qemu-e2k/hw/ppc.c

1278 lines
38 KiB
C

/*
* QEMU generic PowerPC hardware System Emulator
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "ppc.h"
#include "qemu-timer.h"
#include "sysemu.h"
#include "nvram.h"
#include "qemu-log.h"
#include "loader.h"
//#define PPC_DEBUG_IRQ
//#define PPC_DEBUG_TB
#ifdef PPC_DEBUG_IRQ
# define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
#else
# define LOG_IRQ(...) do { } while (0)
#endif
#ifdef PPC_DEBUG_TB
# define LOG_TB(...) qemu_log(__VA_ARGS__)
#else
# define LOG_TB(...) do { } while (0)
#endif
static void cpu_ppc_tb_stop (CPUState *env);
static void cpu_ppc_tb_start (CPUState *env);
static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
{
if (level) {
env->pending_interrupts |= 1 << n_IRQ;
cpu_interrupt(env, CPU_INTERRUPT_HARD);
} else {
env->pending_interrupts &= ~(1 << n_IRQ);
if (env->pending_interrupts == 0)
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
"req %08x\n", __func__, env, n_IRQ, level,
env->pending_interrupts, env->interrupt_request);
}
/* PowerPC 6xx / 7xx internal IRQ controller */
static void ppc6xx_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPC6xx_INPUT_TBEN:
/* Level sensitive - active high */
LOG_IRQ("%s: %s the time base\n",
__func__, level ? "start" : "stop");
if (level) {
cpu_ppc_tb_start(env);
} else {
cpu_ppc_tb_stop(env);
}
case PPC6xx_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the external IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPC6xx_INPUT_SMI:
/* Level sensitive - active high */
LOG_IRQ("%s: set the SMI IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
break;
case PPC6xx_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
LOG_IRQ("%s: raise machine check state\n",
__func__);
ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC6xx_INPUT_CKSTP_IN:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
/* XXX: Note that the only way to restart the CPU is to reset it */
if (level) {
LOG_IRQ("%s: stop the CPU\n", __func__);
env->halted = 1;
}
break;
case PPC6xx_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
LOG_IRQ("%s: reset the CPU\n", __func__);
env->interrupt_request |= CPU_INTERRUPT_EXITTB;
/* XXX: TOFIX */
#if 0
cpu_ppc_reset(env);
#else
qemu_system_reset_request();
#endif
}
break;
case PPC6xx_INPUT_SRESET:
LOG_IRQ("%s: set the RESET IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc6xx_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
PPC6xx_INPUT_NB);
}
#if defined(TARGET_PPC64)
/* PowerPC 970 internal IRQ controller */
static void ppc970_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPC970_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the external IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPC970_INPUT_THINT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
level);
ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
break;
case PPC970_INPUT_MCP:
/* Negative edge sensitive */
/* XXX: TODO: actual reaction may depends on HID0 status
* 603/604/740/750: check HID0[EMCP]
*/
if (cur_level == 1 && level == 0) {
LOG_IRQ("%s: raise machine check state\n",
__func__);
ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
}
break;
case PPC970_INPUT_CKSTP:
/* Level sensitive - active low */
/* XXX: TODO: relay the signal to CKSTP_OUT pin */
if (level) {
LOG_IRQ("%s: stop the CPU\n", __func__);
env->halted = 1;
} else {
LOG_IRQ("%s: restart the CPU\n", __func__);
env->halted = 0;
}
break;
case PPC970_INPUT_HRESET:
/* Level sensitive - active low */
if (level) {
#if 0 // XXX: TOFIX
LOG_IRQ("%s: reset the CPU\n", __func__);
cpu_reset(env);
#endif
}
break;
case PPC970_INPUT_SRESET:
LOG_IRQ("%s: set the RESET IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
break;
case PPC970_INPUT_TBEN:
LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
level);
/* XXX: TODO */
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc970_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
PPC970_INPUT_NB);
}
#endif /* defined(TARGET_PPC64) */
/* PowerPC 40x internal IRQ controller */
static void ppc40x_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPC40x_INPUT_RESET_SYS:
if (level) {
LOG_IRQ("%s: reset the PowerPC system\n",
__func__);
ppc40x_system_reset(env);
}
break;
case PPC40x_INPUT_RESET_CHIP:
if (level) {
LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
ppc40x_chip_reset(env);
}
break;
case PPC40x_INPUT_RESET_CORE:
/* XXX: TODO: update DBSR[MRR] */
if (level) {
LOG_IRQ("%s: reset the PowerPC core\n", __func__);
ppc40x_core_reset(env);
}
break;
