qemu-e2k/target/arm/cpregs.h
Peter Maydell daf9b4a00f target/arm: Implement FEAT_NV2 redirection of sysregs to RAM
FEAT_NV2 requires that when HCR_EL2.{NV,NV2} == 0b11 then accesses by
EL1 to certain system registers are redirected to RAM.  The full list
of affected registers is in the table in rule R_CSRPQ in the Arm ARM.
The registers may be normally accessible at EL1 (like ACTLR_EL1), or
normally UNDEF at EL1 (like HCR_EL2).  Some registers redirect to RAM
only when HCR_EL2.NV1 is 0, and some only when HCR_EL2.NV1 is 1;
others trap in both cases.

Add the infrastructure for identifying which registers should be
redirected and turning them into memory accesses.

This code does not set the correct syndrome or arrange for the
exception to be taken to the correct target EL if the access via
VNCR_EL2 faults; we will do that in the next commit.

Subsequent commits will mark up the relevant regdefs to set their
nv2_redirect_offset, and if relevant one of the two flags which
indicates that the redirect happens only for a particular value of
HCR_EL2.NV1.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Tested-by: Miguel Luis <miguel.luis@oracle.com>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
2024-01-09 14:43:53 +00:00

1135 lines
42 KiB
C

/*
* QEMU ARM CP Register access and descriptions
*
* Copyright (c) 2022 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#ifndef TARGET_ARM_CPREGS_H
#define TARGET_ARM_CPREGS_H
/*
* ARMCPRegInfo type field bits:
*/
enum {
/*
* Register must be handled specially during translation.
* The method is one of the values below:
*/
ARM_CP_SPECIAL_MASK = 0x000f,
/* Special: no change to PE state: writes ignored, reads ignored. */
ARM_CP_NOP = 0x0001,
/* Special: sysreg is WFI, for v5 and v6. */
ARM_CP_WFI = 0x0002,
/* Special: sysreg is NZCV. */
ARM_CP_NZCV = 0x0003,
/* Special: sysreg is CURRENTEL. */
ARM_CP_CURRENTEL = 0x0004,
/* Special: sysreg is DC ZVA or similar. */
ARM_CP_DC_ZVA = 0x0005,
ARM_CP_DC_GVA = 0x0006,
ARM_CP_DC_GZVA = 0x0007,
/* Flag: reads produce resetvalue; writes ignored. */
ARM_CP_CONST = 1 << 4,
/* Flag: For ARM_CP_STATE_AA32, sysreg is 64-bit. */
ARM_CP_64BIT = 1 << 5,
/*
* Flag: TB should not be ended after a write to this register
* (the default is that the TB ends after cp writes).
*/
ARM_CP_SUPPRESS_TB_END = 1 << 6,
/*
* Flag: Permit a register definition to override a previous definition
* for the same (cp, is64, crn, crm, opc1, opc2) tuple: either the new
* or the old must have the ARM_CP_OVERRIDE bit set.
*/
ARM_CP_OVERRIDE = 1 << 7,
/*
* Flag: Register is an alias view of some underlying state which is also
* visible via another register, and that the other register is handling
* migration and reset; registers marked ARM_CP_ALIAS will not be migrated
* but may have their state set by syncing of register state from KVM.
*/
ARM_CP_ALIAS = 1 << 8,
/*
* Flag: Register does I/O and therefore its accesses need to be marked
* with translator_io_start() and also end the TB. In particular,
* registers which implement clocks or timers require this.
*/
ARM_CP_IO = 1 << 9,
/*
* Flag: Register has no underlying state and does not support raw access
* for state saving/loading; it will not be used for either migration or
* KVM state synchronization. Typically this is for "registers" which are
* actually used as instructions for cache maintenance and so on.
*/
ARM_CP_NO_RAW = 1 << 10,
/*
* Flag: The read or write hook might raise an exception; the generated
* code will synchronize the CPU state before calling the hook so that it
* is safe for the hook to call raise_exception().
*/
ARM_CP_RAISES_EXC = 1 << 11,
/*
* Flag: Writes to the sysreg might change the exception level - typically
* on older ARM chips. For those cases we need to re-read the new el when
* recomputing the translation flags.
*/
ARM_CP_NEWEL = 1 << 12,
/*
* Flag: Access check for this sysreg is identical to accessing FPU state
* from an instruction: use translation fp_access_check().
*/
ARM_CP_FPU = 1 << 13,
/*
* Flag: Access check for this sysreg is identical to accessing SVE state
* from an instruction: use translation sve_access_check().
*/
ARM_CP_SVE = 1 << 14,
/* Flag: Do not expose in gdb sysreg xml. */
ARM_CP_NO_GDB = 1 << 15,
/*
* Flags: If EL3 but not EL2...
* - UNDEF: discard the cpreg,
* - KEEP: retain the cpreg as is,
* - C_NZ: set const on the cpreg, but retain resetvalue,
* - else: set const on the cpreg, zero resetvalue, aka RES0.
* See rule RJFFP in section D1.1.3 of DDI0487H.a.
*/
ARM_CP_EL3_NO_EL2_UNDEF = 1 << 16,
ARM_CP_EL3_NO_EL2_KEEP = 1 << 17,
ARM_CP_EL3_NO_EL2_C_NZ = 1 << 18,
/*
* Flag: Access check for this sysreg is constrained by the
* ARM pseudocode function CheckSMEAccess().
*/
ARM_CP_SME = 1 << 19,
/*
* Flag: one of the four EL2 registers which redirect to the
* equivalent EL1 register when FEAT_NV2 is enabled.
*/
ARM_CP_NV2_REDIRECT = 1 << 20,
};
/*
* Interface for defining coprocessor registers.
* Registers are defined in tables of arm_cp_reginfo structs
* which are passed to define_arm_cp_regs().
*/
/*
* When looking up a coprocessor register we look for it
* via an integer which encodes all of:
* coprocessor number
* Crn, Crm, opc1, opc2 fields
* 32 or 64 bit register (ie is it accessed via MRC/MCR
* or via MRRC/MCRR?)
* non-secure/secure bank (AArch32 only)
* We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
* (In this case crn and opc2 should be zero.)
* For AArch64, there is no 32/64 bit size distinction;
* instead all registers have a 2 bit op0, 3 bit op1 and op2,
* and 4 bit CRn and CRm. The encoding patterns are chosen
* to be easy to convert to and from the KVM encodings, and also
* so that the hashtable can contain both AArch32 and AArch64
* registers (to allow for interprocessing where we might run
* 32 bit code on a 64 bit core).
*/
/*
* This bit is private to our hashtable cpreg; in KVM register
* IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
* in the upper bits of the 64 bit ID.
*/
#define CP_REG_AA64_SHIFT 28
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
/*
* To enable banking of coprocessor registers depending on ns-bit we
* add a bit to distinguish between secure and non-secure cpregs in the
* hashtable.
