fe43ba9721
Followed the suggested overhaul to store_fpscr logic, and moved it to cpu.c where it can be accessed in !TCG builds. The overhaul was suggested because storing a value to fpscr should never raise an exception, so we could remove all the mess that happened with POWERPC_EXCP_FP. We also moved fpscr_set_rounding_mode into cpu.c as it could now be moved there, and it is needed when a value for the fpscr is being stored directly. Suggested-by: Richard Henderson <richard.henderson@linaro.org> Signed-off-by: Bruno Larsen (billionai) <bruno.larsen@eldorado.org.br> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-Id: <20210527163522.23019-1-bruno.larsen@eldorado.org.br> Signed-off-by: David Gibson <david@gibson.dropbear.id.au>
647 lines
16 KiB
C
647 lines
16 KiB
C
/*
|
|
* PowerPC gdb server stub
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
* Copyright (c) 2013 SUSE LINUX Products GmbH
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "internal.h"
|
|
|
|
static int ppc_gdb_register_len_apple(int n)
|
|
{
|
|
switch (n) {
|
|
case 0 ... 31:
|
|
/* gprs */
|
|
return 8;
|
|
case 32 ... 63:
|
|
/* fprs */
|
|
return 8;
|
|
case 64 ... 95:
|
|
return 16;
|
|
case 64 + 32: /* nip */
|
|
case 65 + 32: /* msr */
|
|
case 67 + 32: /* lr */
|
|
case 68 + 32: /* ctr */
|
|
case 70 + 32: /* fpscr */
|
|
return 8;
|
|
case 66 + 32: /* cr */
|
|
case 69 + 32: /* xer */
|
|
return 4;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int ppc_gdb_register_len(int n)
|
|
{
|
|
switch (n) {
|
|
case 0 ... 31:
|
|
/* gprs */
|
|
return sizeof(target_ulong);
|
|
case 32 ... 63:
|
|
/* fprs */
|
|
if (gdb_has_xml) {
|
|
return 0;
|
|
}
|
|
return 8;
|
|
case 66:
|
|
/* cr */
|
|
case 69:
|
|
/* xer */
|
|
return 4;
|
|
case 64:
|
|
/* nip */
|
|
case 65:
|
|
/* msr */
|
|
case 67:
|
|
/* lr */
|
|
case 68:
|
|
/* ctr */
|
|
return sizeof(target_ulong);
|
|
case 70:
|
|
/* fpscr */
|
|
if (gdb_has_xml) {
|
|
return 0;
|
|
}
|
|
return sizeof(target_ulong);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We need to present the registers to gdb in the "current" memory
|
|
* ordering. For user-only mode we get this for free;
|
|
* TARGET_WORDS_BIGENDIAN is set to the proper ordering for the
|
|
* binary, and cannot be changed. For system mode,
|
|
* TARGET_WORDS_BIGENDIAN is always set, and we must check the current
|
|
* mode of the chip to see if we're running in little-endian.
|
|
*/
|
|
void ppc_maybe_bswap_register(CPUPPCState *env, uint8_t *mem_buf, int len)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (!msr_le) {
|
|
/* do nothing */
|
|
} else if (len == 4) {
|
|
bswap32s((uint32_t *)mem_buf);
|
|
} else if (len == 8) {
|
|
bswap64s((uint64_t *)mem_buf);
|
|
} else {
|
|
g_assert_not_reached();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Old gdb always expects FP registers. Newer (xml-aware) gdb only
|
|
* expects whatever the target description contains. Due to a
|
|
* historical mishap the FP registers appear in between core integer
|
|
* regs and PC, MSR, CR, and so forth. We hack round this by giving
|
|
* the FP regs zero size when talking to a newer gdb.
