 0) {
return 0;
}
if (!strncmp(arg, "virtio", 6)) {
if (arg[6] == ',') {
/* have params -> parse them */
opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
if (!opts)
return -1;
} else {
/* create empty opts */
opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
}
qemu_opt_set(opts, "driver", "virtio-balloon-pci");
return 0;
}
return -1;
}
#endif
#ifdef _WIN32
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
{
exit(STATUS_CONTROL_C_EXIT);
return TRUE;
}
#endif
int qemu_uuid_parse(const char *str, uint8_t *uuid)
{
int ret;
if(strlen(str) != 36)
return -1;
ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
&uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
&uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
if(ret != 16)
return -1;
#ifdef TARGET_I386
smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
#endif
return 0;
}
#ifndef _WIN32
static void termsig_handler(int signal)
{
qemu_system_shutdown_request();
}
static void sigchld_handler(int signal)
{
waitpid(-1, NULL, WNOHANG);
}
static void sighandler_setup(void)
{
struct sigaction act;
memset(&act, 0, sizeof(act));
act.sa_handler = termsig_handler;
sigaction(SIGINT, &act, NULL);
sigaction(SIGHUP, &act, NULL);
sigaction(SIGTERM, &act, NULL);
act.sa_handler = sigchld_handler;
act.sa_flags = SA_NOCLDSTOP;
sigaction(SIGCHLD, &act, NULL);
}
#endif
#ifdef _WIN32
/* Look for support files in the same directory as the executable. */
static char *find_datadir(const char *argv0)
{
char *p;
char buf[MAX_PATH];
DWORD len;
len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
if (len == 0) {
return NULL;
}
buf[len] = 0;
p = buf + len - 1;
while (p != buf && *p != '\\')
p--;
*p = 0;
if (access(buf, R_OK) == 0) {
return qemu_strdup(buf);
}
return NULL;
}
#else /* !_WIN32 */
/* Find a likely location for support files using the location of the binary.
For installed binaries this will be "$bindir/../share/qemu". When
running from the build tree this will be "$bindir/../pc-bios". */
#define SHARE_SUFFIX "/share/qemu"
#define BUILD_SUFFIX "/pc-bios"
static char *find_datadir(const char *argv0)
{
char *dir;
char *p = NULL;
char *res;
char buf[PATH_MAX];
size_t max_len;
#if defined(__linux__)
{
int len;
len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
if (len > 0) {
buf[len] = 0;
p = buf;
}
}
#elif defined(__FreeBSD__)
{
int len;
len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
if (len > 0) {
buf[len] = 0;
p = buf;
}
}
#endif
/* If we don't have any way of figuring out the actual executable
location then try argv[0]. */
if (!p) {
p = realpath(argv0, buf);
if (!p) {
return NULL;
}
}
dir = dirname(p);
dir = dirname(dir);
max_len = strlen(dir) +
MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
res = qemu_mallocz(max_len);
snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
if (access(res, R_OK)) {
snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
if (access(res, R_OK)) {
qemu_free(res);
res = NULL;
}
}
return res;
}
#undef SHARE_SUFFIX
#undef BUILD_SUFFIX
#endif
char *qemu_find_file(int type, const char *name)
{
int len;
const char *subdir;
char *buf;
/* If name contains path separators then try it as a straight path. */
if ((strchr(name, '/') || strchr(name, '\\'))
&& access(name, R_OK) == 0) {
return qemu_strdup(name);
}
switch (type) {
case QEMU_FILE_TYPE_BIOS:
subdir = "";
break;
case QEMU_FILE_TYPE_KEYMAP:
subdir = "keymaps/";
break;
default:
abort();
}
len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
buf = qemu_mallocz(len);
snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
if (access(buf, R_OK)) {
qemu_free(buf);
return NULL;
}
return buf;
}
static int device_init_func(QemuOpts *opts, void *opaque)
{
DeviceState *dev;
dev = qdev_device_add(opts);
if (!dev)
return -1;
return 0;
}
struct device_config {
enum {
DEV_USB, /* -usbdevice */
DEV_BT, /* -bt */
} type;
const char *cmdline;
QTAILQ_ENTRY(device_config) next;
};
QTAILQ_HEAD(, device_config) device_configs = QTAILQ_HEAD_INITIALIZER(device_configs);
static void add_device_config(int type, const char *cmdline)
{
struct device_config *conf;
conf = qemu_mallocz(sizeof(*conf));
conf->type = type;
conf->cmdline = cmdline;
QTAILQ_INSERT_TAIL(&device_configs, conf, next);
}
static int foreach_device_config(int type, int (*func)(const char *cmdline))
{
struct device_config *conf;
int rc;