case PPC40x_INPUT_CINT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the critical IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
break;
case PPC40x_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the external IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPC40x_INPUT_HALT:
/* Level sensitive - active low */
if (level) {
LOG_IRQ("%s: stop the CPU\n", __func__);
env->halted = 1;
} else {
LOG_IRQ("%s: restart the CPU\n", __func__);
env->halted = 0;
}
break;
case PPC40x_INPUT_DEBUG:
/* Level sensitive - active high */
LOG_IRQ("%s: set the debug pin state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppc40x_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
env, PPC40x_INPUT_NB);
}
/* PowerPC E500 internal IRQ controller */
static void ppce500_set_irq (void *opaque, int pin, int level)
{
CPUState *env = opaque;
int cur_level;
LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
env, pin, level);
cur_level = (env->irq_input_state >> pin) & 1;
/* Don't generate spurious events */
if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
switch (pin) {
case PPCE500_INPUT_MCK:
if (level) {
LOG_IRQ("%s: reset the PowerPC system\n",
__func__);
qemu_system_reset_request();
}
break;
case PPCE500_INPUT_RESET_CORE:
if (level) {
LOG_IRQ("%s: reset the PowerPC core\n", __func__);
ppc_set_irq(env, PPC_INTERRUPT_MCK, level);
}
break;
case PPCE500_INPUT_CINT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the critical IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
break;
case PPCE500_INPUT_INT:
/* Level sensitive - active high */
LOG_IRQ("%s: set the core IRQ state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
break;
case PPCE500_INPUT_DEBUG:
/* Level sensitive - active high */
LOG_IRQ("%s: set the debug pin state to %d\n",
__func__, level);
ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
break;
default:
/* Unknown pin - do nothing */
LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
return;
}
if (level)
env->irq_input_state |= 1 << pin;
else
env->irq_input_state &= ~(1 << pin);
}
}
void ppce500_irq_init (CPUState *env)
{
env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
env, PPCE500_INPUT_NB);
}
/*****************************************************************************/
/* PowerPC time base and decrementer emulation */
struct ppc_tb_t {
/* Time base management */
int64_t tb_offset; /* Compensation */
int64_t atb_offset; /* Compensation */
uint32_t tb_freq; /* TB frequency */
/* Decrementer management */
uint64_t decr_next; /* Tick for next decr interrupt */
uint32_t decr_freq; /* decrementer frequency */
struct QEMUTimer *decr_timer;
/* Hypervisor decrementer management */
uint64_t hdecr_next; /* Tick for next hdecr interrupt */
struct QEMUTimer *hdecr_timer;
uint64_t purr_load;
uint64_t purr_start;
void *opaque;
};
static inline uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk,
int64_t tb_offset)
{
/* TB time in tb periods */
return muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec()) + tb_offset;
}
uint32_t cpu_ppc_load_tbl (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb & 0xFFFFFFFF;
}
static inline uint32_t _cpu_ppc_load_tbu(CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb >> 32;
}
uint32_t cpu_ppc_load_tbu (CPUState *env)
{
return _cpu_ppc_load_tbu(env);
}
static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
int64_t *tb_offsetp, uint64_t value)
{
*tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, get_ticks_per_sec());
LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
__func__, value, *tb_offsetp);
}
void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->tb_offset, tb | (uint64_t)value);
}
static inline void _cpu_ppc_store_tbu(CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->tb_offset, ((uint64_t)value << 32) | tb);
}
void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
{
_cpu_ppc_store_tbu(env, value);
}
uint32_t cpu_ppc_load_atbl (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb & 0xFFFFFFFF;
}
uint32_t cpu_ppc_load_atbu (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
return tb >> 32;
}
void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
tb &= 0xFFFFFFFF00000000ULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->atb_offset, tb | (uint64_t)value);
}
void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb;
tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
tb &= 0x00000000FFFFFFFFULL;
cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
&tb_env->atb_offset, ((uint64_t)value << 32) | tb);
}
static void cpu_ppc_tb_stop (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is already frozen, do nothing */