|
|
*/
|
|
|
|
int ppc_cpu_gdb_read_register(CPUState *cs, GByteArray *buf, int n)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
uint8_t *mem_buf;
|
|
int r = ppc_gdb_register_len(n);
|
|
|
|
if (!r) {
|
|
return r;
|
|
}
|
|
|
|
if (n < 32) {
|
|
/* gprs */
|
|
gdb_get_regl(buf, env->gpr[n]);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32));
|
|
} else {
|
|
switch (n) {
|
|
case 64:
|
|
gdb_get_regl(buf, env->nip);
|
|
break;
|
|
case 65:
|
|
gdb_get_regl(buf, env->msr);
|
|
break;
|
|
case 66:
|
|
{
|
|
uint32_t cr = 0;
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
cr |= env->crf[i] << (32 - ((i + 1) * 4));
|
|
}
|
|
gdb_get_reg32(buf, cr);
|
|
break;
|
|
}
|
|
case 67:
|
|
gdb_get_regl(buf, env->lr);
|
|
break;
|
|
case 68:
|
|
gdb_get_regl(buf, env->ctr);
|
|
break;
|
|
case 69:
|
|
gdb_get_reg32(buf, env->xer);
|
|
break;
|
|
case 70:
|
|
gdb_get_reg32(buf, env->fpscr);
|
|
break;
|
|
}
|
|
}
|
|
mem_buf = buf->data + buf->len - r;
|
|
ppc_maybe_bswap_register(env, mem_buf, r);
|
|
return r;
|
|
}
|
|
|
|
int ppc_cpu_gdb_read_register_apple(CPUState *cs, GByteArray *buf, int n)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
uint8_t *mem_buf;
|
|
int r = ppc_gdb_register_len_apple(n);
|
|
|
|
if (!r) {
|
|
return r;
|
|
}
|
|
|
|
if (n < 32) {
|
|
/* gprs */
|
|
gdb_get_reg64(buf, env->gpr[n]);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
gdb_get_reg64(buf, *cpu_fpr_ptr(env, n - 32));
|
|
} else if (n < 96) {
|
|
/* Altivec */
|
|
gdb_get_reg64(buf, n - 64);
|
|
gdb_get_reg64(buf, 0);
|
|
} else {
|
|
switch (n) {
|
|
case 64 + 32:
|
|
gdb_get_reg64(buf, env->nip);
|
|
break;
|
|
case 65 + 32:
|
|
gdb_get_reg64(buf, env->msr);
|
|
break;
|
|
case 66 + 32:
|
|
{
|
|
uint32_t cr = 0;
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
cr |= env->crf[i] << (32 - ((i + 1) * 4));
|
|
}
|
|
gdb_get_reg32(buf, cr);
|
|
break;
|
|
}
|
|
case 67 + 32:
|
|
gdb_get_reg64(buf, env->lr);
|
|
break;
|
|
case 68 + 32:
|
|
gdb_get_reg64(buf, env->ctr);
|
|
break;
|
|
case 69 + 32:
|
|
gdb_get_reg32(buf, env->xer);
|
|
break;
|
|
case 70 + 32:
|
|
gdb_get_reg64(buf, env->fpscr);
|
|
break;
|
|
}
|
|
}
|
|
mem_buf = buf->data + buf->len - r;
|
|
ppc_maybe_bswap_register(env, mem_buf, r);
|
|
return r;
|
|
}
|
|
|
|
int ppc_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
int r = ppc_gdb_register_len(n);
|
|
|
|
if (!r) {
|
|
return r;
|
|
}
|
|
ppc_maybe_bswap_register(env, mem_buf, r);
|
|
if (n < 32) {
|
|
/* gprs */
|
|
env->gpr[n] = ldtul_p(mem_buf);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
*cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf);
|
|
} else {
|
|
switch (n) {
|
|
case 64:
|
|
env->nip = ldtul_p(mem_buf);
|
|
break;
|
|
case 65:
|
|