QTAILQ_FOREACH(conf, &device_configs, next) {
if (conf->type != type)
continue;
rc = func(conf->cmdline);
if (0 != rc)
return rc;
}
return 0;
}
int main(int argc, char **argv, char **envp)
{
const char *gdbstub_dev = NULL;
uint32_t boot_devices_bitmap = 0;
int i;
int snapshot, linux_boot, net_boot;
const char *initrd_filename;
const char *kernel_filename, *kernel_cmdline;
char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
DisplayState *ds;
DisplayChangeListener *dcl;
int cyls, heads, secs, translation;
QemuOpts *hda_opts = NULL, *opts;
int optind;
const char *r, *optarg;
CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
const char *monitor_devices[MAX_MONITOR_DEVICES];
int monitor_device_index;
const char *serial_devices[MAX_SERIAL_PORTS];
int serial_device_index;
const char *parallel_devices[MAX_PARALLEL_PORTS];
int parallel_device_index;
const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
int virtio_console_index;
const char *loadvm = NULL;
QEMUMachine *machine;
const char *cpu_model;
#ifndef _WIN32
int fds[2];
#endif
int tb_size;
const char *pid_file = NULL;
const char *incoming = NULL;
#ifndef _WIN32
int fd = 0;
struct passwd *pwd = NULL;
const char *chroot_dir = NULL;
const char *run_as = NULL;
#endif
CPUState *env;
int show_vnc_port = 0;
init_clocks();
qemu_errors_to_file(stderr);
qemu_cache_utils_init(envp);
QLIST_INIT (&vm_change_state_head);
#ifndef _WIN32
{
struct sigaction act;
sigfillset(&act.sa_mask);
act.sa_flags = 0;
act.sa_handler = SIG_IGN;
sigaction(SIGPIPE, &act, NULL);
}
#else
SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
/* Note: cpu_interrupt() is currently not SMP safe, so we force
QEMU to run on a single CPU */
{
HANDLE h;
DWORD mask, smask;
int i;
h = GetCurrentProcess();
if (GetProcessAffinityMask(h, &mask, &smask)) {
for(i = 0; i < 32; i++) {
if (mask & (1 << i))
break;
}
if (i != 32) {
mask = 1 << i;
SetProcessAffinityMask(h, mask);
}
}
}
#endif
module_call_init(MODULE_INIT_MACHINE);
machine = find_default_machine();
cpu_model = NULL;
initrd_filename = NULL;
ram_size = 0;
snapshot = 0;
kernel_filename = NULL;
kernel_cmdline = "";
cyls = heads = secs = 0;
translation = BIOS_ATA_TRANSLATION_AUTO;
serial_devices[0] = "vc:80Cx24C";
for(i = 1; i < MAX_SERIAL_PORTS; i++)
serial_devices[i] = NULL;
serial_device_index = 0;
parallel_devices[0] = "vc:80Cx24C";
for(i = 1; i < MAX_PARALLEL_PORTS; i++)
parallel_devices[i] = NULL;
parallel_device_index = 0;
for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
virtio_consoles[i] = NULL;
virtio_console_index = 0;
monitor_devices[0] = "vc:80Cx24C";
for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
monitor_devices[i] = NULL;
}
monitor_device_index = 0;
for (i = 0; i < MAX_NODES; i++) {
node_mem[i] = 0;
node_cpumask[i] = 0;
}
nb_numa_nodes = 0;
nb_nics = 0;
tb_size = 0;
autostart= 1;
optind = 1;
for(;;) {
if (optind >= argc)
break;
r = argv[optind];
if (r[0] != '-') {
hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
} else {
const QEMUOption *popt;
optind++;
/* Treat --foo the same as -foo. */
if (r[1] == '-')
r++;
popt = qemu_options;
for(;;) {
if (!popt->name) {
fprintf(stderr, "%s: invalid option -- '%s'\n",
argv[0], r);
exit(1);
}
if (!strcmp(popt->name, r + 1))
break;
popt++;
}
if (popt->flags & HAS_ARG) {
if (optind >= argc) {
fprintf(stderr, "%s: option '%s' requires an argument\n",
argv[0], r);
exit(1);
}
optarg = argv[optind++];
} else {
optarg = NULL;
}
switch(popt->index) {
case QEMU_OPTION_M:
machine = find_machine(optarg);
if (!machine) {
QEMUMachine *m;
printf("Supported machines are:\n");
for(m = first_machine; m != NULL; m = m->next) {
if (m->alias)
printf("%-10s %s (alias of %s)\n",
m->alias, m->desc, m->name);
printf("%-10s %s%s\n",
m->name, m->desc,
m->is_default ? " (default)" : "");
}
exit(*optarg != '?');
}
break;
case QEMU_OPTION_cpu:
/* hw initialization will check this */
if (*optarg == '?') {
/* XXX: implement xxx_cpu_list for targets that still miss it */
#if defined(cpu_list)
cpu_list(stdout, &fprintf);
#endif
exit(0);
} else {
cpu_model = optarg;
}
break;
case QEMU_OPTION_initrd:
initrd_filename = optarg;
break;
case QEMU_OPTION_hda:
if (cyls == 0)
hda_opts = drive_add(optarg, HD_ALIAS, 0);
else
hda_opts = drive_add(optarg, HD_ALIAS
",cyls=%d,heads=%d,secs=%d%s",
0, cyls, heads, secs,
translation == BIOS_ATA_TRANSLATION_LBA ?
