qemu-e2k/target/arm/mte_helper.c

277 lines
8.6 KiB
C

/*
* ARM v8.5-MemTag Operations
*
* Copyright (c) 2020 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude)
{
if (exclude == 0xffff) {
return 0;
}
if (offset == 0) {
while (exclude & (1 << tag)) {
tag = (tag + 1) & 15;
}
} else {
do {
do {
tag = (tag + 1) & 15;
} while (exclude & (1 << tag));
} while (--offset > 0);
}
return tag;
}
/**
* allocation_tag_mem:
* @env: the cpu environment
* @ptr_mmu_idx: the addressing regime to use for the virtual address
* @ptr: the virtual address for which to look up tag memory
* @ptr_access: the access to use for the virtual address
* @ptr_size: the number of bytes in the normal memory access
* @tag_access: the access to use for the tag memory
* @tag_size: the number of bytes in the tag memory access
* @ra: the return address for exception handling
*
* Our tag memory is formatted as a sequence of little-endian nibbles.
* That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two
* tags, with the tag at [3:0] for the lower addr and the tag at [7:4]
* for the higher addr.
*
* Here, resolve the physical address from the virtual address, and return
* a pointer to the corresponding tag byte. Exit with exception if the
* virtual address is not accessible for @ptr_access.
*
* The @ptr_size and @tag_size values may not have an obvious relation
* due to the alignment of @ptr, and the number of tag checks required.
*
* If there is no tag storage corresponding to @ptr, return NULL.
*/
static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx,
uint64_t ptr, MMUAccessType ptr_access,
int ptr_size, MMUAccessType tag_access,
int tag_size, uintptr_t ra)
{
/* Tag storage not implemented. */
return NULL;
}
uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm)
{
int rtag;
/*
* Our IMPDEF choice for GCR_EL1.RRND==1 is to behave as if
* GCR_EL1.RRND==0, always producing deterministic results.
*/
uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16);
int start = extract32(env->cp15.rgsr_el1, 0, 4);
int seed = extract32(env->cp15.rgsr_el1, 8, 16);
int offset, i;
/* RandomTag */
for (i = offset = 0; i < 4; ++i) {
/* NextRandomTagBit */
int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^
extract32(seed, 2, 1) ^ extract32(seed, 0, 1));
seed = (top << 15) | (seed >> 1);
offset |= top << i;
}
rtag = choose_nonexcluded_tag(start, offset, exclude);
env->cp15.rgsr_el1 = rtag | (seed << 8);
return address_with_allocation_tag(rn, rtag);
}
uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr,
int32_t offset, uint32_t tag_offset)
{
int start_tag = allocation_tag_from_addr(ptr);
uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16);
int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude);
return address_with_allocation_tag(ptr + offset, rtag);
}
static int load_tag1(uint64_t ptr, uint8_t *mem)
{
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
return extract32(*mem, ofs, 4);
}
uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
int mmu_idx = cpu_mmu_index(env, false);
uint8_t *mem;
int rtag = 0;
/* Trap if accessing an invalid page. */
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1,
MMU_DATA_LOAD, 1, GETPC());
/* Load if page supports tags. */
if (mem) {
rtag = load_tag1(ptr, mem);
}
return address_with_allocation_tag(xt, rtag);
}
static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra)
{
if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) {
arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE,
cpu_mmu_index(env, false), ra);
g_assert_not_reached();
}
}
/* For use in a non-parallel context, store to the given nibble. */
static void store_tag1(uint64_t ptr, uint8_t *mem, int tag)
{
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
*mem = deposit32(*mem, ofs, 4, tag);
}
/* For use in a parallel context, atomically store to the given nibble. */
static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag)
{
int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4;
uint8_t old = atomic_read(mem);
while (1) {
uint8_t new = deposit32(old, ofs, 4, tag);
uint8_t cmp = atomic_cmpxchg(mem, old, new);
if (likely(cmp == old)) {
return;
}
old = cmp;
}
}
typedef void stg_store1(uint64_t, uint8_t *, int);
static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt,
uintptr_t ra, stg_store1 store1)
{
int mmu_idx = cpu_mmu_index(env, false);
uint8_t *mem;
check_tag_aligned(env, ptr, ra);
/* Trap if accessing an invalid page. */
mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE,
MMU_DATA_STORE, 1, ra);
/* Store if page supports tags. */
if (mem) {
store1(ptr, mem, allocation_tag_from_addr(xt));
}
}
void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_stg(env, ptr, xt, GETPC(), store_tag1);
}
void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_stg(env, ptr, xt, GETPC(), store_tag1_parallel);
}
void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr)
{
int mmu_idx = cpu_mmu_index(env, false);
uintptr_t ra = GETPC();
check_tag_aligned(env, ptr, ra);
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
}
static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt,
uintptr_t ra, stg_store1 store1)
{
int mmu_idx = cpu_mmu_index(env, false);
int tag = allocation_tag_from_addr(xt);
uint8_t *mem1, *mem2;
check_tag_aligned(env, ptr, ra);
/*
* Trap if accessing an invalid page(s).
* This takes priority over !allocation_tag_access_enabled.
*/
if (ptr & TAG_GRANULE) {
/* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
TAG_GRANULE, MMU_DATA_STORE, 1, ra);
mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE,
MMU_DATA_STORE, TAG_GRANULE,
MMU_DATA_STORE, 1, ra);
/* Store if page(s) support tags. */
if (mem1) {
store1(TAG_GRANULE, mem1, tag);
}
if (mem2) {
store1(0, mem2, tag);
}
} else {
/* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */
mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE,
2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra);
if (mem1) {
tag |= tag << 4;
atomic_set(mem1, tag);
}
}
}
void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_st2g(env, ptr, xt, GETPC(), store_tag1);
}
void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt)
{
do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel);
}
void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr)
{
int mmu_idx = cpu_mmu_index(env, false);
uintptr_t ra = GETPC();
int in_page = -(ptr | TARGET_PAGE_MASK);
check_tag_aligned(env, ptr, ra);
if (likely(in_page >= 2 * TAG_GRANULE)) {
probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra);
} else {
probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra);
probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra);
}
}