*/
#define CP_REG_NS_SHIFT 29
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
(CP_REG_AA64_MASK | \
((cp) << CP_REG_ARM_COPROC_SHIFT) | \
((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
/*
* Convert a full 64 bit KVM register ID to the truncated 32 bit
* version used as a key for the coprocessor register hashtable
*/
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
{
uint32_t cpregid = kvmid;
if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
cpregid |= CP_REG_AA64_MASK;
} else {
if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
cpregid |= (1 << 15);
}
/*
* KVM is always non-secure so add the NS flag on AArch32 register
* entries.
*/
cpregid |= 1 << CP_REG_NS_SHIFT;
}
return cpregid;
}
/*
* Convert a truncated 32 bit hashtable key into the full
* 64 bit KVM register ID.
*/
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
{
uint64_t kvmid;
if (cpregid & CP_REG_AA64_MASK) {
kvmid = cpregid & ~CP_REG_AA64_MASK;
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
} else {
kvmid = cpregid & ~(1 << 15);
if (cpregid & (1 << 15)) {
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
} else {
kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
}
}
return kvmid;
}
/*
* Valid values for ARMCPRegInfo state field, indicating which of
* the AArch32 and AArch64 execution states this register is visible in.
* If the reginfo doesn't explicitly specify then it is AArch32 only.
* If the reginfo is declared to be visible in both states then a second
* reginfo is synthesised for the AArch32 view of the AArch64 register,
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
* Note that we rely on the values of these enums as we iterate through
* the various states in some places.
*/
typedef enum {
ARM_CP_STATE_AA32 = 0,
ARM_CP_STATE_AA64 = 1,
ARM_CP_STATE_BOTH = 2,
} CPState;
/*
* ARM CP register secure state flags. These flags identify security state
* attributes for a given CP register entry.
* The existence of both or neither secure and non-secure flags indicates that
* the register has both a secure and non-secure hash entry. A single one of
* these flags causes the register to only be hashed for the specified
* security state.
* Although definitions may have any combination of the S/NS bits, each
* registered entry will only have one to identify whether the entry is secure
* or non-secure.
*/
typedef enum {
ARM_CP_SECSTATE_BOTH = 0, /* define one cpreg for each secstate */
ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
} CPSecureState;
/*
* Access rights:
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
* (ie any of the privileged modes in Secure state, or Monitor mode).
* If a register is accessible in one privilege level it's always accessible
* in higher privilege levels too. Since "Secure PL1" also follows this rule
* (ie anything visible in PL2 is visible in S-PL1, some things are only
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
* terminology a little and call this PL3.
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
* with the ELx exception levels.
*
* If access permissions for a register are more complex than can be
* described with these bits, then use a laxer set of restrictions, and
* do the more restrictive/complex check inside a helper function.
*/
typedef enum {
PL3_R = 0x80,
PL3_W = 0x40,
PL2_R = 0x20 | PL3_R,
PL2_W = 0x10 | PL3_W,
PL1_R = 0x08 | PL2_R,
PL1_W = 0x04 | PL2_W,
PL0_R = 0x02 | PL1_R,
PL0_W = 0x01 | PL1_W,
/*
* For user-mode some registers are accessible to EL0 via a kernel
* trap-and-emulate ABI. In this case we define the read permissions
* as actually being PL0_R. However some bits of any given register
* may still be masked.
*/
#ifdef CONFIG_USER_ONLY
PL0U_R = PL0_R,
#else
PL0U_R = PL1_R,
#endif
PL3_RW = PL3_R | PL3_W,
PL2_RW = PL2_R | PL2_W,
PL1_RW = PL1_R | PL1_W,
PL0_RW = PL0_R | PL0_W,
} CPAccessRights;
typedef enum CPAccessResult {
/* Access is permitted */
CP_ACCESS_OK = 0,
/*
* Combined with one of the following, the low 2 bits indicate the
* target exception level. If 0, the exception is taken to the usual
* target EL (EL1 or PL1 if in EL0, otherwise to the current EL).
*/
CP_ACCESS_EL_MASK = 3,
/*
* Access fails due to a configurable trap or enable which would
* result in a categorized exception syndrome giving information about
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
* 0xc or 0x18).