",trans=lba" :
translation == BIOS_ATA_TRANSLATION_NONE ?
",trans=none" : "");
break;
case QEMU_OPTION_hdb:
case QEMU_OPTION_hdc:
case QEMU_OPTION_hdd:
drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
break;
case QEMU_OPTION_drive:
drive_add(NULL, "%s", optarg);
break;
case QEMU_OPTION_set:
if (qemu_set_option(optarg) != 0)
exit(1);
break;
case QEMU_OPTION_mtdblock:
drive_add(optarg, MTD_ALIAS);
break;
case QEMU_OPTION_sd:
drive_add(optarg, SD_ALIAS);
break;
case QEMU_OPTION_pflash:
drive_add(optarg, PFLASH_ALIAS);
break;
case QEMU_OPTION_snapshot:
snapshot = 1;
break;
case QEMU_OPTION_hdachs:
{
const char *p;
p = optarg;
cyls = strtol(p, (char **)&p, 0);
if (cyls < 1 || cyls > 16383)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
heads = strtol(p, (char **)&p, 0);
if (heads < 1 || heads > 16)
goto chs_fail;
if (*p != ',')
goto chs_fail;
p++;
secs = strtol(p, (char **)&p, 0);
if (secs < 1 || secs > 63)
goto chs_fail;
if (*p == ',') {
p++;
if (!strcmp(p, "none"))
translation = BIOS_ATA_TRANSLATION_NONE;
else if (!strcmp(p, "lba"))
translation = BIOS_ATA_TRANSLATION_LBA;
else if (!strcmp(p, "auto"))
translation = BIOS_ATA_TRANSLATION_AUTO;
else
goto chs_fail;
} else if (*p != '\0') {
chs_fail:
fprintf(stderr, "qemu: invalid physical CHS format\n");
exit(1);
}
if (hda_opts != NULL) {
char num[16];
snprintf(num, sizeof(num), "%d", cyls);
qemu_opt_set(hda_opts, "cyls", num);
snprintf(num, sizeof(num), "%d", heads);
qemu_opt_set(hda_opts, "heads", num);
snprintf(num, sizeof(num), "%d", secs);
qemu_opt_set(hda_opts, "secs", num);
if (translation == BIOS_ATA_TRANSLATION_LBA)
qemu_opt_set(hda_opts, "trans", "lba");
if (translation == BIOS_ATA_TRANSLATION_NONE)
qemu_opt_set(hda_opts, "trans", "none");
}
}
break;
case QEMU_OPTION_numa:
if (nb_numa_nodes >= MAX_NODES) {
fprintf(stderr, "qemu: too many NUMA nodes\n");
exit(1);
}
numa_add(optarg);
break;
case QEMU_OPTION_nographic:
display_type = DT_NOGRAPHIC;
break;
#ifdef CONFIG_CURSES
case QEMU_OPTION_curses:
display_type = DT_CURSES;
break;
#endif
case QEMU_OPTION_portrait:
graphic_rotate = 1;
break;
case QEMU_OPTION_kernel:
kernel_filename = optarg;
break;
case QEMU_OPTION_append:
kernel_cmdline = optarg;
break;
case QEMU_OPTION_cdrom:
drive_add(optarg, CDROM_ALIAS);
break;
case QEMU_OPTION_boot:
{
static const char * const params[] = {
"order", "once", "menu", NULL
};
char buf[sizeof(boot_devices)];
char *standard_boot_devices;
int legacy = 0;
if (!strchr(optarg, '=')) {
legacy = 1;
pstrcpy(buf, sizeof(buf), optarg);
} else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
fprintf(stderr,
"qemu: unknown boot parameter '%s' in '%s'\n",
buf, optarg);
exit(1);
}
if (legacy ||
get_param_value(buf, sizeof(buf), "order", optarg)) {
boot_devices_bitmap = parse_bootdevices(buf);
pstrcpy(boot_devices, sizeof(boot_devices), buf);
}
if (!legacy) {
if (get_param_value(buf, sizeof(buf),
"once", optarg)) {
boot_devices_bitmap |= parse_bootdevices(buf);
standard_boot_devices = qemu_strdup(boot_devices);
pstrcpy(boot_devices, sizeof(boot_devices), buf);
qemu_register_reset(restore_boot_devices,
standard_boot_devices);
}
if (get_param_value(buf, sizeof(buf),
"menu", optarg)) {
if (!strcmp(buf, "on")) {
boot_menu = 1;
} else if (!strcmp(buf, "off")) {
boot_menu = 0;
} else {
fprintf(stderr,
