qemu-e2k/hw/pci.c
Isaku Yamahata b5937f2978 pci: fix info pci with host bridge.
This patch fixes 525e05147d5a3bdc08caa422d108c1ef71b584b5.
pci host bridge doesn't have header type of bridge.
The check should be by header type, instead of pci class device.

Cc: Blue Swirl <blauwirbel@gmail.com>
Cc: "Michael S. Tsirkin" <mst@redhat.com>
Signed-off-by: Isaku Yamahata <yamahata@valinux.co.jp>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2010-02-13 07:37:11 +00:00

1897 lines
56 KiB
C

/*
* QEMU PCI bus manager
*
* Copyright (c) 2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "monitor.h"
#include "net.h"
#include "sysemu.h"
#include "loader.h"
#include "qemu-objects.h"
//#define DEBUG_PCI
#ifdef DEBUG_PCI
# define PCI_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
#else
# define PCI_DPRINTF(format, ...) do { } while (0)
#endif
struct PCIBus {
BusState qbus;
int devfn_min;
pci_set_irq_fn set_irq;
pci_map_irq_fn map_irq;
pci_hotplug_fn hotplug;
void *irq_opaque;
PCIDevice *devices[256];
PCIDevice *parent_dev;
target_phys_addr_t mem_base;
QLIST_HEAD(, PCIBus) child; /* this will be replaced by qdev later */
QLIST_ENTRY(PCIBus) sibling;/* this will be replaced by qdev later */
/* The bus IRQ state is the logical OR of the connected devices.
Keep a count of the number of devices with raised IRQs. */
int nirq;
int *irq_count;
};
static void pcibus_dev_print(Monitor *mon, DeviceState *dev, int indent);
static struct BusInfo pci_bus_info = {
.name = "PCI",
.size = sizeof(PCIBus),
.print_dev = pcibus_dev_print,
.props = (Property[]) {
DEFINE_PROP_PCI_DEVFN("addr", PCIDevice, devfn, -1),
DEFINE_PROP_STRING("romfile", PCIDevice, romfile),
DEFINE_PROP_UINT32("rombar", PCIDevice, rom_bar, 1),
DEFINE_PROP_END_OF_LIST()
}
};
static void pci_update_mappings(PCIDevice *d);
static void pci_set_irq(void *opaque, int irq_num, int level);
static int pci_add_option_rom(PCIDevice *pdev);
static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET;
static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU;
struct PCIHostBus {
int domain;
struct PCIBus *bus;
QLIST_ENTRY(PCIHostBus) next;
};
static QLIST_HEAD(, PCIHostBus) host_buses;
static const VMStateDescription vmstate_pcibus = {
.name = "PCIBUS",
.version_id = 1,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_INT32_EQUAL(nirq, PCIBus),
VMSTATE_VARRAY_INT32(irq_count, PCIBus, nirq, 0, vmstate_info_int32, int32_t),
VMSTATE_END_OF_LIST()
}
};
static int pci_bar(PCIDevice *d, int reg)
{
uint8_t type;
if (reg != PCI_ROM_SLOT)
return PCI_BASE_ADDRESS_0 + reg * 4;
type = d->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
return type == PCI_HEADER_TYPE_BRIDGE ? PCI_ROM_ADDRESS1 : PCI_ROM_ADDRESS;
}
static inline int pci_irq_state(PCIDevice *d, int irq_num)
{
return (d->irq_state >> irq_num) & 0x1;
}
static inline void pci_set_irq_state(PCIDevice *d, int irq_num, int level)
{
d->irq_state &= ~(0x1 << irq_num);
d->irq_state |= level << irq_num;
}
static void pci_change_irq_level(PCIDevice *pci_dev, int irq_num, int change)
{
PCIBus *bus;
for (;;) {
bus = pci_dev->bus;