*/
CP_ACCESS_TRAP = (1 << 2),
CP_ACCESS_TRAP_EL2 = CP_ACCESS_TRAP | 2,
CP_ACCESS_TRAP_EL3 = CP_ACCESS_TRAP | 3,
/*
* Access fails and results in an exception syndrome 0x0 ("uncategorized").
* Note that this is not a catch-all case -- the set of cases which may
* result in this failure is specifically defined by the architecture.
* This trap is always to the usual target EL, never directly to a
* specified target EL.
*/
CP_ACCESS_TRAP_UNCATEGORIZED = (2 << 2),
} CPAccessResult;
/* Indexes into fgt_read[] */
#define FGTREG_HFGRTR 0
#define FGTREG_HDFGRTR 1
/* Indexes into fgt_write[] */
#define FGTREG_HFGWTR 0
#define FGTREG_HDFGWTR 1
/* Indexes into fgt_exec[] */
#define FGTREG_HFGITR 0
FIELD(HFGRTR_EL2, AFSR0_EL1, 0, 1)
FIELD(HFGRTR_EL2, AFSR1_EL1, 1, 1)
FIELD(HFGRTR_EL2, AIDR_EL1, 2, 1)
FIELD(HFGRTR_EL2, AMAIR_EL1, 3, 1)
FIELD(HFGRTR_EL2, APDAKEY, 4, 1)
FIELD(HFGRTR_EL2, APDBKEY, 5, 1)
FIELD(HFGRTR_EL2, APGAKEY, 6, 1)
FIELD(HFGRTR_EL2, APIAKEY, 7, 1)
FIELD(HFGRTR_EL2, APIBKEY, 8, 1)
FIELD(HFGRTR_EL2, CCSIDR_EL1, 9, 1)
FIELD(HFGRTR_EL2, CLIDR_EL1, 10, 1)
FIELD(HFGRTR_EL2, CONTEXTIDR_EL1, 11, 1)
FIELD(HFGRTR_EL2, CPACR_EL1, 12, 1)
FIELD(HFGRTR_EL2, CSSELR_EL1, 13, 1)
FIELD(HFGRTR_EL2, CTR_EL0, 14, 1)
FIELD(HFGRTR_EL2, DCZID_EL0, 15, 1)
FIELD(HFGRTR_EL2, ESR_EL1, 16, 1)
FIELD(HFGRTR_EL2, FAR_EL1, 17, 1)
FIELD(HFGRTR_EL2, ISR_EL1, 18, 1)
FIELD(HFGRTR_EL2, LORC_EL1, 19, 1)
FIELD(HFGRTR_EL2, LOREA_EL1, 20, 1)
FIELD(HFGRTR_EL2, LORID_EL1, 21, 1)
FIELD(HFGRTR_EL2, LORN_EL1, 22, 1)
FIELD(HFGRTR_EL2, LORSA_EL1, 23, 1)
FIELD(HFGRTR_EL2, MAIR_EL1, 24, 1)
FIELD(HFGRTR_EL2, MIDR_EL1, 25, 1)
FIELD(HFGRTR_EL2, MPIDR_EL1, 26, 1)
FIELD(HFGRTR_EL2, PAR_EL1, 27, 1)
FIELD(HFGRTR_EL2, REVIDR_EL1, 28, 1)
FIELD(HFGRTR_EL2, SCTLR_EL1, 29, 1)
FIELD(HFGRTR_EL2, SCXTNUM_EL1, 30, 1)
FIELD(HFGRTR_EL2, SCXTNUM_EL0, 31, 1)
FIELD(HFGRTR_EL2, TCR_EL1, 32, 1)
FIELD(HFGRTR_EL2, TPIDR_EL1, 33, 1)
FIELD(HFGRTR_EL2, TPIDRRO_EL0, 34, 1)
FIELD(HFGRTR_EL2, TPIDR_EL0, 35, 1)
FIELD(HFGRTR_EL2, TTBR0_EL1, 36, 1)
FIELD(HFGRTR_EL2, TTBR1_EL1, 37, 1)
FIELD(HFGRTR_EL2, VBAR_EL1, 38, 1)
FIELD(HFGRTR_EL2, ICC_IGRPENN_EL1, 39, 1)
FIELD(HFGRTR_EL2, ERRIDR_EL1, 40, 1)
FIELD(HFGRTR_EL2, ERRSELR_EL1, 41, 1)
FIELD(HFGRTR_EL2, ERXFR_EL1, 42, 1)
FIELD(HFGRTR_EL2, ERXCTLR_EL1, 43, 1)
FIELD(HFGRTR_EL2, ERXSTATUS_EL1, 44, 1)
FIELD(HFGRTR_EL2, ERXMISCN_EL1, 45, 1)
FIELD(HFGRTR_EL2, ERXPFGF_EL1, 46, 1)
FIELD(HFGRTR_EL2, ERXPFGCTL_EL1, 47, 1)
FIELD(HFGRTR_EL2, ERXPFGCDN_EL1, 48, 1)
FIELD(HFGRTR_EL2, ERXADDR_EL1, 49, 1)
FIELD(HFGRTR_EL2, NACCDATA_EL1, 50, 1)
/* 51-53: RES0 */
FIELD(HFGRTR_EL2, NSMPRI_EL1, 54, 1)
FIELD(HFGRTR_EL2, NTPIDR2_EL0, 55, 1)
/* 56-63: RES0 */
/* These match HFGRTR but bits for RO registers are RES0 */
FIELD(HFGWTR_EL2, AFSR0_EL1, 0, 1)
FIELD(HFGWTR_EL2, AFSR1_EL1, 1, 1)
FIELD(HFGWTR_EL2, AMAIR_EL1, 3, 1)
FIELD(HFGWTR_EL2, APDAKEY, 4, 1)
FIELD(HFGWTR_EL2, APDBKEY, 5, 1)
FIELD(HFGWTR_EL2, APGAKEY, 6, 1)
FIELD(HFGWTR_EL2, APIAKEY, 7, 1)
FIELD(HFGWTR_EL2, APIBKEY, 8, 1)
FIELD(HFGWTR_EL2, CONTEXTIDR_EL1, 11, 1)
FIELD(HFGWTR_EL2, CPACR_EL1, 12, 1)
FIELD(HFGWTR_EL2, CSSELR_EL1, 13, 1)
FIELD(HFGWTR_EL2, ESR_EL1, 16, 1)
FIELD(HFGWTR_EL2, FAR_EL1, 17, 1)
FIELD(HFGWTR_EL2, LORC_EL1, 19, 1)
FIELD(HFGWTR_EL2, LOREA_EL1, 20, 1)
FIELD(HFGWTR_EL2, LORN_EL1, 22, 1)
FIELD(HFGWTR_EL2, LORSA_EL1, 23, 1)
FIELD(HFGWTR_EL2, MAIR_EL1, 24, 1)
FIELD(HFGWTR_EL2, PAR_EL1, 27, 1)
FIELD(HFGWTR_EL2, SCTLR_EL1, 29, 1)
FIELD(HFGWTR_EL2, SCXTNUM_EL1, 30, 1)
FIELD(HFGWTR_EL2, SCXTNUM_EL0, 31, 1)
FIELD(HFGWTR_EL2, TCR_EL1, 32, 1)
FIELD(HFGWTR_EL2, TPIDR_EL1, 33, 1)
FIELD(HFGWTR_EL2, TPIDRRO_EL0, 34, 1)
FIELD(HFGWTR_EL2, TPIDR_EL0, 35, 1)
FIELD(HFGWTR_EL2, TTBR0_EL1, 36, 1)
FIELD(HFGWTR_EL2, TTBR1_EL1, 37, 1)
FIELD(HFGWTR_EL2, VBAR_EL1, 38, 1)
FIELD(HFGWTR_EL2, ICC_IGRPENN_EL1, 39, 1)
FIELD(HFGWTR_EL2, ERRSELR_EL1, 41, 1)
FIELD(HFGWTR_EL2, ERXCTLR_EL1, 43, 1)
FIELD(HFGWTR_EL2, ERXSTATUS_EL1, 44, 1)
FIELD(HFGWTR_EL2, ERXMISCN_EL1, 45, 1)
FIELD(HFGWTR_EL2, ERXPFGCTL_EL1, 47, 1)
FIELD(HFGWTR_EL2, ERXPFGCDN_EL1, 48, 1)
FIELD(HFGWTR_EL2, ERXADDR_EL1, 49, 1)
FIELD(HFGWTR_EL2, NACCDATA_EL1, 50, 1)
FIELD(HFGWTR_EL2, NSMPRI_EL1, 54, 1)
FIELD(HFGWTR_EL2, NTPIDR2_EL0, 55, 1)
FIELD(HFGITR_EL2, ICIALLUIS, 0, 1)
FIELD(HFGITR_EL2, ICIALLU, 1, 1)
FIELD(HFGITR_EL2, ICIVAU, 2, 1)
FIELD(HFGITR_EL2, DCIVAC, 3, 1)
FIELD(HFGITR_EL2, DCISW, 4, 1)
FIELD(HFGITR_EL2, DCCSW, 5, 1)