"qemu: invalid option value '%s'\n",
buf);
exit(1);
}
}
}
}
break;
case QEMU_OPTION_fda:
case QEMU_OPTION_fdb:
drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
break;
#ifdef TARGET_I386
case QEMU_OPTION_no_fd_bootchk:
fd_bootchk = 0;
break;
#endif
case QEMU_OPTION_netdev:
if (net_client_parse(&qemu_netdev_opts, optarg) == -1) {
exit(1);
}
break;
case QEMU_OPTION_net:
if (net_client_parse(&qemu_net_opts, optarg) == -1) {
exit(1);
}
break;
#ifdef CONFIG_SLIRP
case QEMU_OPTION_tftp:
legacy_tftp_prefix = optarg;
break;
case QEMU_OPTION_bootp:
legacy_bootp_filename = optarg;
break;
#ifndef _WIN32
case QEMU_OPTION_smb:
if (net_slirp_smb(optarg) < 0)
exit(1);
break;
#endif
case QEMU_OPTION_redir:
if (net_slirp_redir(optarg) < 0)
exit(1);
break;
#endif
case QEMU_OPTION_bt:
add_device_config(DEV_BT, optarg);
break;
#ifdef HAS_AUDIO
case QEMU_OPTION_audio_help:
AUD_help ();
exit (0);
break;
case QEMU_OPTION_soundhw:
select_soundhw (optarg);
break;
#endif
case QEMU_OPTION_h:
help(0);
break;
case QEMU_OPTION_version:
version();
exit(0);
break;
case QEMU_OPTION_m: {
uint64_t value;
char *ptr;
value = strtoul(optarg, &ptr, 10);
switch (*ptr) {
case 0: case 'M': case 'm':
value <<= 20;
break;
case 'G': case 'g':
value <<= 30;
break;
default:
fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
exit(1);
}
/* On 32-bit hosts, QEMU is limited by virtual address space */
if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
exit(1);
}
if (value != (uint64_t)(ram_addr_t)value) {
fprintf(stderr, "qemu: ram size too large\n");
exit(1);
}
ram_size = value;
break;
}
case QEMU_OPTION_d:
{
int mask;
const CPULogItem *item;
mask = cpu_str_to_log_mask(optarg);
if (!mask) {
printf("Log items (comma separated):\n");
for(item = cpu_log_items; item->mask != 0; item++) {
printf("%-10s %s\n", item->name, item->help);
}
exit(1);
}
cpu_set_log(mask);
}
break;
case QEMU_OPTION_s:
gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
break;
case QEMU_OPTION_gdb:
gdbstub_dev = optarg;
break;
case QEMU_OPTION_L:
data_dir = optarg;
break;
case QEMU_OPTION_bios:
bios_name = optarg;
break;
case QEMU_OPTION_singlestep:
singlestep = 1;
break;
case QEMU_OPTION_S:
autostart = 0;
break;
#ifndef _WIN32
case QEMU_OPTION_k:
keyboard_layout = optarg;
break;
#endif
case QEMU_OPTION_localtime:
rtc_utc = 0;
break;
case QEMU_OPTION_vga:
select_vgahw (optarg);
break;
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
case QEMU_OPTION_g:
{
const char *p;
int w, h, depth;
p = optarg;
w = strtol(p, (char **)&p, 10);
if (w <= 0) {
graphic_error:
fprintf(stderr, "qemu: invalid resolution or depth\n");
exit(1);
}
if (*p != 'x')
goto graphic_error;
p++;
h = strtol(p, (char **)&p, 10);
if (h <= 0)
goto graphic_error;
if (*p == 'x') {
p++;
depth = strtol(p, (char **)&p, 10);
if (depth != 8 && depth != 15 && depth != 16 &&
depth != 24 && depth != 32)
goto graphic_error;
} else if (*p == '\0') {
depth = graphic_depth;
} else {
goto graphic_error;
}
graphic_width = w;
graphic_height = h;
graphic_depth = depth;
}
break;
#endif
case QEMU_OPTION_echr:
{
char *r;
term_escape_char = strtol(optarg, &r, 0);
if (r == optarg)
printf("Bad argument to echr\n");
break;
}
case QEMU_OPTION_monitor:
if (monitor_device_index >= MAX_MONITOR_DEVICES) {
fprintf(stderr, "qemu: too many monitor devices\n");
exit(1);
}