irq_num = bus->map_irq(pci_dev, irq_num);
if (bus->set_irq)
break;
pci_dev = bus->parent_dev;
}
bus->irq_count[irq_num] += change;
bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0);
}
/* Update interrupt status bit in config space on interrupt
* state change. */
static void pci_update_irq_status(PCIDevice *dev)
{
if (dev->irq_state) {
dev->config[PCI_STATUS] |= PCI_STATUS_INTERRUPT;
} else {
dev->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT;
}
}
static void pci_device_reset(PCIDevice *dev)
{
int r;
dev->irq_state = 0;
pci_update_irq_status(dev);
dev->config[PCI_COMMAND] &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER);
dev->config[PCI_CACHE_LINE_SIZE] = 0x0;
dev->config[PCI_INTERRUPT_LINE] = 0x0;
for (r = 0; r < PCI_NUM_REGIONS; ++r) {
if (!dev->io_regions[r].size) {
continue;
}
pci_set_long(dev->config + pci_bar(dev, r), dev->io_regions[r].type);
}
pci_update_mappings(dev);
}
static void pci_bus_reset(void *opaque)
{
PCIBus *bus = opaque;
int i;
for (i = 0; i < bus->nirq; i++) {
bus->irq_count[i] = 0;
}
for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) {
if (bus->devices[i]) {
pci_device_reset(bus->devices[i]);
}
}
}
static void pci_host_bus_register(int domain, PCIBus *bus)
{
struct PCIHostBus *host;
host = qemu_mallocz(sizeof(*host));
host->domain = domain;
host->bus = bus;
QLIST_INSERT_HEAD(&host_buses, host, next);
}
PCIBus *pci_find_root_bus(int domain)
{
struct PCIHostBus *host;
QLIST_FOREACH(host, &host_buses, next) {
if (host->domain == domain) {
return host->bus;
}
}
return NULL;
}
void pci_bus_new_inplace(PCIBus *bus, DeviceState *parent,
const char *name, int devfn_min)
{
qbus_create_inplace(&bus->qbus, &pci_bus_info, parent, name);
bus->devfn_min = devfn_min;
/* host bridge */
QLIST_INIT(&bus->child);
pci_host_bus_register(0, bus); /* for now only pci domain 0 is supported */
vmstate_register(-1, &vmstate_pcibus, bus);
qemu_register_reset(pci_bus_reset, bus);
}
PCIBus *pci_bus_new(DeviceState *parent, const char *name, int devfn_min)
{
PCIBus *bus;
bus = qemu_mallocz(sizeof(*bus));
bus->qbus.qdev_allocated = 1;
pci_bus_new_inplace(bus, parent, name, devfn_min);
return bus;
}
void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
void *irq_opaque, int nirq)
{
bus->set_irq = set_irq;
bus->map_irq = map_irq;
bus->irq_opaque = irq_opaque;
bus->nirq = nirq;
bus->irq_count = qemu_mallocz(nirq * sizeof(bus->irq_count[0]));
}
void pci_bus_hotplug(PCIBus *bus, pci_hotplug_fn hotplug)
{
bus->qbus.allow_hotplug = 1;
bus->hotplug = hotplug;
}
void pci_bus_set_mem_base(PCIBus *bus, target_phys_addr_t base)
{
bus->mem_base = base;
}
PCIBus *pci_register_bus(DeviceState *parent, const char *name,
pci_set_irq_fn set_irq, pci_map_irq_fn map_irq,
void *irq_opaque, int devfn_min, int nirq)
{
PCIBus *bus;
bus = pci_bus_new(parent, name, devfn_min);
pci_bus_irqs(bus, set_irq, map_irq, irq_opaque, nirq);
return bus;
}
static void pci_register_secondary_bus(PCIBus *parent,
PCIBus *bus,
PCIDevice *dev,
pci_map_irq_fn map_irq,
const char *name)
{
qbus_create_inplace(&bus->qbus, &pci_bus_info, &dev->qdev, name);
bus->map_irq = map_irq;