FIELD(HFGITR_EL2, DCCISW, 6, 1)
FIELD(HFGITR_EL2, DCCVAU, 7, 1)
FIELD(HFGITR_EL2, DCCVAP, 8, 1)
FIELD(HFGITR_EL2, DCCVADP, 9, 1)
FIELD(HFGITR_EL2, DCCIVAC, 10, 1)
FIELD(HFGITR_EL2, DCZVA, 11, 1)
FIELD(HFGITR_EL2, ATS1E1R, 12, 1)
FIELD(HFGITR_EL2, ATS1E1W, 13, 1)
FIELD(HFGITR_EL2, ATS1E0R, 14, 1)
FIELD(HFGITR_EL2, ATS1E0W, 15, 1)
FIELD(HFGITR_EL2, ATS1E1RP, 16, 1)
FIELD(HFGITR_EL2, ATS1E1WP, 17, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1OS, 18, 1)
FIELD(HFGITR_EL2, TLBIVAE1OS, 19, 1)
FIELD(HFGITR_EL2, TLBIASIDE1OS, 20, 1)
FIELD(HFGITR_EL2, TLBIVAAE1OS, 21, 1)
FIELD(HFGITR_EL2, TLBIVALE1OS, 22, 1)
FIELD(HFGITR_EL2, TLBIVAALE1OS, 23, 1)
FIELD(HFGITR_EL2, TLBIRVAE1OS, 24, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1OS, 25, 1)
FIELD(HFGITR_EL2, TLBIRVALE1OS, 26, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1OS, 27, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1IS, 28, 1)
FIELD(HFGITR_EL2, TLBIVAE1IS, 29, 1)
FIELD(HFGITR_EL2, TLBIASIDE1IS, 30, 1)
FIELD(HFGITR_EL2, TLBIVAAE1IS, 31, 1)
FIELD(HFGITR_EL2, TLBIVALE1IS, 32, 1)
FIELD(HFGITR_EL2, TLBIVAALE1IS, 33, 1)
FIELD(HFGITR_EL2, TLBIRVAE1IS, 34, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1IS, 35, 1)
FIELD(HFGITR_EL2, TLBIRVALE1IS, 36, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1IS, 37, 1)
FIELD(HFGITR_EL2, TLBIRVAE1, 38, 1)
FIELD(HFGITR_EL2, TLBIRVAAE1, 39, 1)
FIELD(HFGITR_EL2, TLBIRVALE1, 40, 1)
FIELD(HFGITR_EL2, TLBIRVAALE1, 41, 1)
FIELD(HFGITR_EL2, TLBIVMALLE1, 42, 1)
FIELD(HFGITR_EL2, TLBIVAE1, 43, 1)
FIELD(HFGITR_EL2, TLBIASIDE1, 44, 1)
FIELD(HFGITR_EL2, TLBIVAAE1, 45, 1)
FIELD(HFGITR_EL2, TLBIVALE1, 46, 1)
FIELD(HFGITR_EL2, TLBIVAALE1, 47, 1)
FIELD(HFGITR_EL2, CFPRCTX, 48, 1)
FIELD(HFGITR_EL2, DVPRCTX, 49, 1)
FIELD(HFGITR_EL2, CPPRCTX, 50, 1)
FIELD(HFGITR_EL2, ERET, 51, 1)
FIELD(HFGITR_EL2, SVC_EL0, 52, 1)
FIELD(HFGITR_EL2, SVC_EL1, 53, 1)
FIELD(HFGITR_EL2, DCCVAC, 54, 1)
FIELD(HFGITR_EL2, NBRBINJ, 55, 1)
FIELD(HFGITR_EL2, NBRBIALL, 56, 1)
FIELD(HDFGRTR_EL2, DBGBCRN_EL1, 0, 1)
FIELD(HDFGRTR_EL2, DBGBVRN_EL1, 1, 1)
FIELD(HDFGRTR_EL2, DBGWCRN_EL1, 2, 1)
FIELD(HDFGRTR_EL2, DBGWVRN_EL1, 3, 1)
FIELD(HDFGRTR_EL2, MDSCR_EL1, 4, 1)
FIELD(HDFGRTR_EL2, DBGCLAIM, 5, 1)
FIELD(HDFGRTR_EL2, DBGAUTHSTATUS_EL1, 6, 1)
FIELD(HDFGRTR_EL2, DBGPRCR_EL1, 7, 1)
/* 8: RES0: OSLAR_EL1 is WO */
FIELD(HDFGRTR_EL2, OSLSR_EL1, 9, 1)
FIELD(HDFGRTR_EL2, OSECCR_EL1, 10, 1)
FIELD(HDFGRTR_EL2, OSDLR_EL1, 11, 1)
FIELD(HDFGRTR_EL2, PMEVCNTRN_EL0, 12, 1)
FIELD(HDFGRTR_EL2, PMEVTYPERN_EL0, 13, 1)
FIELD(HDFGRTR_EL2, PMCCFILTR_EL0, 14, 1)
FIELD(HDFGRTR_EL2, PMCCNTR_EL0, 15, 1)
FIELD(HDFGRTR_EL2, PMCNTEN, 16, 1)
FIELD(HDFGRTR_EL2, PMINTEN, 17, 1)
FIELD(HDFGRTR_EL2, PMOVS, 18, 1)
FIELD(HDFGRTR_EL2, PMSELR_EL0, 19, 1)
/* 20: RES0: PMSWINC_EL0 is WO */
/* 21: RES0: PMCR_EL0 is WO */
FIELD(HDFGRTR_EL2, PMMIR_EL1, 22, 1)
FIELD(HDFGRTR_EL2, PMBLIMITR_EL1, 23, 1)
FIELD(HDFGRTR_EL2, PMBPTR_EL1, 24, 1)
FIELD(HDFGRTR_EL2, PMBSR_EL1, 25, 1)
FIELD(HDFGRTR_EL2, PMSCR_EL1, 26, 1)
FIELD(HDFGRTR_EL2, PMSEVFR_EL1, 27, 1)
FIELD(HDFGRTR_EL2, PMSFCR_EL1, 28, 1)
FIELD(HDFGRTR_EL2, PMSICR_EL1, 29, 1)
FIELD(HDFGRTR_EL2, PMSIDR_EL1, 30, 1)
FIELD(HDFGRTR_EL2, PMSIRR_EL1, 31, 1)
FIELD(HDFGRTR_EL2, PMSLATFR_EL1, 32, 1)
FIELD(HDFGRTR_EL2, TRC, 33, 1)
FIELD(HDFGRTR_EL2, TRCAUTHSTATUS, 34, 1)
FIELD(HDFGRTR_EL2, TRCAUXCTLR, 35, 1)
FIELD(HDFGRTR_EL2, TRCCLAIM, 36, 1)
FIELD(HDFGRTR_EL2, TRCCNTVRn, 37, 1)
/* 38, 39: RES0 */
FIELD(HDFGRTR_EL2, TRCID, 40, 1)
FIELD(HDFGRTR_EL2, TRCIMSPECN, 41, 1)
/* 42: RES0: TRCOSLAR is WO */
FIELD(HDFGRTR_EL2, TRCOSLSR, 43, 1)
FIELD(HDFGRTR_EL2, TRCPRGCTLR, 44, 1)
FIELD(HDFGRTR_EL2, TRCSEQSTR, 45, 1)
FIELD(HDFGRTR_EL2, TRCSSCSRN, 46, 1)
FIELD(HDFGRTR_EL2, TRCSTATR, 47, 1)
FIELD(HDFGRTR_EL2, TRCVICTLR, 48, 1)
/* 49: RES0: TRFCR_EL1 is WO */
FIELD(HDFGRTR_EL2, TRBBASER_EL1, 50, 1)
FIELD(HDFGRTR_EL2, TRBIDR_EL1, 51, 1)
FIELD(HDFGRTR_EL2, TRBLIMITR_EL1, 52, 1)
FIELD(HDFGRTR_EL2, TRBMAR_EL1, 53, 1)
FIELD(HDFGRTR_EL2, TRBPTR_EL1, 54, 1)
FIELD(HDFGRTR_EL2, TRBSR_EL1, 55, 1)
FIELD(HDFGRTR_EL2, TRBTRG_EL1, 56, 1)
FIELD(HDFGRTR_EL2, PMUSERENR_EL0, 57, 1)
FIELD(HDFGRTR_EL2, PMCEIDN_EL0, 58, 1)
FIELD(HDFGRTR_EL2, NBRBIDR, 59, 1)
FIELD(HDFGRTR_EL2, NBRBCTL, 60, 1)
FIELD(HDFGRTR_EL2, NBRBDATA, 61, 1)
FIELD(HDFGRTR_EL2, NPMSNEVFR_EL1, 62, 1)
FIELD(HDFGRTR_EL2, PMBIDR_EL1, 63, 1)
/*
* These match HDFGRTR_EL2, but bits for RO registers are RES0.