monitor_devices[monitor_device_index] = optarg;
monitor_device_index++;
break;
case QEMU_OPTION_chardev:
opts = qemu_opts_parse(&qemu_chardev_opts, optarg, "backend");
if (!opts) {
fprintf(stderr, "parse error: %s\n", optarg);
exit(1);
}
if (qemu_chr_open_opts(opts, NULL) == NULL) {
exit(1);
}
break;
case QEMU_OPTION_serial:
if (serial_device_index >= MAX_SERIAL_PORTS) {
fprintf(stderr, "qemu: too many serial ports\n");
exit(1);
}
serial_devices[serial_device_index] = optarg;
serial_device_index++;
break;
case QEMU_OPTION_watchdog:
if (watchdog) {
fprintf(stderr,
"qemu: only one watchdog option may be given\n");
return 1;
}
watchdog = optarg;
break;
case QEMU_OPTION_watchdog_action:
if (select_watchdog_action(optarg) == -1) {
fprintf(stderr, "Unknown -watchdog-action parameter\n");
exit(1);
}
break;
case QEMU_OPTION_virtiocon:
if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
fprintf(stderr, "qemu: too many virtio consoles\n");
exit(1);
}
virtio_consoles[virtio_console_index] = optarg;
virtio_console_index++;
break;
case QEMU_OPTION_parallel:
if (parallel_device_index >= MAX_PARALLEL_PORTS) {
fprintf(stderr, "qemu: too many parallel ports\n");
exit(1);
}
parallel_devices[parallel_device_index] = optarg;
parallel_device_index++;
break;
case QEMU_OPTION_loadvm:
loadvm = optarg;
break;
case QEMU_OPTION_full_screen:
full_screen = 1;
break;
#ifdef CONFIG_SDL
case QEMU_OPTION_no_frame:
no_frame = 1;
break;
case QEMU_OPTION_alt_grab:
alt_grab = 1;
break;
case QEMU_OPTION_ctrl_grab:
ctrl_grab = 1;
break;
case QEMU_OPTION_no_quit:
no_quit = 1;
break;
case QEMU_OPTION_sdl:
display_type = DT_SDL;
break;
#endif
case QEMU_OPTION_pidfile:
pid_file = optarg;
break;
#ifdef TARGET_I386
case QEMU_OPTION_win2k_hack:
win2k_install_hack = 1;
break;
case QEMU_OPTION_rtc_td_hack:
rtc_td_hack = 1;
break;
case QEMU_OPTION_acpitable:
if(acpi_table_add(optarg) < 0) {
fprintf(stderr, "Wrong acpi table provided\n");
exit(1);
}
break;
case QEMU_OPTION_smbios:
if(smbios_entry_add(optarg) < 0) {
fprintf(stderr, "Wrong smbios provided\n");
exit(1);
}
break;
#endif
#ifdef CONFIG_KVM
case QEMU_OPTION_enable_kvm:
kvm_allowed = 1;
break;
#endif
case QEMU_OPTION_usb:
usb_enabled = 1;
break;
case QEMU_OPTION_usbdevice:
usb_enabled = 1;
add_device_config(DEV_USB, optarg);
break;
case QEMU_OPTION_device:
if (!qemu_opts_parse(&qemu_device_opts, optarg, "driver")) {
exit(1);
}
break;
case QEMU_OPTION_smp:
smp_parse(optarg);
if (smp_cpus < 1) {
fprintf(stderr, "Invalid number of CPUs\n");
exit(1);
}
if (max_cpus < smp_cpus) {
fprintf(stderr, "maxcpus must be equal to or greater than "
"smp\n");
exit(1);
}
if (max_cpus > 255) {
fprintf(stderr, "Unsupported number of maxcpus\n");
exit(1);
}
break;
case QEMU_OPTION_vnc:
display_type = DT_VNC;
vnc_display = optarg;
break;
#ifdef TARGET_I386
case QEMU_OPTION_no_acpi:
acpi_enabled = 0;
break;
case QEMU_OPTION_no_hpet:
no_hpet = 1;
break;
case QEMU_OPTION_balloon:
if (balloon_parse(optarg) < 0) {
fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
exit(1);
}
break;
#endif
case QEMU_OPTION_no_reboot:
no_reboot = 1;
break;
case QEMU_OPTION_no_shutdown:
no_shutdown = 1;
break;
case QEMU_OPTION_show_cursor:
cursor_hide = 0;
break;
case QEMU_OPTION_uuid:
if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
fprintf(stderr, "Fail to parse UUID string."