bus->parent_dev = dev;
QLIST_INIT(&bus->child);
QLIST_INSERT_HEAD(&parent->child, bus, sibling);
}
static void pci_unregister_secondary_bus(PCIBus *bus)
{
assert(QLIST_EMPTY(&bus->child));
QLIST_REMOVE(bus, sibling);
}
int pci_bus_num(PCIBus *s)
{
if (!s->parent_dev)
return 0; /* pci host bridge */
return s->parent_dev->config[PCI_SECONDARY_BUS];
}
static int get_pci_config_device(QEMUFile *f, void *pv, size_t size)
{
PCIDevice *s = container_of(pv, PCIDevice, config);
uint8_t *config;
int i;
assert(size == pci_config_size(s));
config = qemu_malloc(size);
qemu_get_buffer(f, config, size);
for (i = 0; i < size; ++i) {
if ((config[i] ^ s->config[i]) & s->cmask[i] & ~s->wmask[i]) {
qemu_free(config);
return -EINVAL;
}
}
memcpy(s->config, config, size);
pci_update_mappings(s);
qemu_free(config);
return 0;
}
/* just put buffer */
static void put_pci_config_device(QEMUFile *f, void *pv, size_t size)
{
const uint8_t **v = pv;
assert(size == pci_config_size(container_of(pv, PCIDevice, config)));
qemu_put_buffer(f, *v, size);
}
static VMStateInfo vmstate_info_pci_config = {
.name = "pci config",
.get = get_pci_config_device,
.put = put_pci_config_device,
};
static int get_pci_irq_state(QEMUFile *f, void *pv, size_t size)
{
PCIDevice *s = container_of(pv, PCIDevice, config);
uint32_t irq_state[PCI_NUM_PINS];
int i;
for (i = 0; i < PCI_NUM_PINS; ++i) {
irq_state[i] = qemu_get_be32(f);
if (irq_state[i] != 0x1 && irq_state[i] != 0) {
fprintf(stderr, "irq state %d: must be 0 or 1.\n",
irq_state[i]);
return -EINVAL;
}
}
for (i = 0; i < PCI_NUM_PINS; ++i) {
pci_set_irq_state(s, i, irq_state[i]);
}
return 0;
}
static void put_pci_irq_state(QEMUFile *f, void *pv, size_t size)
{
int i;
PCIDevice *s = container_of(pv, PCIDevice, config);
for (i = 0; i < PCI_NUM_PINS; ++i) {
qemu_put_be32(f, pci_irq_state(s, i));
}
}
static VMStateInfo vmstate_info_pci_irq_state = {
.name = "pci irq state",
.get = get_pci_irq_state,
.put = put_pci_irq_state,
};
const VMStateDescription vmstate_pci_device = {
.name = "PCIDevice",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_INT32_LE(version_id, PCIDevice),
VMSTATE_BUFFER_UNSAFE_INFO(config, PCIDevice, 0,
vmstate_info_pci_config,
PCI_CONFIG_SPACE_SIZE),
VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2,
vmstate_info_pci_irq_state,
PCI_NUM_PINS * sizeof(int32_t)),
VMSTATE_END_OF_LIST()
}
};
const VMStateDescription vmstate_pcie_device = {
.name = "PCIDevice",
.version_id = 2,
.minimum_version_id = 1,
.minimum_version_id_old = 1,
.fields = (VMStateField []) {
VMSTATE_INT32_LE(version_id, PCIDevice),
VMSTATE_BUFFER_UNSAFE_INFO(config, PCIDevice, 0,
vmstate_info_pci_config,
PCIE_CONFIG_SPACE_SIZE),
VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2,
vmstate_info_pci_irq_state,
PCI_NUM_PINS * sizeof(int32_t)),
VMSTATE_END_OF_LIST()
}
};
static inline const VMStateDescription *pci_get_vmstate(PCIDevice *s)
{
return pci_is_express(s) ? &vmstate_pcie_device : &vmstate_pci_device;
}
void pci_device_save(PCIDevice *s, QEMUFile *f)
{
/* Clear interrupt status bit: it is implicit
* in irq_state which we are saving.