ppc_store_msr(env, ldtul_p(mem_buf));
|
|
break;
|
|
case 66:
|
|
{
|
|
uint32_t cr = ldl_p(mem_buf);
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
|
|
}
|
|
break;
|
|
}
|
|
case 67:
|
|
env->lr = ldtul_p(mem_buf);
|
|
break;
|
|
case 68:
|
|
env->ctr = ldtul_p(mem_buf);
|
|
break;
|
|
case 69:
|
|
env->xer = ldl_p(mem_buf);
|
|
break;
|
|
case 70:
|
|
/* fpscr */
|
|
ppc_store_fpscr(env, ldtul_p(mem_buf));
|
|
break;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
int ppc_cpu_gdb_write_register_apple(CPUState *cs, uint8_t *mem_buf, int n)
|
|
{
|
|
PowerPCCPU *cpu = POWERPC_CPU(cs);
|
|
CPUPPCState *env = &cpu->env;
|
|
int r = ppc_gdb_register_len_apple(n);
|
|
|
|
if (!r) {
|
|
return r;
|
|
}
|
|
ppc_maybe_bswap_register(env, mem_buf, r);
|
|
if (n < 32) {
|
|
/* gprs */
|
|
env->gpr[n] = ldq_p(mem_buf);
|
|
} else if (n < 64) {
|
|
/* fprs */
|
|
*cpu_fpr_ptr(env, n - 32) = ldq_p(mem_buf);
|
|
} else {
|
|
switch (n) {
|
|
case 64 + 32:
|
|
env->nip = ldq_p(mem_buf);
|
|
break;
|
|
case 65 + 32:
|
|
ppc_store_msr(env, ldq_p(mem_buf));
|
|
break;
|
|
case 66 + 32:
|
|
{
|
|
uint32_t cr = ldl_p(mem_buf);
|
|
int i;
|
|
for (i = 0; i < 8; i++) {
|
|
env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
|
|
}
|
|
break;
|
|
}
|
|
case 67 + 32:
|
|
env->lr = ldq_p(mem_buf);
|
|
break;
|
|
case 68 + 32:
|
|
env->ctr = ldq_p(mem_buf);
|
|
break;
|
|
case 69 + 32:
|
|
env->xer = ldl_p(mem_buf);
|
|
break;
|
|
case 70 + 32:
|
|
/* fpscr */
|
|
ppc_store_fpscr(env, ldq_p(mem_buf));
|
|
break;
|
|
}
|
|
}
|
|
return r;
|
|
}
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
void ppc_gdb_gen_spr_xml(PowerPCCPU *cpu)
|
|
{
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
|
|
CPUPPCState *env = &cpu->env;
|
|
GString *xml;
|
|
char *spr_name;
|
|
unsigned int num_regs = 0;
|
|
int i;
|
|
|
|
if (pcc->gdb_spr_xml) {
|
|
return;
|
|
}
|
|
|
|
xml = g_string_new("<?xml version=\"1.0\"?>");
|
|
g_string_append(xml, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
|
|
g_string_append(xml, "<feature name=\"org.qemu.power.spr\">");
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
|
|
ppc_spr_t *spr = &env->spr_cb[i];
|
|
|
|
if (!spr->name) {
|
|
continue;
|
|
}
|
|
|
|
spr_name = g_ascii_strdown(spr->name, -1);
|
|
g_string_append_printf(xml, "<reg name=\"%s\"", spr_name);
|
|
g_free(spr_name);
|
|
|
|
g_string_append_printf(xml, " bitsize=\"%d\"", TARGET_LONG_BITS);
|
|
g_string_append(xml, " group=\"spr\"/>");
|
|
|
|
/*
|
|
* GDB identifies registers based on the order they are
|
|
* presented in the XML. These ids will not match QEMU's
|
|
* representation (which follows the PowerISA).
|
|
*
|
|
* Store the position of the current register description so
|
|
* we can make the correspondence later.