" Wrong format.\n");
exit(1);
}
break;
#ifndef _WIN32
case QEMU_OPTION_daemonize:
daemonize = 1;
break;
#endif
case QEMU_OPTION_option_rom:
if (nb_option_roms >= MAX_OPTION_ROMS) {
fprintf(stderr, "Too many option ROMs\n");
exit(1);
}
option_rom[nb_option_roms] = optarg;
nb_option_roms++;
break;
#if defined(TARGET_ARM) || defined(TARGET_M68K)
case QEMU_OPTION_semihosting:
semihosting_enabled = 1;
break;
#endif
case QEMU_OPTION_name:
qemu_name = qemu_strdup(optarg);
{
char *p = strchr(qemu_name, ',');
if (p != NULL) {
*p++ = 0;
if (strncmp(p, "process=", 8)) {
fprintf(stderr, "Unknown subargument %s to -name", p);
exit(1);
}
p += 8;
set_proc_name(p);
}
}
break;
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
case QEMU_OPTION_prom_env:
if (nb_prom_envs >= MAX_PROM_ENVS) {
fprintf(stderr, "Too many prom variables\n");
exit(1);
}
prom_envs[nb_prom_envs] = optarg;
nb_prom_envs++;
break;
#endif
#ifdef TARGET_ARM
case QEMU_OPTION_old_param:
old_param = 1;
break;
#endif
case QEMU_OPTION_clock:
configure_alarms(optarg);
break;
case QEMU_OPTION_startdate:
configure_rtc_date_offset(optarg, 1);
break;
case QEMU_OPTION_rtc:
opts = qemu_opts_parse(&qemu_rtc_opts, optarg, NULL);
if (!opts) {
fprintf(stderr, "parse error: %s\n", optarg);
exit(1);
}
configure_rtc(opts);
break;
case QEMU_OPTION_tb_size:
tb_size = strtol(optarg, NULL, 0);
if (tb_size < 0)
tb_size = 0;
break;
case QEMU_OPTION_icount:
use_icount = 1;
if (strcmp(optarg, "auto") == 0) {
icount_time_shift = -1;
} else {
icount_time_shift = strtol(optarg, NULL, 0);
}
break;
case QEMU_OPTION_incoming:
incoming = optarg;
break;
#ifndef _WIN32
case QEMU_OPTION_chroot:
chroot_dir = optarg;
break;
case QEMU_OPTION_runas:
run_as = optarg;
break;
#endif
#ifdef CONFIG_XEN
case QEMU_OPTION_xen_domid:
xen_domid = atoi(optarg);
break;
case QEMU_OPTION_xen_create:
xen_mode = XEN_CREATE;
break;
case QEMU_OPTION_xen_attach:
xen_mode = XEN_ATTACH;
break;
#endif
case QEMU_OPTION_readconfig:
{
FILE *fp;
fp = fopen(optarg, "r");
if (fp == NULL) {
fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
exit(1);
}
if (qemu_config_parse(fp) != 0) {
exit(1);
}
fclose(fp);
break;
}
case QEMU_OPTION_writeconfig:
{
FILE *fp;
if (strcmp(optarg, "-") == 0) {
fp = stdout;
} else {
fp = fopen(optarg, "w");
if (fp == NULL) {
fprintf(stderr, "open %s: %s\n", optarg, strerror(errno));
exit(1);
}
}
qemu_config_write(fp);
fclose(fp);
break;
}
}
}
}
/* If no data_dir is specified then try to find it relative to the
executable path. */
if (!data_dir) {
data_dir = find_datadir(argv[0]);
}
/* If all else fails use the install patch specified when building. */
if (!data_dir) {
data_dir = CONFIG_QEMU_SHAREDIR;
}
/*
* Default to max_cpus = smp_cpus, in case the user doesn't
* specify a max_cpus value.
*/
if (!max_cpus)
max_cpus = smp_cpus;
machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
if (smp_cpus > machine->max_cpus) {
fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
"supported by machine `%s' (%d)\n", smp_cpus, machine->name,
machine->max_cpus);
exit(1);
}
if (display_type == DT_NOGRAPHIC) {
if (serial_device_index == 0)
serial_devices[0] = "stdio";
if (parallel_device_index == 0)
parallel_devices[0] = "null";
if (strncmp(monitor_devices[0], "vc", 2) == 0) {
monitor_devices[0] = "stdio";
}
}
#ifndef _WIN32
if (daemonize) {
pid_t pid;
if (pipe(fds) == -1)
exit(1);
pid = fork();
if (pid > 0) {
uint8_t status;
ssize_t len;
close(fds[1]);
again:
len = read(fds[0], &status, 1);
if (len == -1 && (errno == EINTR))
goto again;
if (len != 1)
exit(1);
else if (status == 1) {
fprintf(stderr, "Could not acquire pidfile: %s\n", strerror(errno));
exit(1);
} else
exit(0);
} else if (pid < 0)
exit(1);
setsid();
pid = fork();
if (pid > 0)
exit(0);
else if (pid < 0)
exit(1);
umask(027);
signal(SIGTSTP, SIG_IGN);
signal(SIGTTOU, SIG_IGN);
signal(SIGTTIN, SIG_IGN);
}
if (pid_file && qemu_create_pidfile(pid_file) != 0) {
if (daemonize) {
uint8_t status = 1;
write(fds[1], &status, 1);
} else
fprintf(stderr, "Could not acquire pid file: %s\n", strerror(errno));
exit(1);
}
#endif
if (kvm_enabled()) {
int ret;
ret = kvm_init(smp_cpus);
if (ret < 0) {
fprintf(stderr, "failed to initialize KVM\n");
exit(1);
}
}
if (qemu_init_main_loop()) {
fprintf(stderr, "qemu_init_main_loop failed\n");
exit(1);
}
linux_boot = (kernel_filename != NULL);
if (!linux_boot && *kernel_cmdline != '\0') {
fprintf(stderr, "-append only allowed with -kernel option\n");
exit(1);
}
if (!linux_boot && initrd_filename != NULL) {
fprintf(stderr, "-initrd only allowed with -kernel option\n");
exit(1);
}
#ifndef _WIN32
/* Win32 doesn't support line-buffering and requires size >= 2 */
setvbuf(stdout, NULL, _IOLBF, 0);
#endif
if (init_timer_alarm() < 0) {
fprintf(stderr, "could not initialize alarm timer\n");
exit(1);
}
if (use_icount && icount_time_shift < 0) {
use_icount = 2;
/* 125MIPS seems a reasonable initial guess at the guest speed.