if (tb_env->tb_freq != 0) {
vmclk = qemu_get_clock(vm_clock);
/* Get the time base */
tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
/* Get the alternate time base */
atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
/* Store the time base value (ie compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value (compute the current offset) */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
/* Set the time base frequency to zero */
tb_env->tb_freq = 0;
/* Now, the time bases are frozen to tb_offset / atb_offset value */
}
}
static void cpu_ppc_tb_start (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t tb, atb, vmclk;
/* If the time base is not frozen, do nothing */
if (tb_env->tb_freq == 0) {
vmclk = qemu_get_clock(vm_clock);
/* Get the time base from tb_offset */
tb = tb_env->tb_offset;
/* Get the alternate time base from atb_offset */
atb = tb_env->atb_offset;
/* Restore the tb frequency from the decrementer frequency */
tb_env->tb_freq = tb_env->decr_freq;
/* Store the time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
/* Store the alternate time base value */
cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
}
}
static inline uint32_t _cpu_ppc_load_decr(CPUState *env, uint64_t next)
{
ppc_tb_t *tb_env = env->tb_env;
uint32_t decr;
int64_t diff;
diff = next - qemu_get_clock(vm_clock);
if (diff >= 0)
decr = muldiv64(diff, tb_env->decr_freq, get_ticks_per_sec());
else
decr = -muldiv64(-diff, tb_env->decr_freq, get_ticks_per_sec());
LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
return decr;
}
uint32_t cpu_ppc_load_decr (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return _cpu_ppc_load_decr(env, tb_env->decr_next);
}
uint32_t cpu_ppc_load_hdecr (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
return _cpu_ppc_load_decr(env, tb_env->hdecr_next);
}
uint64_t cpu_ppc_load_purr (CPUState *env)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t diff;
diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, get_ticks_per_sec());
}
/* When decrementer expires,
* all we need to do is generate or queue a CPU exception
*/
static inline void cpu_ppc_decr_excp(CPUState *env)
{
/* Raise it */
LOG_TB("raise decrementer exception\n");
ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
}
static inline void cpu_ppc_hdecr_excp(CPUState *env)
{
/* Raise it */
LOG_TB("raise decrementer exception\n");
ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
}
static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
struct QEMUTimer *timer,
void (*raise_excp)(CPUState *),
uint32_t decr, uint32_t value,
int is_excp)
{
ppc_tb_t *tb_env = env->tb_env;
uint64_t now, next;
LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
decr, value);
now = qemu_get_clock(vm_clock);
next = now + muldiv64(value, get_ticks_per_sec(), tb_env->decr_freq);
if (is_excp)
next += *nextp - now;
if (next == now)
next++;
*nextp = next;
/* Adjust timer */
qemu_mod_timer(timer, next);
/* If we set a negative value and the decrementer was positive,
* raise an exception.
*/
if ((value & 0x80000000) && !(decr & 0x80000000))
(*raise_excp)(env);
}
static inline void _cpu_ppc_store_decr(CPUState *env, uint32_t decr,
uint32_t value, int is_excp)
{
ppc_tb_t *tb_env = env->tb_env;
__cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
&cpu_ppc_decr_excp, decr, value, is_excp);
}
void cpu_ppc_store_decr (CPUState *env, uint32_t value)
{
_cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
}
static void cpu_ppc_decr_cb (void *opaque)
{
_cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
}
static inline void _cpu_ppc_store_hdecr(CPUState *env, uint32_t hdecr,
uint32_t value, int is_excp)
{
ppc_tb_t *tb_env = env->tb_env;
if (tb_env->hdecr_timer != NULL) {
__cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
&cpu_ppc_hdecr_excp, hdecr, value, is_excp);
}
}
void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
{
_cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
}
static void cpu_ppc_hdecr_cb (void *opaque)
{
_cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
}
void cpu_ppc_store_purr (CPUState *env, uint64_t value)
{
ppc_tb_t *tb_env = env->tb_env;
tb_env->purr_load = value;
tb_env->purr_start = qemu_get_clock(vm_clock);
}
static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
{
CPUState *env = opaque;
ppc_tb_t *tb_env = env->tb_env;
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
/* There is a bug in Linux 2.4 kernels:
* if a decrementer exception is pending when it enables msr_ee at startup,
* it's not ready to handle it...