|
|
*/
|
|
spr->gdb_id = num_regs;
|
|
num_regs++;
|
|
}
|
|
|
|
g_string_append(xml, "</feature>");
|
|
|
|
pcc->gdb_num_sprs = num_regs;
|
|
pcc->gdb_spr_xml = g_string_free(xml, false);
|
|
}
|
|
|
|
const char *ppc_gdb_get_dynamic_xml(CPUState *cs, const char *xml_name)
|
|
{
|
|
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
|
|
|
|
if (strcmp(xml_name, "power-spr.xml") == 0) {
|
|
return pcc->gdb_spr_xml;
|
|
}
|
|
return NULL;
|
|
}
|
|
#endif
|
|
|
|
static bool avr_need_swap(CPUPPCState *env)
|
|
{
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
return msr_le;
|
|
#else
|
|
return !msr_le;
|
|
#endif
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
static int gdb_find_spr_idx(CPUPPCState *env, int n)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(env->spr_cb); i++) {
|
|
ppc_spr_t *spr = &env->spr_cb[i];
|
|
|
|
if (spr->name && spr->gdb_id == n) {
|
|
return i;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static int gdb_get_spr_reg(CPUPPCState *env, GByteArray *buf, int n)
|
|
{
|
|
int reg;
|
|
int len;
|
|
|
|
reg = gdb_find_spr_idx(env, n);
|
|
if (reg < 0) {
|
|
return 0;
|
|
}
|
|
|
|
len = TARGET_LONG_SIZE;
|
|
gdb_get_regl(buf, env->spr[reg]);
|
|
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, len), len);
|
|
return len;
|
|
}
|
|
|
|
static int gdb_set_spr_reg(CPUPPCState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
int reg;
|
|
int len;
|
|
|
|
reg = gdb_find_spr_idx(env, n);
|
|
if (reg < 0) {
|
|
return 0;
|
|
}
|
|
|
|
len = TARGET_LONG_SIZE;
|
|
ppc_maybe_bswap_register(env, mem_buf, len);
|
|
env->spr[reg] = ldn_p(mem_buf, len);
|
|
|
|
return len;
|
|
}
|
|
#endif
|
|
|
|
static int gdb_get_float_reg(CPUPPCState *env, GByteArray *buf, int n)
|
|
{
|
|
uint8_t *mem_buf;
|
|
if (n < 32) {
|
|
gdb_get_reg64(buf, *cpu_fpr_ptr(env, n));
|
|
mem_buf = gdb_get_reg_ptr(buf, 8);
|
|
ppc_maybe_bswap_register(env, mem_buf, 8);
|
|
return 8;
|
|
}
|
|
if (n == 32) {
|
|
gdb_get_reg32(buf, env->fpscr);
|
|
mem_buf = gdb_get_reg_ptr(buf, 4);
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_set_float_reg(CPUPPCState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
ppc_maybe_bswap_register(env, mem_buf, 8);
|
|
*cpu_fpr_ptr(env, n) = ldq_p(mem_buf);
|
|
return 8;
|
|
}
|
|
if (n == 32) {
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
ppc_store_fpscr(env, ldl_p(mem_buf));
|
|
return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_get_avr_reg(CPUPPCState *env, GByteArray *buf, int n)
|
|
{
|
|
uint8_t *mem_buf;
|
|
|
|
if (n < 32) {
|
|
ppc_avr_t *avr = cpu_avr_ptr(env, n);
|
|
if (!avr_need_swap(env)) {
|
|
gdb_get_reg128(buf, avr->u64[0] , avr->u64[1]);
|
|
} else {
|
|
gdb_get_reg128(buf, avr->u64[1] , avr->u64[0]);
|
|
}
|
|
mem_buf = gdb_get_reg_ptr(buf, 16);
|
|
ppc_maybe_bswap_register(env, mem_buf, 8);
|
|
ppc_maybe_bswap_register(env, mem_buf + 8, 8);
|
|
return 16;
|
|
}
|
|
if (n == 32) {
|
|
gdb_get_reg32(buf, ppc_get_vscr(env));
|
|
mem_buf = gdb_get_reg_ptr(buf, 4);
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
return 4;
|
|
}
|
|
if (n == 33) {
|
|
gdb_get_reg32(buf, (uint32_t)env->spr[SPR_VRSAVE]);
|
|
mem_buf = gdb_get_reg_ptr(buf, 4);
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_set_avr_reg(CPUPPCState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
ppc_avr_t *avr = cpu_avr_ptr(env, n);
|
|