* A few bits are for WO registers, where the HDFGRTR_EL2 bit is RES0.
*/
FIELD(HDFGWTR_EL2, DBGBCRN_EL1, 0, 1)
FIELD(HDFGWTR_EL2, DBGBVRN_EL1, 1, 1)
FIELD(HDFGWTR_EL2, DBGWCRN_EL1, 2, 1)
FIELD(HDFGWTR_EL2, DBGWVRN_EL1, 3, 1)
FIELD(HDFGWTR_EL2, MDSCR_EL1, 4, 1)
FIELD(HDFGWTR_EL2, DBGCLAIM, 5, 1)
FIELD(HDFGWTR_EL2, DBGPRCR_EL1, 7, 1)
FIELD(HDFGWTR_EL2, OSLAR_EL1, 8, 1)
FIELD(HDFGWTR_EL2, OSLSR_EL1, 9, 1)
FIELD(HDFGWTR_EL2, OSECCR_EL1, 10, 1)
FIELD(HDFGWTR_EL2, OSDLR_EL1, 11, 1)
FIELD(HDFGWTR_EL2, PMEVCNTRN_EL0, 12, 1)
FIELD(HDFGWTR_EL2, PMEVTYPERN_EL0, 13, 1)
FIELD(HDFGWTR_EL2, PMCCFILTR_EL0, 14, 1)
FIELD(HDFGWTR_EL2, PMCCNTR_EL0, 15, 1)
FIELD(HDFGWTR_EL2, PMCNTEN, 16, 1)
FIELD(HDFGWTR_EL2, PMINTEN, 17, 1)
FIELD(HDFGWTR_EL2, PMOVS, 18, 1)
FIELD(HDFGWTR_EL2, PMSELR_EL0, 19, 1)
FIELD(HDFGWTR_EL2, PMSWINC_EL0, 20, 1)
FIELD(HDFGWTR_EL2, PMCR_EL0, 21, 1)
FIELD(HDFGWTR_EL2, PMBLIMITR_EL1, 23, 1)
FIELD(HDFGWTR_EL2, PMBPTR_EL1, 24, 1)
FIELD(HDFGWTR_EL2, PMBSR_EL1, 25, 1)
FIELD(HDFGWTR_EL2, PMSCR_EL1, 26, 1)
FIELD(HDFGWTR_EL2, PMSEVFR_EL1, 27, 1)
FIELD(HDFGWTR_EL2, PMSFCR_EL1, 28, 1)
FIELD(HDFGWTR_EL2, PMSICR_EL1, 29, 1)
FIELD(HDFGWTR_EL2, PMSIRR_EL1, 31, 1)
FIELD(HDFGWTR_EL2, PMSLATFR_EL1, 32, 1)
FIELD(HDFGWTR_EL2, TRC, 33, 1)
FIELD(HDFGWTR_EL2, TRCAUXCTLR, 35, 1)
FIELD(HDFGWTR_EL2, TRCCLAIM, 36, 1)
FIELD(HDFGWTR_EL2, TRCCNTVRn, 37, 1)
FIELD(HDFGWTR_EL2, TRCIMSPECN, 41, 1)
FIELD(HDFGWTR_EL2, TRCOSLAR, 42, 1)
FIELD(HDFGWTR_EL2, TRCPRGCTLR, 44, 1)
FIELD(HDFGWTR_EL2, TRCSEQSTR, 45, 1)
FIELD(HDFGWTR_EL2, TRCSSCSRN, 46, 1)
FIELD(HDFGWTR_EL2, TRCVICTLR, 48, 1)
FIELD(HDFGWTR_EL2, TRFCR_EL1, 49, 1)
FIELD(HDFGWTR_EL2, TRBBASER_EL1, 50, 1)
FIELD(HDFGWTR_EL2, TRBLIMITR_EL1, 52, 1)
FIELD(HDFGWTR_EL2, TRBMAR_EL1, 53, 1)
FIELD(HDFGWTR_EL2, TRBPTR_EL1, 54, 1)
FIELD(HDFGWTR_EL2, TRBSR_EL1, 55, 1)
FIELD(HDFGWTR_EL2, TRBTRG_EL1, 56, 1)
FIELD(HDFGWTR_EL2, PMUSERENR_EL0, 57, 1)
FIELD(HDFGWTR_EL2, NBRBCTL, 60, 1)
FIELD(HDFGWTR_EL2, NBRBDATA, 61, 1)
FIELD(HDFGWTR_EL2, NPMSNEVFR_EL1, 62, 1)
/* Which fine-grained trap bit register to check, if any */
FIELD(FGT, TYPE, 10, 3)
FIELD(FGT, REV, 9, 1) /* Is bit sense reversed? */
FIELD(FGT, IDX, 6, 3) /* Index within a uint64_t[] array */
FIELD(FGT, BITPOS, 0, 6) /* Bit position within the uint64_t */
/*
* Macros to define FGT_##bitname enum constants to use in ARMCPRegInfo::fgt
* fields. We assume for brevity's sake that there are no duplicated
* bit names across the various FGT registers.
*/
#define DO_BIT(REG, BITNAME) \
FGT_##BITNAME = FGT_##REG | R_##REG##_EL2_##BITNAME##_SHIFT
/* Some bits have reversed sense, so 0 means trap and 1 means not */
#define DO_REV_BIT(REG, BITNAME) \
FGT_##BITNAME = FGT_##REG | FGT_REV | R_##REG##_EL2_##BITNAME##_SHIFT
typedef enum FGTBit {
/*
* These bits tell us which register arrays to use:
* if FGT_R is set then reads are checked against fgt_read[];
* if FGT_W is set then writes are checked against fgt_write[];
* if FGT_EXEC is set then all accesses are checked against fgt_exec[].