*/
_cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
_cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
cpu_ppc_store_purr(env, 0x0000000000000000ULL);
}
/* Set up (once) timebase frequency (in Hz) */
clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
{
ppc_tb_t *tb_env;
tb_env = qemu_mallocz(sizeof(ppc_tb_t));
env->tb_env = tb_env;
/* Create new timer */
tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
if (0) {
/* XXX: find a suitable condition to enable the hypervisor decrementer
*/
tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
} else {
tb_env->hdecr_timer = NULL;
}
cpu_ppc_set_tb_clk(env, freq);
return &cpu_ppc_set_tb_clk;
}
/* Specific helpers for POWER & PowerPC 601 RTC */
#if 0
static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
{
return cpu_ppc_tb_init(env, 7812500);
}
#endif
void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
{
_cpu_ppc_store_tbu(env, value);
}
uint32_t cpu_ppc601_load_rtcu (CPUState *env)
{
return _cpu_ppc_load_tbu(env);
}
void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
{
cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
}
uint32_t cpu_ppc601_load_rtcl (CPUState *env)
{
return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
}
/*****************************************************************************/
/* Embedded PowerPC timers */
/* PIT, FIT & WDT */
typedef struct ppcemb_timer_t ppcemb_timer_t;
struct ppcemb_timer_t {
uint64_t pit_reload; /* PIT auto-reload value */
uint64_t fit_next; /* Tick for next FIT interrupt */
struct QEMUTimer *fit_timer;
uint64_t wdt_next; /* Tick for next WDT interrupt */
struct QEMUTimer *wdt_timer;
};
/* Fixed interval timer */
static void cpu_4xx_fit_cb (void *opaque)
{
CPUState *env;
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
uint64_t now, next;
env = opaque;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
now = qemu_get_clock(vm_clock);
switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
case 0:
next = 1 << 9;
break;
case 1:
next = 1 << 13;
break;
case 2:
next = 1 << 17;
break;
case 3:
next = 1 << 21;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + muldiv64(next, get_ticks_per_sec(), tb_env->tb_freq);
if (next == now)
next++;
qemu_mod_timer(ppcemb_timer->fit_timer, next);
env->spr[SPR_40x_TSR] |= 1 << 26;
if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
(int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
}
/* Programmable interval timer */
static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
{
ppcemb_timer_t *ppcemb_timer;
uint64_t now, next;
ppcemb_timer = tb_env->opaque;
if (ppcemb_timer->pit_reload <= 1 ||
!((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
(is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
/* Stop PIT */
LOG_TB("%s: stop PIT\n", __func__);
qemu_del_timer(tb_env->decr_timer);
} else {
LOG_TB("%s: start PIT %016" PRIx64 "\n",
__func__, ppcemb_timer->pit_reload);
now = qemu_get_clock(vm_clock);
next = now + muldiv64(ppcemb_timer->pit_reload,
get_ticks_per_sec(), tb_env->decr_freq);
if (is_excp)
next += tb_env->decr_next - now;
if (next == now)
next++;
qemu_mod_timer(tb_env->decr_timer, next);
tb_env->decr_next = next;
}
}
static void cpu_4xx_pit_cb (void *opaque)
{
CPUState *env;
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
env = opaque;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
env->spr[SPR_40x_TSR] |= 1 << 27;
if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
start_stop_pit(env, tb_env, 1);
LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
"%016" PRIx64 "\n", __func__,
(int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
(int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
ppcemb_timer->pit_reload);
}
/* Watchdog timer */
static void cpu_4xx_wdt_cb (void *opaque)
{
CPUState *env;
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
uint64_t now, next;
env = opaque;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
now = qemu_get_clock(vm_clock);
switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
case 0:
next = 1 << 17;
break;
case 1:
next = 1 << 21;
break;
case 2:
next = 1 << 25;
break;
case 3:
next = 1 << 29;
break;
default:
/* Cannot occur, but makes gcc happy */
return;
}
next = now + muldiv64(next, get_ticks_per_sec(), tb_env->decr_freq);
