qemu-e2k/hw/slavio_timer.c
Jan Kiszka 8217606e6e Introduce reset notifier order
Add the parameter 'order' to qemu_register_reset and sort callbacks on
registration. On system reset, callbacks with lower order will be
invoked before those with higher order. Update all existing users to the
standard order 0.

Note: At least for x86, the existing users seem to assume that handlers
are called in their registration order. Therefore, the patch preserves
this property. If someone feels bored, (s)he could try to identify this
dependency and express it properly on callback registration.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-05-22 10:50:34 -05:00

416 lines
14 KiB
C

/*
* QEMU Sparc SLAVIO timer controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "sun4m.h"
#include "qemu-timer.h"
//#define DEBUG_TIMER
#ifdef DEBUG_TIMER
#define DPRINTF(fmt, ...) \
do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do {} while (0)
#endif
/*
* Registers of hardware timer in sun4m.
*
* This is the timer/counter part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
* are zero. Bit 31 is 1 when count has been reached.
*
* Per-CPU timers interrupt local CPU, system timer uses normal
* interrupt routing.
*
*/
#define MAX_CPUS 16
typedef struct SLAVIO_TIMERState {
qemu_irq irq;
ptimer_state *timer;
uint32_t count, counthigh, reached;
uint64_t limit;
// processor only
uint32_t running;
struct SLAVIO_TIMERState *master;
uint32_t slave_index;
// system only
uint32_t num_slaves;
struct SLAVIO_TIMERState *slave[MAX_CPUS];
uint32_t slave_mode;
} SLAVIO_TIMERState;
#define SYS_TIMER_SIZE 0x14
#define CPU_TIMER_SIZE 0x10
#define SYS_TIMER_OFFSET 0x10000ULL
#define CPU_TIMER_OFFSET(cpu) (0x1000ULL * cpu)
#define TIMER_LIMIT 0
#define TIMER_COUNTER 1
#define TIMER_COUNTER_NORST 2
#define TIMER_STATUS 3
#define TIMER_MODE 4
#define TIMER_COUNT_MASK32 0xfffffe00
#define TIMER_LIMIT_MASK32 0x7fffffff
#define TIMER_MAX_COUNT64 0x7ffffffffffffe00ULL
#define TIMER_MAX_COUNT32 0x7ffffe00ULL
#define TIMER_REACHED 0x80000000
#define TIMER_PERIOD 500ULL // 500ns
#define LIMIT_TO_PERIODS(l) ((l) >> 9)
#define PERIODS_TO_LIMIT(l) ((l) << 9)
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
{
return s->master && (s->master->slave_mode & (1 << s->slave_index));
}
// Update count, set irq, update expire_time
// Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
uint64_t count, limit;
if (s->limit == 0) /* free-run processor or system counter */
limit = TIMER_MAX_COUNT32;
else
limit = s->limit;
if (s->timer)
count = limit - PERIODS_TO_LIMIT(ptimer_get_count(s->timer));
else
count = 0;
DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit,
s->counthigh, s->count);
s->count = count & TIMER_COUNT_MASK32;
s->counthigh = count >> 32;
}
// timer callback
static void slavio_timer_irq(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
slavio_timer_get_out(s);
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
s->reached = TIMER_REACHED;
if (!slavio_timer_is_user(s))
qemu_irq_raise(s->irq);
}
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr, ret;
saddr = addr >> 2;
switch (saddr) {
case TIMER_LIMIT:
// read limit (system counter mode) or read most signifying
// part of counter (user mode)
if (slavio_timer_is_user(s)) {
// read user timer MSW
slavio_timer_get_out(s);
ret = s->counthigh | s->reached;
} else {
// read limit
// clear irq
qemu_irq_lower(s->irq);
s->reached = 0;
ret = s->limit & TIMER_LIMIT_MASK32;
}
break;
case TIMER_COUNTER:
// read counter and reached bit (system mode) or read lsbits
// of counter (user mode)
slavio_timer_get_out(s);
if (slavio_timer_is_user(s)) // read user timer LSW
ret = s->count & TIMER_MAX_COUNT64;
else // read limit
ret = (s->count & TIMER_MAX_COUNT32) | s->reached;
break;
case TIMER_STATUS:
// only available in processor counter/timer
// read start/stop status
ret = s->running;
break;
case TIMER_MODE:
// only available in system counter
// read user/system mode
ret = s->slave_mode;
break;
default:
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
ret = 0;
break;
}
DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
return ret;
}
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
saddr = addr >> 2;
switch (saddr) {
case TIMER_LIMIT:
if (slavio_timer_is_user(s)) {
uint64_t count;
// set user counter MSW, reset counter
s->limit = TIMER_MAX_COUNT64;
s->counthigh = val & (TIMER_MAX_COUNT64 >> 32);
s->reached = 0;
count = ((uint64_t)s->counthigh << 32) | s->count;
DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
count);
if (s->timer)
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
} else {
// set limit, reset counter
qemu_irq_lower(s->irq);
s->limit = val & TIMER_MAX_COUNT32;
if (s->timer) {
if (s->limit == 0) /* free-run */
ptimer_set_limit(s->timer,
LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
else