It will be corrected fairly quickly anyway. */
icount_time_shift = 3;
init_icount_adjust();
}
#ifdef _WIN32
socket_init();
#endif
if (net_init_clients() < 0) {
exit(1);
}
net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
net_set_boot_mask(net_boot);
/* init the bluetooth world */
if (foreach_device_config(DEV_BT, bt_parse))
exit(1);
/* init the memory */
if (ram_size == 0)
ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
/* init the dynamic translator */
cpu_exec_init_all(tb_size * 1024 * 1024);
bdrv_init_with_whitelist();
blk_mig_init();
/* we always create the cdrom drive, even if no disk is there */
drive_add(NULL, CDROM_ALIAS);
/* we always create at least one floppy */
drive_add(NULL, FD_ALIAS, 0);
/* we always create one sd slot, even if no card is in it */
drive_add(NULL, SD_ALIAS);
/* open the virtual block devices */
if (snapshot)
qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
exit(1);
vmstate_register(0, &vmstate_timers ,&timers_state);
register_savevm_live("ram", 0, 3, NULL, ram_save_live, NULL,
ram_load, NULL);
/* Maintain compatibility with multiple stdio monitors */
if (!strcmp(monitor_devices[0],"stdio")) {
for (i = 0; i < MAX_SERIAL_PORTS; i++) {
const char *devname = serial_devices[i];
if (devname && !strcmp(devname,"mon:stdio")) {
monitor_devices[0] = NULL;
break;
} else if (devname && !strcmp(devname,"stdio")) {
monitor_devices[0] = NULL;
serial_devices[i] = "mon:stdio";
break;
}
}
}
if (nb_numa_nodes > 0) {
int i;
if (nb_numa_nodes > smp_cpus) {
nb_numa_nodes = smp_cpus;
}
/* If no memory size if given for any node, assume the default case
* and distribute the available memory equally across all nodes
*/
for (i = 0; i < nb_numa_nodes; i++) {
if (node_mem[i] != 0)
break;
}
if (i == nb_numa_nodes) {
uint64_t usedmem = 0;
/* On Linux, the each node's border has to be 8MB aligned,
* the final node gets the rest.
*/
for (i = 0; i < nb_numa_nodes - 1; i++) {
node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
usedmem += node_mem[i];
}
node_mem[i] = ram_size - usedmem;
}
for (i = 0; i < nb_numa_nodes; i++) {
if (node_cpumask[i] != 0)
break;
}
/* assigning the VCPUs round-robin is easier to implement, guest OSes
* must cope with this anyway, because there are BIOSes out there in
* real machines which also use this scheme.