* This makes us compatible with old devices
* which never set or clear this bit. */
s->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT;
vmstate_save_state(f, pci_get_vmstate(s), s);
/* Restore the interrupt status bit. */
pci_update_irq_status(s);
}
int pci_device_load(PCIDevice *s, QEMUFile *f)
{
int ret;
ret = vmstate_load_state(f, pci_get_vmstate(s), s, s->version_id);
/* Restore the interrupt status bit. */
pci_update_irq_status(s);
return ret;
}
static int pci_set_default_subsystem_id(PCIDevice *pci_dev)
{
uint16_t *id;
id = (void*)(&pci_dev->config[PCI_SUBSYSTEM_VENDOR_ID]);
id[0] = cpu_to_le16(pci_default_sub_vendor_id);
id[1] = cpu_to_le16(pci_default_sub_device_id);
return 0;
}
/*
* Parse [[<domain>:]<bus>:]<slot>, return -1 on error
*/
static int pci_parse_devaddr(const char *addr, int *domp, int *busp, unsigned *slotp)
{
const char *p;
char *e;
unsigned long val;
unsigned long dom = 0, bus = 0;
unsigned slot = 0;
p = addr;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
if (*e == ':') {
dom = bus;
bus = val;
p = e + 1;
val = strtoul(p, &e, 16);
if (e == p)
return -1;
}
}
if (dom > 0xffff || bus > 0xff || val > 0x1f)
return -1;
slot = val;
if (*e)
return -1;
/* Note: QEMU doesn't implement domains other than 0 */
if (!pci_find_bus(pci_find_root_bus(dom), bus))
return -1;
*domp = dom;
*busp = bus;
*slotp = slot;
return 0;
}
int pci_read_devaddr(Monitor *mon, const char *addr, int *domp, int *busp,
unsigned *slotp)
{
/* strip legacy tag */
if (!strncmp(addr, "pci_addr=", 9)) {
addr += 9;
}
if (pci_parse_devaddr(addr, domp, busp, slotp)) {
monitor_printf(mon, "Invalid pci address\n");
return -1;
}
return 0;
}
PCIBus *pci_get_bus_devfn(int *devfnp, const char *devaddr)
{
int dom, bus;
unsigned slot;
if (!devaddr) {
*devfnp = -1;
return pci_find_bus(pci_find_root_bus(0), 0);
}
if (pci_parse_devaddr(devaddr, &dom, &bus, &slot) < 0) {
return NULL;
}
*devfnp = slot << 3;
return pci_find_bus(pci_find_root_bus(0), bus);
}
static void pci_init_cmask(PCIDevice *dev)
{
pci_set_word(dev->cmask + PCI_VENDOR_ID, 0xffff);
pci_set_word(dev->cmask + PCI_DEVICE_ID, 0xffff);
dev->cmask[PCI_STATUS] = PCI_STATUS_CAP_LIST;
dev->cmask[PCI_REVISION_ID] = 0xff;
dev->cmask[PCI_CLASS_PROG] = 0xff;
pci_set_word(dev->cmask + PCI_CLASS_DEVICE, 0xffff);
dev->cmask[PCI_HEADER_TYPE] = 0xff;
dev->cmask[PCI_CAPABILITY_LIST] = 0xff;
}
static void pci_init_wmask(PCIDevice *dev)
{
int config_size = pci_config_size(dev);
dev->wmask[PCI_CACHE_LINE_SIZE] = 0xff;
dev->wmask[PCI_INTERRUPT_LINE] = 0xff;
pci_set_word(dev->wmask + PCI_COMMAND,
PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_INTX_DISABLE);
memset(dev->wmask + PCI_CONFIG_HEADER_SIZE, 0xff,
config_size - PCI_CONFIG_HEADER_SIZE);
}
static void pci_init_wmask_bridge(PCIDevice *d)
{
/* PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS and
PCI_SEC_LETENCY_TIMER */
memset(d->wmask + PCI_PRIMARY_BUS, 0xff, 4);
/* base and limit */