*
* For almost all bits in the R/W register pairs, the bit exists in
* both registers for a RW register, in HFGRTR/HDFGRTR for a RO register
* with the corresponding HFGWTR/HDFGTWTR bit being RES0, and vice-versa
* for a WO register. There are unfortunately a couple of exceptions
* (PMCR_EL0, TRFCR_EL1) where the register being trapped is RW but
* the FGT system only allows trapping of writes, not reads.
*
* Note that we arrange these bits so that a 0 FGTBit means "no trap".
*/
FGT_R = 1 << R_FGT_TYPE_SHIFT,
FGT_W = 2 << R_FGT_TYPE_SHIFT,
FGT_EXEC = 4 << R_FGT_TYPE_SHIFT,
FGT_RW = FGT_R | FGT_W,
/* Bit to identify whether trap bit is reversed sense */
FGT_REV = R_FGT_REV_MASK,
/*
* If a bit exists in HFGRTR/HDFGRTR then either the register being
* trapped is RO or the bit also exists in HFGWTR/HDFGWTR, so we either
* want to trap for both reads and writes or else it's harmless to mark
* it as trap-on-writes.
* If a bit exists only in HFGWTR/HDFGWTR then either the register being
* trapped is WO, or else it is one of the two oddball special cases
* which are RW but have only a write trap. We mark these as only
* FGT_W so we get the right behaviour for those special cases.
* (If a bit was added in future that provided only a read trap for an
* RW register we'd need to do something special to get the FGT_R bit
* only. But this seems unlikely to happen.)
*
* So for the DO_BIT/DO_REV_BIT macros: use FGT_HFGRTR/FGT_HDFGRTR if
* the bit exists in that register. Otherwise use FGT_HFGWTR/FGT_HDFGWTR.
*/
FGT_HFGRTR = FGT_RW | (FGTREG_HFGRTR << R_FGT_IDX_SHIFT),
FGT_HFGWTR = FGT_W | (FGTREG_HFGWTR << R_FGT_IDX_SHIFT),
FGT_HDFGRTR = FGT_RW | (FGTREG_HDFGRTR << R_FGT_IDX_SHIFT),
FGT_HDFGWTR = FGT_W | (FGTREG_HDFGWTR << R_FGT_IDX_SHIFT),
FGT_HFGITR = FGT_EXEC | (FGTREG_HFGITR << R_FGT_IDX_SHIFT),
/* Trap bits in HFGRTR_EL2 / HFGWTR_EL2, starting from bit 0. */
DO_BIT(HFGRTR, AFSR0_EL1),
DO_BIT(HFGRTR, AFSR1_EL1),
DO_BIT(HFGRTR, AIDR_EL1),
DO_BIT(HFGRTR, AMAIR_EL1),
DO_BIT(HFGRTR, APDAKEY),
DO_BIT(HFGRTR, APDBKEY),
DO_BIT(HFGRTR, APGAKEY),
DO_BIT(HFGRTR, APIAKEY),
DO_BIT(HFGRTR, APIBKEY),
DO_BIT(HFGRTR, CCSIDR_EL1),
DO_BIT(HFGRTR, CLIDR_EL1),
DO_BIT(HFGRTR, CONTEXTIDR_EL1),
DO_BIT(HFGRTR, CPACR_EL1),
DO_BIT(HFGRTR, CSSELR_EL1),
DO_BIT(HFGRTR, CTR_EL0),
DO_BIT(HFGRTR, DCZID_EL0),
DO_BIT(HFGRTR, ESR_EL1),
DO_BIT(HFGRTR, FAR_EL1),
DO_BIT(HFGRTR, ISR_EL1),
DO_BIT(HFGRTR, LORC_EL1),
DO_BIT(HFGRTR, LOREA_EL1),
DO_BIT(HFGRTR, LORID_EL1),
DO_BIT(HFGRTR, LORN_EL1),
DO_BIT(HFGRTR, LORSA_EL1),
DO_BIT(HFGRTR, MAIR_EL1),
DO_BIT(HFGRTR, MIDR_EL1),
DO_BIT(HFGRTR, MPIDR_EL1),
DO_BIT(HFGRTR, PAR_EL1),
DO_BIT(HFGRTR, REVIDR_EL1),
DO_BIT(HFGRTR, SCTLR_EL1),
DO_BIT(HFGRTR, SCXTNUM_EL1),
DO_BIT(HFGRTR, SCXTNUM_EL0),
DO_BIT(HFGRTR, TCR_EL1),
DO_BIT(HFGRTR, TPIDR_EL1),
DO_BIT(HFGRTR, TPIDRRO_EL0),
DO_BIT(HFGRTR, TPIDR_EL0),
DO_BIT(HFGRTR, TTBR0_EL1),
DO_BIT(HFGRTR, TTBR1_EL1),
DO_BIT(HFGRTR, VBAR_EL1),
DO_BIT(HFGRTR, ICC_IGRPENN_EL1),
DO_BIT(HFGRTR, ERRIDR_EL1),
DO_REV_BIT(HFGRTR, NSMPRI_EL1),
DO_REV_BIT(HFGRTR, NTPIDR2_EL0),
/* Trap bits in HDFGRTR_EL2 / HDFGWTR_EL2, starting from bit 0. */
DO_BIT(HDFGRTR, DBGBCRN_EL1),
DO_BIT(HDFGRTR, DBGBVRN_EL1),
DO_BIT(HDFGRTR, DBGWCRN_EL1),
DO_BIT(HDFGRTR, DBGWVRN_EL1),
DO_BIT(HDFGRTR, MDSCR_EL1),
DO_BIT(HDFGRTR, DBGCLAIM),
DO_BIT(HDFGWTR, OSLAR_EL1),
DO_BIT(HDFGRTR, OSLSR_EL1),
DO_BIT(HDFGRTR, OSECCR_EL1),
DO_BIT(HDFGRTR, OSDLR_EL1),
DO_BIT(HDFGRTR, PMEVCNTRN_EL0),
DO_BIT(HDFGRTR, PMEVTYPERN_EL0),
DO_BIT(HDFGRTR, PMCCFILTR_EL0),
DO_BIT(HDFGRTR, PMCCNTR_EL0),
DO_BIT(HDFGRTR, PMCNTEN),
DO_BIT(HDFGRTR, PMINTEN),
DO_BIT(HDFGRTR, PMOVS),
DO_BIT(HDFGRTR, PMSELR_EL0),
DO_BIT(HDFGWTR, PMSWINC_EL0),
DO_BIT(HDFGWTR, PMCR_EL0),
DO_BIT(HDFGRTR, PMMIR_EL1),
DO_BIT(HDFGRTR, PMCEIDN_EL0),
/* Trap bits in HFGITR_EL2, starting from bit 0 */
DO_BIT(HFGITR, ICIALLUIS),
DO_BIT(HFGITR, ICIALLU),
DO_BIT(HFGITR, ICIVAU),
DO_BIT(HFGITR, DCIVAC),
DO_BIT(HFGITR, DCISW),
DO_BIT(HFGITR, DCCSW),
DO_BIT(HFGITR, DCCISW),
DO_BIT(HFGITR, DCCVAU),
DO_BIT(HFGITR, DCCVAP),
DO_BIT(HFGITR, DCCVADP),
DO_BIT(HFGITR, DCCIVAC),
DO_BIT(HFGITR, DCZVA),
DO_BIT(HFGITR, ATS1E1R),
DO_BIT(HFGITR, ATS1E1W),
DO_BIT(HFGITR, ATS1E0R),
DO_BIT(HFGITR, ATS1E0W),
DO_BIT(HFGITR, ATS1E1RP),
DO_BIT(HFGITR, ATS1E1WP),
DO_BIT(HFGITR, TLBIVMALLE1OS),
DO_BIT(HFGITR, TLBIVAE1OS),
DO_BIT(HFGITR, TLBIASIDE1OS),
DO_BIT(HFGITR, TLBIVAAE1OS),
DO_BIT(HFGITR, TLBIVALE1OS),
DO_BIT(HFGITR, TLBIVAALE1OS),
DO_BIT(HFGITR, TLBIRVAE1OS),
DO_BIT(HFGITR, TLBIRVAAE1OS),
DO_BIT(HFGITR, TLBIRVALE1OS),
DO_BIT(HFGITR, TLBIRVAALE1OS),
DO_BIT(HFGITR, TLBIVMALLE1IS),
DO_BIT(HFGITR, TLBIVAE1IS),
DO_BIT(HFGITR, TLBIASIDE1IS),
DO_BIT(HFGITR, TLBIVAAE1IS),
DO_BIT(HFGITR, TLBIVALE1IS),
DO_BIT(HFGITR, TLBIVAALE1IS),
DO_BIT(HFGITR, TLBIRVAE1IS),