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 1);
}
}
break;
case TIMER_COUNTER:
if (slavio_timer_is_user(s)) {
uint64_t count;
// set user counter LSW, reset counter
s->limit = TIMER_MAX_COUNT64;
s->count = val & TIMER_MAX_COUNT64;
s->reached = 0;
count = ((uint64_t)s->counthigh) << 32 | s->count;
DPRINTF("processor %d user timer set to %016llx\n", s->slave_index,
count);
if (s->timer)
ptimer_set_count(s->timer, LIMIT_TO_PERIODS(s->limit - count));
} else
DPRINTF("not user timer\n");
break;
case TIMER_COUNTER_NORST:
// set limit without resetting counter
s->limit = val & TIMER_MAX_COUNT32;
if (s->timer) {
if (s->limit == 0) /* free-run */
ptimer_set_limit(s->timer,
LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 0);
else
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(s->limit), 0);
}
break;
case TIMER_STATUS:
if (slavio_timer_is_user(s)) {
// start/stop user counter
if ((val & 1) && !s->running) {
DPRINTF("processor %d user timer started\n", s->slave_index);
if (s->timer)
ptimer_run(s->timer, 0);
s->running = 1;
} else if (!(val & 1) && s->running) {
DPRINTF("processor %d user timer stopped\n", s->slave_index);
if (s->timer)
ptimer_stop(s->timer);
s->running = 0;
}
}
break;
case TIMER_MODE:
if (s->master == NULL) {
unsigned int i;
for (i = 0; i < s->num_slaves; i++) {
unsigned int processor = 1 << i;
// check for a change in timer mode for this processor
if ((val & processor) != (s->slave_mode & processor)) {
if (val & processor) { // counter -> user timer
qemu_irq_lower(s->slave[i]->irq);
// counters are always running
ptimer_stop(s->slave[i]->timer);
s->slave[i]->running = 0;
// user timer limit is always the same
s->slave[i]->limit = TIMER_MAX_COUNT64;
ptimer_set_limit(s->slave[i]->timer,
LIMIT_TO_PERIODS(s->slave[i]->limit),
1);
// set this processors user timer bit in config
// register
s->slave_mode |= processor;
DPRINTF("processor %d changed from counter to user "
"timer\n", s->slave[i]->slave_index);
} else { // user timer -> counter
// stop the user timer if it is running
if (s->slave[i]->running)
ptimer_stop(s->slave[i]->timer);
// start the counter
ptimer_run(s->slave[i]->timer, 0);
s->slave[i]->running = 1;
// clear this processors user timer bit in config
// register
s->slave_mode &= ~processor;
DPRINTF("processor %d changed from user timer to "
"counter\n", s->slave[i]->slave_index);
}
}
}
} else
DPRINTF("not system timer\n");
break;
default:
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
break;
}
}
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
NULL,
NULL,
slavio_timer_mem_readl,
};
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
NULL,
NULL,
slavio_timer_mem_writel,
};
static void slavio_timer_save(QEMUFile *f, void *opaque)
{
SLAVIO_TIMERState *s = opaque;
qemu_put_be64s(f, &s->limit);
qemu_put_be32s(f, &s->count);
qemu_put_be32s(f, &s->counthigh);
qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->running);
if (s->timer)
qemu_put_ptimer(f, s->timer);
}
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_TIMERState *s = opaque;
if (version_id != 3)
return -EINVAL;
qemu_get_be64s(f, &s->limit);
qemu_get_be32s(f, &s->count);
qemu_get_be32s(f, &s->counthigh);
qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->running);
if (s->timer)
qemu_get_ptimer(f, s->timer);
return 0;
}
static void slavio_timer_reset(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
s->limit = 0;
s->count = 0;
s->reached = 0;
s->slave_mode = 0;
if (!s->master || s->slave_index < s->master->num_slaves) {
ptimer_set_limit(s->timer, LIMIT_TO_PERIODS(TIMER_MAX_COUNT32), 1);
ptimer_run(s->timer, 0);
}
s->running = 1;
qemu_irq_lower(s->irq);
}
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
qemu_irq irq,
SLAVIO_TIMERState *master,
uint32_t slave_index)
{
int slavio_timer_io_memory;
SLAVIO_TIMERState *s;
QEMUBH *bh;
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
s->irq = irq;
s->master = master;
s->slave_index = slave_index;
if (!master || slave_index < master->num_slaves) {
bh = qemu_bh_new(slavio_timer_irq, s);
s->timer = ptimer_init(bh);
ptimer_set_period(s->timer, TIMER_PERIOD);
}
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s);
if (master)
cpu_register_physical_memory(addr, CPU_TIMER_SIZE,
slavio_timer_io_memory);
else
cpu_register_physical_memory(addr, SYS_TIMER_SIZE,
slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 3, slavio_timer_save,
slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, 0, s);
slavio_timer_reset(s);
return s;
}
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
qemu_irq *cpu_irqs, unsigned int num_cpus)
{
SLAVIO_TIMERState *master;
unsigned int i;
master = slavio_timer_init(base + SYS_TIMER_OFFSET, master_irq, NULL, 0);
master->num_slaves = num_cpus;
for (i = 0; i < MAX_CPUS; i++) {
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
CPU_TIMER_OFFSET(i),
cpu_irqs[i], master, i);
}
}