d->wmask[PCI_IO_BASE] = PCI_IO_RANGE_MASK & 0xff;
d->wmask[PCI_IO_LIMIT] = PCI_IO_RANGE_MASK & 0xff;
pci_set_word(d->wmask + PCI_MEMORY_BASE,
PCI_MEMORY_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_MEMORY_LIMIT,
PCI_MEMORY_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_PREF_MEMORY_BASE,
PCI_PREF_RANGE_MASK & 0xffff);
pci_set_word(d->wmask + PCI_PREF_MEMORY_LIMIT,
PCI_PREF_RANGE_MASK & 0xffff);
/* PCI_PREF_BASE_UPPER32 and PCI_PREF_LIMIT_UPPER32 */
memset(d->wmask + PCI_PREF_BASE_UPPER32, 0xff, 8);
pci_set_word(d->wmask + PCI_BRIDGE_CONTROL, 0xffff);
}
static void pci_config_alloc(PCIDevice *pci_dev)
{
int config_size = pci_config_size(pci_dev);
pci_dev->config = qemu_mallocz(config_size);
pci_dev->cmask = qemu_mallocz(config_size);
pci_dev->wmask = qemu_mallocz(config_size);
pci_dev->used = qemu_mallocz(config_size);
}
static void pci_config_free(PCIDevice *pci_dev)
{
qemu_free(pci_dev->config);
qemu_free(pci_dev->cmask);
qemu_free(pci_dev->wmask);
qemu_free(pci_dev->used);
}
/* -1 for devfn means auto assign */
static PCIDevice *do_pci_register_device(PCIDevice *pci_dev, PCIBus *bus,
const char *name, int devfn,
PCIConfigReadFunc *config_read,
PCIConfigWriteFunc *config_write,
uint8_t header_type)
{
if (devfn < 0) {
for(devfn = bus->devfn_min ; devfn < ARRAY_SIZE(bus->devices);
devfn += 8) {
if (!bus->devices[devfn])
goto found;
}
qemu_error("PCI: no devfn available for %s, all in use\n", name);
return NULL;
found: ;
} else if (bus->devices[devfn]) {
qemu_error("PCI: devfn %d not available for %s, in use by %s\n", devfn,
name, bus->devices[devfn]->name);
return NULL;
}
pci_dev->bus = bus;
pci_dev->devfn = devfn;
pstrcpy(pci_dev->name, sizeof(pci_dev->name), name);
pci_dev->irq_state = 0;
pci_config_alloc(pci_dev);
header_type &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
if (header_type == PCI_HEADER_TYPE_NORMAL) {
pci_set_default_subsystem_id(pci_dev);
}
pci_init_cmask(pci_dev);
pci_init_wmask(pci_dev);
if (header_type == PCI_HEADER_TYPE_BRIDGE) {
pci_init_wmask_bridge(pci_dev);
}
if (!config_read)
config_read = pci_default_read_config;
if (!config_write)
config_write = pci_default_write_config;
pci_dev->config_read = config_read;
pci_dev->config_write = config_write;
bus->devices[devfn] = pci_dev;
pci_dev->irq = qemu_allocate_irqs(pci_set_irq, pci_dev, PCI_NUM_PINS);
pci_dev->version_id = 2; /* Current pci device vmstate version */
return pci_dev;
}
PCIDevice *pci_register_device(PCIBus *bus, const char *name,
int instance_size, int devfn,
PCIConfigReadFunc *config_read,
PCIConfigWriteFunc *config_write)
{
PCIDevice *pci_dev;
pci_dev = qemu_mallocz(instance_size);
pci_dev = do_pci_register_device(pci_dev, bus, name, devfn,
config_read, config_write,
PCI_HEADER_TYPE_NORMAL);
if (pci_dev == NULL) {
hw_error("PCI: can't register device\n");
}
return pci_dev;
}
static target_phys_addr_t pci_to_cpu_addr(PCIBus *bus,
target_phys_addr_t addr)