DO_BIT(HFGITR, TLBIRVAAE1IS),
DO_BIT(HFGITR, TLBIRVALE1IS),
DO_BIT(HFGITR, TLBIRVAALE1IS),
DO_BIT(HFGITR, TLBIRVAE1),
DO_BIT(HFGITR, TLBIRVAAE1),
DO_BIT(HFGITR, TLBIRVALE1),
DO_BIT(HFGITR, TLBIRVAALE1),
DO_BIT(HFGITR, TLBIVMALLE1),
DO_BIT(HFGITR, TLBIVAE1),
DO_BIT(HFGITR, TLBIASIDE1),
DO_BIT(HFGITR, TLBIVAAE1),
DO_BIT(HFGITR, TLBIVALE1),
DO_BIT(HFGITR, TLBIVAALE1),
DO_BIT(HFGITR, CFPRCTX),
DO_BIT(HFGITR, DVPRCTX),
DO_BIT(HFGITR, CPPRCTX),
DO_BIT(HFGITR, DCCVAC),
} FGTBit;
#undef DO_BIT
#undef DO_REV_BIT
typedef struct ARMCPRegInfo ARMCPRegInfo;
/*
* Access functions for coprocessor registers. These cannot fail and
* may not raise exceptions.
*/
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
uint64_t value);
/* Access permission check functions for coprocessor registers. */
typedef CPAccessResult CPAccessFn(CPUARMState *env,
const ARMCPRegInfo *opaque,
bool isread);
/* Hook function for register reset */
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
#define CP_ANY 0xff
/* Flags in the high bits of nv2_redirect_offset */
#define NV2_REDIR_NV1 0x4000 /* Only redirect when HCR_EL2.NV1 == 1 */
#define NV2_REDIR_NO_NV1 0x8000 /* Only redirect when HCR_EL2.NV1 == 0 */
#define NV2_REDIR_FLAG_MASK 0xc000
/* Definition of an ARM coprocessor register */
struct ARMCPRegInfo {
/* Name of register (useful mainly for debugging, need not be unique) */
const char *name;
/*
* Location of register: coprocessor number and (crn,crm,opc1,opc2)
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
* 'wildcard' field -- any value of that field in the MRC/MCR insn
* will be decoded to this register. The register read and write
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
* used by the program, so it is possible to register a wildcard and
* then behave differently on read/write if necessary.
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
* must both be zero.
* For AArch64-visible registers, opc0 is also used.
* Since there are no "coprocessors" in AArch64, cp is purely used as a
* way to distinguish (for KVM's benefit) guest-visible system registers
* from demuxed ones provided to preserve the "no side effects on
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
* visible (to match KVM's encoding); cp==0 will be converted to
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
*/
uint8_t cp;
uint8_t crn;
uint8_t crm;
uint8_t opc0;
uint8_t opc1;
uint8_t opc2;
/* Execution state in which this register is visible: ARM_CP_STATE_* */
CPState state;
/* Register type: ARM_CP_* bits/values */
int type;
/* Access rights: PL*_[RW] */
CPAccessRights access;
/* Security state: ARM_CP_SECSTATE_* bits/values */
CPSecureState secure;
/*
* Which fine-grained trap register bit to check, if any. This
* value encodes both the trap register and bit within it.
*/
FGTBit fgt;
/*
* Offset from VNCR_EL2 when FEAT_NV2 redirects access to memory;
* may include an NV2_REDIR_* flag.
*/
uint32_t nv2_redirect_offset;
/*
* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
* this register was defined: can be used to hand data through to the
* register read/write functions, since they are passed the ARMCPRegInfo*.
*/
void *opaque;
/*
* Value of this register, if it is ARM_CP_CONST. Otherwise, if
* fieldoffset is non-zero, the reset value of the register.
*/
uint64_t resetvalue;
/*
* Offset of the field in CPUARMState for this register.
* This is not needed if either:
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
* 2. both readfn and writefn are specified
*/
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
/*
* Offsets of the secure and non-secure fields in CPUARMState for the
* register if it is banked. These fields are only used during the static
* registration of a register. During hashing the bank associated
* with a given security state is copied to fieldoffset which is used from
* there on out.
*
* It is expected that register definitions use either fieldoffset or
* bank_fieldoffsets in the definition but not both. It is also expected
* that both bank offsets are set when defining a banked register. This
* use indicates that a register is banked.
*/
ptrdiff_t bank_fieldoffsets[2];
/*
* Function for making any access checks for this register in addition to
* those specified by the 'access' permissions bits. If NULL, no extra
* checks required. The access check is performed at runtime, not at
* translate time.
*/
CPAccessFn *accessfn;
/*
* Function for handling reads of this register. If NULL, then reads
* will be done by loading from the offset into CPUARMState specified
* by fieldoffset.
*/
CPReadFn *readfn;
/*
* Function for handling writes of this register. If NULL, then writes
* will be done by writing to the offset into CPUARMState specified
* by fieldoffset.