*/
if (i == nb_numa_nodes) {
for (i = 0; i < smp_cpus; i++) {
node_cpumask[i % nb_numa_nodes] |= 1 << i;
}
}
}
for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
const char *devname = monitor_devices[i];
if (devname && strcmp(devname, "none")) {
char label[32];
if (i == 0) {
snprintf(label, sizeof(label), "monitor");
} else {
snprintf(label, sizeof(label), "monitor%d", i);
}
monitor_hds[i] = qemu_chr_open(label, devname, NULL);
if (!monitor_hds[i]) {
fprintf(stderr, "qemu: could not open monitor device '%s'\n",
devname);
exit(1);
}
}
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
const char *devname = serial_devices[i];
if (devname && strcmp(devname, "none")) {
char label[32];
snprintf(label, sizeof(label), "serial%d", i);
serial_hds[i] = qemu_chr_open(label, devname, NULL);
if (!serial_hds[i]) {
fprintf(stderr, "qemu: could not open serial device '%s': %s\n",
devname, strerror(errno));
exit(1);
}
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
const char *devname = parallel_devices[i];
if (devname && strcmp(devname, "none")) {
char label[32];
snprintf(label, sizeof(label), "parallel%d", i);
parallel_hds[i] = qemu_chr_open(label, devname, NULL);
if (!parallel_hds[i]) {
fprintf(stderr, "qemu: could not open parallel device '%s': %s\n",
devname, strerror(errno));
exit(1);
}
}
}
for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
const char *devname = virtio_consoles[i];
if (devname && strcmp(devname, "none")) {
char label[32];
snprintf(label, sizeof(label), "virtcon%d", i);
virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
if (!virtcon_hds[i]) {
fprintf(stderr, "qemu: could not open virtio console '%s': %s\n",
devname, strerror(errno));
exit(1);
}
}
}
module_call_init(MODULE_INIT_DEVICE);
if (watchdog) {
i = select_watchdog(watchdog);
if (i > 0)
exit (i == 1 ? 1 : 0);
}
if (machine->compat_props) {
qdev_prop_register_compat(machine->compat_props);
}
machine->init(ram_size, boot_devices,
kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
#ifndef _WIN32
/* must be after terminal init, SDL library changes signal handlers */
sighandler_setup();
#endif
for (env = first_cpu; env != NULL; env = env->next_cpu) {
for (i = 0; i < nb_numa_nodes; i++) {
if (node_cpumask[i] & (1 << env->cpu_index)) {
env->numa_node = i;
}
}
}
current_machine = machine;
/* init USB devices */
if (usb_enabled) {
if (foreach_device_config(DEV_USB, usb_parse) < 0)
exit(1);
}
/* init generic devices */
if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
exit(1);
if (!display_state)
dumb_display_init();
/* just use the first displaystate for the moment */
ds = display_state;
if (display_type == DT_DEFAULT) {
#if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
display_type = DT_SDL;
#else
display_type = DT_VNC;
vnc_display = "localhost:0,to=99";
show_vnc_port = 1;
#endif
}
switch (display_type) {
case DT_NOGRAPHIC:
break;
#if defined(CONFIG_CURSES)
case DT_CURSES:
curses_display_init(ds, full_screen);
break;
#endif
#if defined(CONFIG_SDL)
case DT_SDL:
sdl_display_init(ds, full_screen, no_frame);
break;
#elif defined(CONFIG_COCOA)
case DT_SDL:
cocoa_display_init(ds, full_screen);
break;
#endif
case DT_VNC:
vnc_display_init(ds);
if (vnc_display_open(ds, vnc_display) < 0)
exit(1);
if (show_vnc_port) {
printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
}
break;
default:
break;
}
dpy_resize(ds);
dcl = ds->listeners;
while (dcl != NULL) {
if (dcl->dpy_refresh != NULL) {
ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
}
dcl = dcl->next;
}
if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
}
text_consoles_set_display(display_state);
for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
if (monitor_devices[i] && monitor_hds[i]) {
monitor_init(monitor_hds[i],
MONITOR_USE_READLINE |
((i == 0) ? MONITOR_IS_DEFAULT : 0));
}
}
for(i = 0; i < MAX_SERIAL_PORTS; i++) {
const char *devname = serial_devices[i];
if (devname && strcmp(devname, "none")) {
if (strstart(devname, "vc", 0))
qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
}
}
for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
const char *devname = parallel_devices[i];
if (devname && strcmp(devname, "none")) {
if (strstart(devname, "vc", 0))
qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
}
}
for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
const char *devname = virtio_consoles[i];
if (virtcon_hds[i] && devname) {
if (strstart(devname, "vc", 0))
qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
}
}
if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
gdbstub_dev);
exit(1);
}
qdev_machine_creation_done();
rom_load_all();
qemu_system_reset();
if (loadvm) {
if (load_vmstate(cur_mon, loadvm) < 0) {
autostart = 0;
}
}
if (incoming) {
qemu_start_incoming_migration(incoming);
} else if (autostart) {
vm_start();
}
#ifndef _WIN32
if (daemonize) {
uint8_t status = 0;
ssize_t len;
again1:
len = write(fds[1], &status, 1);
if (len == -1 && (errno == EINTR))
goto again1;
if (len != 1)
exit(1);
chdir("/");
TFR(fd = open("/dev/null", O_RDWR));
if (fd == -1)
exit(1);
}
if (run_as) {
pwd = getpwnam(run_as);
if (!pwd) {
fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
exit(1);
}
}
if (chroot_dir) {
if (chroot(chroot_dir) < 0) {
fprintf(stderr, "chroot failed\n");
exit(1);
}
chdir("/");
}
if (run_as) {
if (setgid(pwd->pw_gid) < 0) {
fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
exit(1);
}
if (setuid(pwd->pw_uid) < 0) {
fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
exit(1);
}
if (setuid(0) != -1) {
fprintf(stderr, "Dropping privileges failed\n");
exit(1);
}
}
if (daemonize) {
dup2(fd, 0);
dup2(fd, 1);
dup2(fd, 2);
close(fd);
}
#endif
main_loop();
quit_timers();
net_cleanup();
return 0;
}