{
return addr + bus->mem_base;
}
static void pci_unregister_io_regions(PCIDevice *pci_dev)
{
PCIIORegion *r;
int i;
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &pci_dev->io_regions[i];
if (!r->size || r->addr == PCI_BAR_UNMAPPED)
continue;
if (r->type == PCI_BASE_ADDRESS_SPACE_IO) {
isa_unassign_ioport(r->addr, r->filtered_size);
} else {
cpu_register_physical_memory(pci_to_cpu_addr(pci_dev->bus,
r->addr),
r->filtered_size,
IO_MEM_UNASSIGNED);
}
}
}
static int pci_unregister_device(DeviceState *dev)
{
PCIDevice *pci_dev = DO_UPCAST(PCIDevice, qdev, dev);
PCIDeviceInfo *info = DO_UPCAST(PCIDeviceInfo, qdev, dev->info);
int ret = 0;
if (info->exit)
ret = info->exit(pci_dev);
if (ret)
return ret;
pci_unregister_io_regions(pci_dev);
qemu_free_irqs(pci_dev->irq);
pci_dev->bus->devices[pci_dev->devfn] = NULL;
pci_config_free(pci_dev);
return 0;
}
void pci_register_bar(PCIDevice *pci_dev, int region_num,
pcibus_t size, int type,
PCIMapIORegionFunc *map_func)
{
PCIIORegion *r;
uint32_t addr;
pcibus_t wmask;
if ((unsigned int)region_num >= PCI_NUM_REGIONS)
return;
if (size & (size-1)) {
fprintf(stderr, "ERROR: PCI region size must be pow2 "
"type=0x%x, size=0x%"FMT_PCIBUS"\n", type, size);
exit(1);
}
r = &pci_dev->io_regions[region_num];
r->addr = PCI_BAR_UNMAPPED;
r->size = size;
r->filtered_size = size;
r->type = type;
r->map_func = map_func;
wmask = ~(size - 1);
addr = pci_bar(pci_dev, region_num);
if (region_num == PCI_ROM_SLOT) {
/* ROM enable bit is writeable */
wmask |= PCI_ROM_ADDRESS_ENABLE;
}
pci_set_long(pci_dev->config + addr, type);
if (!(r->type & PCI_BASE_ADDRESS_SPACE_IO) &&
r->type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
pci_set_quad(pci_dev->wmask + addr, wmask);
pci_set_quad(pci_dev->cmask + addr, ~0ULL);
} else {
pci_set_long(pci_dev->wmask + addr, wmask & 0xffffffff);
pci_set_long(pci_dev->cmask + addr, 0xffffffff);
}
}
static uint32_t pci_config_get_io_base(PCIDevice *d,
uint32_t base, uint32_t base_upper16)
{
uint32_t val;
val = ((uint32_t)d->config[base] & PCI_IO_RANGE_MASK) << 8;
if (d->config[base] & PCI_IO_RANGE_TYPE_32) {
val |= (uint32_t)pci_get_word(d->config + base_upper16) << 16;
}
return val;
}
static pcibus_t pci_config_get_memory_base(PCIDevice *d, uint32_t base)
{
return ((pcibus_t)pci_get_word(d->config + base) & PCI_MEMORY_RANGE_MASK)
<< 16;
}
static pcibus_t pci_config_get_pref_base(PCIDevice *d,
uint32_t base, uint32_t upper)
{
pcibus_t tmp;
pcibus_t val;
tmp = (pcibus_t)pci_get_word(d->config + base);
val = (tmp & PCI_PREF_RANGE_MASK) << 16;
if (tmp & PCI_PREF_RANGE_TYPE_64) {
val |= (pcibus_t)pci_get_long(d->config + upper) << 32;
}
return val;
}
static pcibus_t pci_bridge_get_base(PCIDevice *bridge, uint8_t type)
{
pcibus_t base;
if (type & PCI_BASE_ADDRESS_SPACE_IO) {
base = pci_config_get_io_base(bridge,
PCI_IO_BASE, PCI_IO_BASE_UPPER16);
} else {
if (type & PCI_BASE_ADDRESS_MEM_PREFETCH) {