if (next == now)
next++;
LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
case 0x0:
case 0x1:
qemu_mod_timer(ppcemb_timer->wdt_timer, next);
ppcemb_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1 << 31;
break;
case 0x2:
qemu_mod_timer(ppcemb_timer->wdt_timer, next);
ppcemb_timer->wdt_next = next;
env->spr[SPR_40x_TSR] |= 1 << 30;
if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
break;
case 0x3:
env->spr[SPR_40x_TSR] &= ~0x30000000;
env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
case 0x0:
/* No reset */
break;
case 0x1: /* Core reset */
ppc40x_core_reset(env);
break;
case 0x2: /* Chip reset */
ppc40x_chip_reset(env);
break;
case 0x3: /* System reset */
ppc40x_system_reset(env);
break;
}
}
}
void store_40x_pit (CPUState *env, target_ulong val)
{
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
tb_env = env->tb_env;
ppcemb_timer = tb_env->opaque;
LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
ppcemb_timer->pit_reload = val;
start_stop_pit(env, tb_env, 0);
}
target_ulong load_40x_pit (CPUState *env)
{
return cpu_ppc_load_decr(env);
}
void store_booke_tsr (CPUState *env, target_ulong val)
{
LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
if (val & 0x80000000)
ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
}
void store_booke_tcr (CPUState *env, target_ulong val)
{
ppc_tb_t *tb_env;
tb_env = env->tb_env;
LOG_TB("%s: val " TARGET_FMT_lx "\n", __func__, val);
env->spr[SPR_40x_TCR] = val & 0xFFC00000;
start_stop_pit(env, tb_env, 1);
cpu_4xx_wdt_cb(env);
}
static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
{
CPUState *env = opaque;
ppc_tb_t *tb_env = env->tb_env;
LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
freq);
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
/* XXX: we should also update all timers */
}
clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
{
ppc_tb_t *tb_env;
ppcemb_timer_t *ppcemb_timer;
tb_env = qemu_mallocz(sizeof(ppc_tb_t));
env->tb_env = tb_env;
ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
tb_env->tb_freq = freq;
tb_env->decr_freq = freq;
tb_env->opaque = ppcemb_timer;
LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
if (ppcemb_timer != NULL) {
/* We use decr timer for PIT */
tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
ppcemb_timer->fit_timer =
qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
ppcemb_timer->wdt_timer =
qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
}
return &ppc_emb_set_tb_clk;
}
/*****************************************************************************/
/* Embedded PowerPC Device Control Registers */
typedef struct ppc_dcrn_t ppc_dcrn_t;
struct ppc_dcrn_t {
dcr_read_cb dcr_read;
dcr_write_cb dcr_write;
void *opaque;
};
/* XXX: on 460, DCR addresses are 32 bits wide,
* using DCRIPR to get the 22 upper bits of the DCR address
*/
#define DCRN_NB 1024
struct ppc_dcr_t {
ppc_dcrn_t dcrn[DCRN_NB];
int (*read_error)(int dcrn);
int (*write_error)(int dcrn);
};
int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_read == NULL)
goto error;
*valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
return 0;
error:
if (dcr_env->read_error != NULL)
return (*dcr_env->read_error)(dcrn);
return -1;
}
int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
{
ppc_dcrn_t *dcr;
if (dcrn < 0 || dcrn >= DCRN_NB)
goto error;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->dcr_write == NULL)
goto error;
(*dcr->dcr_write)(dcr->opaque, dcrn, val);
return 0;
error:
if (dcr_env->write_error != NULL)
return (*dcr_env->write_error)(dcrn);
return -1;
}
int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
dcr_read_cb dcr_read, dcr_write_cb dcr_write)
{
ppc_dcr_t *dcr_env;
ppc_dcrn_t *dcr;
dcr_env = env->dcr_env;
if (dcr_env == NULL)
return -1;
if (dcrn < 0 || dcrn >= DCRN_NB)
return -1;
dcr = &dcr_env->dcrn[dcrn];
if (dcr->opaque != NULL ||
dcr->dcr_read != NULL ||
dcr->dcr_write != NULL)
return -1;
dcr->opaque = opaque;
dcr->dcr_read = dcr_read;
dcr->dcr_write = dcr_write;
return 0;
}
int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
int (*write_error)(int dcrn))
{
ppc_dcr_t *dcr_env;
dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
dcr_env->read_error = read_error;