ppc_maybe_bswap_register(env, mem_buf, 8);
|
|
ppc_maybe_bswap_register(env, mem_buf + 8, 8);
|
|
if (!avr_need_swap(env)) {
|
|
avr->u64[0] = ldq_p(mem_buf);
|
|
avr->u64[1] = ldq_p(mem_buf + 8);
|
|
} else {
|
|
avr->u64[1] = ldq_p(mem_buf);
|
|
avr->u64[0] = ldq_p(mem_buf + 8);
|
|
}
|
|
return 16;
|
|
}
|
|
if (n == 32) {
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
ppc_store_vscr(env, ldl_p(mem_buf));
|
|
return 4;
|
|
}
|
|
if (n == 33) {
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
env->spr[SPR_VRSAVE] = (target_ulong)ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_get_spe_reg(CPUPPCState *env, GByteArray *buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
#if defined(TARGET_PPC64)
|
|
gdb_get_reg32(buf, env->gpr[n] >> 32);
|
|
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4);
|
|
#else
|
|
gdb_get_reg32(buf, env->gprh[n]);
|
|
#endif
|
|
return 4;
|
|
}
|
|
if (n == 32) {
|
|
gdb_get_reg64(buf, env->spe_acc);
|
|
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8);
|
|
return 8;
|
|
}
|
|
if (n == 33) {
|
|
gdb_get_reg32(buf, env->spe_fscr);
|
|
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 4), 4);
|
|
return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_set_spe_reg(CPUPPCState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
#if defined(TARGET_PPC64)
|
|
target_ulong lo = (uint32_t)env->gpr[n];
|
|
target_ulong hi;
|
|
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
|
|
hi = (target_ulong)ldl_p(mem_buf) << 32;
|
|
env->gpr[n] = lo | hi;
|
|
#else
|
|
env->gprh[n] = ldl_p(mem_buf);
|
|
#endif
|
|
return 4;
|
|
}
|
|
if (n == 32) {
|
|
ppc_maybe_bswap_register(env, mem_buf, 8);
|
|
env->spe_acc = ldq_p(mem_buf);
|
|
return 8;
|
|
}
|
|
if (n == 33) {
|
|
ppc_maybe_bswap_register(env, mem_buf, 4);
|
|
env->spe_fscr = ldl_p(mem_buf);
|
|
return 4;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_get_vsx_reg(CPUPPCState *env, GByteArray *buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
gdb_get_reg64(buf, *cpu_vsrl_ptr(env, n));
|
|
ppc_maybe_bswap_register(env, gdb_get_reg_ptr(buf, 8), 8);
|
|
return 8;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int gdb_set_vsx_reg(CPUPPCState *env, uint8_t *mem_buf, int n)
|
|
{
|
|
if (n < 32) {
|
|
ppc_maybe_bswap_register(env, mem_buf, 8);
|
|
*cpu_vsrl_ptr(env, n) = ldq_p(mem_buf);
|
|
return 8;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
gchar *ppc_gdb_arch_name(CPUState *cs)
|
|
{
|
|
#if defined(TARGET_PPC64)
|
|
return g_strdup("powerpc:common64");
|
|
#else
|
|
return g_strdup("powerpc:common");
|
|
#endif
|
|
}
|
|
|
|
void ppc_gdb_init(CPUState *cs, PowerPCCPUClass *pcc)
|
|
{
|
|
if (pcc->insns_flags & PPC_FLOAT) {
|
|
gdb_register_coprocessor(cs, gdb_get_float_reg, gdb_set_float_reg,
|
|
33, "power-fpu.xml", 0);
|
|
}
|
|
if (pcc->insns_flags & PPC_ALTIVEC) {
|
|
gdb_register_coprocessor(cs, gdb_get_avr_reg, gdb_set_avr_reg,
|
|
34, "power-altivec.xml", 0);
|
|
}
|
|
if (pcc->insns_flags & PPC_SPE) {
|
|
gdb_register_coprocessor(cs, gdb_get_spe_reg, gdb_set_spe_reg,
|
|
34, "power-spe.xml", 0);
|
|
}
|
|
if (pcc->insns_flags2 & PPC2_VSX) {
|
|
gdb_register_coprocessor(cs, gdb_get_vsx_reg, gdb_set_vsx_reg,
|
|
32, "power-vsx.xml", 0);
|
|
}
|
|
#ifndef CONFIG_USER_ONLY
|
|
gdb_register_coprocessor(cs, gdb_get_spr_reg, gdb_set_spr_reg,
|
|
pcc->gdb_num_sprs, "power-spr.xml", 0);
|
|
#endif
|
|
}
|