*/
CPWriteFn *writefn;
/*
* Function for doing a "raw" read; used when we need to copy
* coprocessor state to the kernel for KVM or out for
* migration. This only needs to be provided if there is also a
* readfn and it has side effects (for instance clear-on-read bits).
*/
CPReadFn *raw_readfn;
/*
* Function for doing a "raw" write; used when we need to copy KVM
* kernel coprocessor state into userspace, or for inbound
* migration. This only needs to be provided if there is also a
* writefn and it masks out "unwritable" bits or has write-one-to-clear
* or similar behaviour.
*/
CPWriteFn *raw_writefn;
/*
* Function for resetting the register. If NULL, then reset will be done
* by writing resetvalue to the field specified in fieldoffset. If
* fieldoffset is 0 then no reset will be done.
*/
CPResetFn *resetfn;
/*
* "Original" readfn, writefn, accessfn.
* For ARMv8.1-VHE register aliases, we overwrite the read/write
* accessor functions of various EL1/EL0 to perform the runtime
* check for which sysreg should actually be modified, and then
* forwards the operation. Before overwriting the accessors,
* the original function is copied here, so that accesses that
* really do go to the EL1/EL0 version proceed normally.
* (The corresponding EL2 register is linked via opaque.)
*/
CPReadFn *orig_readfn;
CPWriteFn *orig_writefn;
CPAccessFn *orig_accessfn;
};
/*
* Macros which are lvalues for the field in CPUARMState for the
* ARMCPRegInfo *ri.
*/
#define CPREG_FIELD32(env, ri) \
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
#define CPREG_FIELD64(env, ri) \
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu, const ARMCPRegInfo *reg,
void *opaque);
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
{
define_one_arm_cp_reg_with_opaque(cpu, regs, NULL);
}
void define_arm_cp_regs_with_opaque_len(ARMCPU *cpu, const ARMCPRegInfo *regs,
void *opaque, size_t len);
#define define_arm_cp_regs_with_opaque(CPU, REGS, OPAQUE) \
do { \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \
define_arm_cp_regs_with_opaque_len(CPU, REGS, OPAQUE, \
ARRAY_SIZE(REGS)); \
} while (0)
#define define_arm_cp_regs(CPU, REGS) \
define_arm_cp_regs_with_opaque(CPU, REGS, NULL)
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
/*
* Definition of an ARM co-processor register as viewed from
* userspace. This is used for presenting sanitised versions of
* registers to userspace when emulating the Linux AArch64 CPU
* ID/feature ABI (advertised as HWCAP_CPUID).
*/
typedef struct ARMCPRegUserSpaceInfo {
/* Name of register */
const char *name;
/* Is the name actually a glob pattern */
bool is_glob;
/* Only some bits are exported to user space */
uint64_t exported_bits;
/* Fixed bits are applied after the mask */
uint64_t fixed_bits;
} ARMCPRegUserSpaceInfo;
void modify_arm_cp_regs_with_len(ARMCPRegInfo *regs, size_t regs_len,
const ARMCPRegUserSpaceInfo *mods,
size_t mods_len);
#define modify_arm_cp_regs(REGS, MODS) \
do { \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(REGS) == 0); \
QEMU_BUILD_BUG_ON(ARRAY_SIZE(MODS) == 0); \
modify_arm_cp_regs_with_len(REGS, ARRAY_SIZE(REGS), \
MODS, ARRAY_SIZE(MODS)); \
} while (0)
/* CPWriteFn that can be used to implement writes-ignored behaviour */
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
uint64_t value);
/* CPReadFn that can be used for read-as-zero behaviour */
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
/* CPWriteFn that just writes the value to ri->fieldoffset */
void raw_write(CPUARMState *env, const ARMCPRegInfo *ri, uint64_t value);
/*
* CPResetFn that does nothing, for use if no reset is required even
* if fieldoffset is non zero.
*/
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
/*
* Return true if this reginfo struct's field in the cpu state struct
* is 64 bits wide.
*/
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
{
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
}
static inline bool cp_access_ok(int current_el,
const ARMCPRegInfo *ri, int isread)
{
return (ri->access >> ((current_el * 2) + isread)) & 1;
}
/* Raw read of a coprocessor register (as needed for migration, etc) */
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
/*
* Return true if the cp register encoding is in the "feature ID space" as
* defined by FEAT_IDST (and thus should be reported with ER_ELx.EC
* as EC_SYSTEMREGISTERTRAP rather than EC_UNCATEGORIZED).
*/
static inline bool arm_cpreg_encoding_in_idspace(uint8_t opc0, uint8_t opc1,
uint8_t opc2,
uint8_t crn, uint8_t crm)
{
return opc0 == 3 && (opc1 == 0 || opc1 == 1 || opc1 == 3) &&
crn == 0 && crm < 8;
}
/*
* As arm_cpreg_encoding_in_idspace(), but take the encoding from an
* ARMCPRegInfo.
*/
static inline bool arm_cpreg_in_idspace(const ARMCPRegInfo *ri)
{
return ri->state == ARM_CP_STATE_AA64 &&
arm_cpreg_encoding_in_idspace(ri->opc0, ri->opc1, ri->opc2,
ri->crn, ri->crm);
}
#ifdef CONFIG_USER_ONLY
static inline void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu) { }
#else
void define_cortex_a72_a57_a53_cp_reginfo(ARMCPU *cpu);
#endif
CPAccessResult access_tvm_trvm(CPUARMState *, const ARMCPRegInfo *, bool);
/**
* arm_cpreg_trap_in_nv: Return true if cpreg traps in nested virtualization
*
* Return true if this cpreg is one which should be trapped to EL2 if
* it is executed at EL1 when nested virtualization is enabled via HCR_EL2.NV.
*/
static inline bool arm_cpreg_traps_in_nv(const ARMCPRegInfo *ri)
{
/*
* The Arm ARM defines the registers to be trapped in terms of
* their names (I_TZTZL). However the underlying principle is "if
* it would UNDEF at EL1 but work at EL2 then it should trap", and
* the way the encoding of sysregs and system instructions is done
* means that the right set of registers is exactly those where
* the opc1 field is 4 or 5. (You can see this also in the assert
* we do that the opc1 field and the permissions mask line up in
* define_one_arm_cp_reg_with_opaque().)
* Checking the opc1 field is easier for us and avoids the problem
* that we do not consistently use the right architectural names
* for all sysregs, since we treat the name field as largely for debug.
*
* However we do this check, it is going to be at least potentially
* fragile to future new sysregs, but this seems the least likely
* to break.
*
* In particular, note that the released sysreg XML defines that
* the FEAT_MEC sysregs and instructions do not follow this FEAT_NV
* trapping rule, so we will need to add an ARM_CP_* flag to indicate
* "register does not trap on NV" to handle those if/when we implement
* FEAT_MEC.
*/
return ri->opc1 == 4 || ri->opc1 == 5;
}
#endif /* TARGET_ARM_CPREGS_H */