dcr_env->write_error = write_error;
env->dcr_env = dcr_env;
return 0;
}
#if 0
/*****************************************************************************/
/* Handle system reset (for now, just stop emulation) */
void cpu_ppc_reset (CPUState *env)
{
printf("Reset asked... Stop emulation\n");
abort();
}
#endif
/*****************************************************************************/
/* Debug port */
void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
{
addr &= 0xF;
switch (addr) {
case 0:
printf("%c", val);
break;
case 1:
printf("\n");
fflush(stdout);
break;
case 2:
printf("Set loglevel to %04" PRIx32 "\n", val);
cpu_set_log(val | 0x100);
break;
}
}
/*****************************************************************************/
/* NVRAM helpers */
static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
{
return (*nvram->read_fn)(nvram->opaque, addr);;
}
static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
{
(*nvram->write_fn)(nvram->opaque, addr, val);
}
void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
{
nvram_write(nvram, addr, value);
}
uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
{
return nvram_read(nvram, addr);
}
void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
{
nvram_write(nvram, addr, value >> 8);
nvram_write(nvram, addr + 1, value & 0xFF);
}
uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
{
uint16_t tmp;
tmp = nvram_read(nvram, addr) << 8;
tmp |= nvram_read(nvram, addr + 1);
return tmp;
}
void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
{
nvram_write(nvram, addr, value >> 24);
nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
nvram_write(nvram, addr + 3, value & 0xFF);
}
uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
{
uint32_t tmp;
tmp = nvram_read(nvram, addr) << 24;
tmp |= nvram_read(nvram, addr + 1) << 16;
tmp |= nvram_read(nvram, addr + 2) << 8;
tmp |= nvram_read(nvram, addr + 3);
return tmp;
}
void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
const char *str, uint32_t max)
{
int i;
for (i = 0; i < max && str[i] != '\0'; i++) {
nvram_write(nvram, addr + i, str[i]);
}
nvram_write(nvram, addr + i, str[i]);
nvram_write(nvram, addr + max - 1, '\0');
}
int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
{
int i;
memset(dst, 0, max);
for (i = 0; i < max; i++) {
dst[i] = NVRAM_get_byte(nvram, addr + i);
if (dst[i] == '\0')
break;
}
return i;
}
static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
{
uint16_t tmp;
uint16_t pd, pd1, pd2;
tmp = prev >> 8;
pd = prev ^ value;
pd1 = pd & 0x000F;
pd2 = ((pd >> 4) & 0x000F) ^ pd1;
tmp ^= (pd1 << 3) | (pd1 << 8);
tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
return tmp;
}
static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
{
uint32_t i;
uint16_t crc = 0xFFFF;
int odd;
odd = count & 1;
count &= ~1;
for (i = 0; i != count; i++) {
crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
}
if (odd) {
crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
}
return crc;
}
#define CMDLINE_ADDR 0x017ff000
int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
const char *arch,
uint32_t RAM_size, int boot_device,
uint32_t kernel_image, uint32_t kernel_size,
const char *cmdline,
uint32_t initrd_image, uint32_t initrd_size,
uint32_t NVRAM_image,
int width, int height, int depth)
{
uint16_t crc;
/* Set parameters for Open Hack'Ware BIOS */
NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
NVRAM_set_word(nvram, 0x14, NVRAM_size);
NVRAM_set_string(nvram, 0x20, arch, 16);
NVRAM_set_lword(nvram, 0x30, RAM_size);
NVRAM_set_byte(nvram, 0x34, boot_device);
NVRAM_set_lword(nvram, 0x38, kernel_image);
NVRAM_set_lword(nvram, 0x3C, kernel_size);
if (cmdline) {
/* XXX: put the cmdline in NVRAM too ? */
pstrcpy_targphys(CMDLINE_ADDR, RAM_size - CMDLINE_ADDR, cmdline);
NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
} else {
NVRAM_set_lword(nvram, 0x40, 0);
NVRAM_set_lword(nvram, 0x44, 0);
}
NVRAM_set_lword(nvram, 0x48, initrd_image);
NVRAM_set_lword(nvram, 0x4C, initrd_size);
NVRAM_set_lword(nvram, 0x50, NVRAM_image);
NVRAM_set_word(nvram, 0x54, width);
NVRAM_set_word(nvram, 0x56, height);
NVRAM_set_word(nvram, 0x58, depth);
crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
NVRAM_set_word(nvram, 0xFC, crc);
return 0;
}