base = pci_config_get_pref_base(
bridge, PCI_PREF_MEMORY_BASE, PCI_PREF_BASE_UPPER32);
} else {
base = pci_config_get_memory_base(bridge, PCI_MEMORY_BASE);
}
}
return base;
}
static pcibus_t pci_bridge_get_limit(PCIDevice *bridge, uint8_t type)
{
pcibus_t limit;
if (type & PCI_BASE_ADDRESS_SPACE_IO) {
limit = pci_config_get_io_base(bridge,
PCI_IO_LIMIT, PCI_IO_LIMIT_UPPER16);
limit |= 0xfff; /* PCI bridge spec 3.2.5.6. */
} else {
if (type & PCI_BASE_ADDRESS_MEM_PREFETCH) {
limit = pci_config_get_pref_base(
bridge, PCI_PREF_MEMORY_LIMIT, PCI_PREF_LIMIT_UPPER32);
} else {
limit = pci_config_get_memory_base(bridge, PCI_MEMORY_LIMIT);
}
limit |= 0xfffff; /* PCI bridge spec 3.2.5.{1, 8}. */
}
return limit;
}
static void pci_bridge_filter(PCIDevice *d, pcibus_t *addr, pcibus_t *size,
uint8_t type)
{
pcibus_t base = *addr;
pcibus_t limit = *addr + *size - 1;
PCIDevice *br;
for (br = d->bus->parent_dev; br; br = br->bus->parent_dev) {
uint16_t cmd = pci_get_word(d->config + PCI_COMMAND);
if (type & PCI_BASE_ADDRESS_SPACE_IO) {
if (!(cmd & PCI_COMMAND_IO)) {
goto no_map;
}
} else {
if (!(cmd & PCI_COMMAND_MEMORY)) {
goto no_map;
}
}
base = MAX(base, pci_bridge_get_base(br, type));
limit = MIN(limit, pci_bridge_get_limit(br, type));
}
if (base > limit) {
goto no_map;
}
*addr = base;
*size = limit - base + 1;
return;
no_map:
*addr = PCI_BAR_UNMAPPED;
*size = 0;
}
static pcibus_t pci_bar_address(PCIDevice *d,
int reg, uint8_t type, pcibus_t size)
{
pcibus_t new_addr, last_addr;
int bar = pci_bar(d, reg);
uint16_t cmd = pci_get_word(d->config + PCI_COMMAND);
if (type & PCI_BASE_ADDRESS_SPACE_IO) {
if (!(cmd & PCI_COMMAND_IO)) {
return PCI_BAR_UNMAPPED;
}
new_addr = pci_get_long(d->config + bar) & ~(size - 1);
last_addr = new_addr + size - 1;
/* NOTE: we have only 64K ioports on PC */
if (last_addr <= new_addr || new_addr == 0 || last_addr > UINT16_MAX) {
return PCI_BAR_UNMAPPED;
}
return new_addr;
}
if (!(cmd & PCI_COMMAND_MEMORY)) {
return PCI_BAR_UNMAPPED;
}
if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
new_addr = pci_get_quad(d->config + bar);
} else {
new_addr = pci_get_long(d->config + bar);
}
/* the ROM slot has a specific enable bit */
if (reg == PCI_ROM_SLOT && !(new_addr & PCI_ROM_ADDRESS_ENABLE)) {
return PCI_BAR_UNMAPPED;
}
new_addr &= ~(size - 1);
last_addr = new_addr + size - 1;
/* NOTE: we do not support wrapping */
/* XXX: as we cannot support really dynamic
mappings, we handle specific values as invalid
mappings. */
if (last_addr <= new_addr || new_addr == 0 ||
last_addr == PCI_BAR_UNMAPPED) {
return PCI_BAR_UNMAPPED;
}
/* Now pcibus_t is 64bit.
* Check if 32 bit BAR wraps around explicitly.
* Without this, PC ide doesn't work well.
* TODO: remove this work around.
*/
if (!(type & PCI_BASE_ADDRESS_MEM_TYPE_64) && last_addr >= UINT32_MAX) {
return PCI_BAR_UNMAPPED;
}
/*
* OS is allowed to set BAR beyond its addressable
* bits. For example, 32 bit OS can set 64bit bar
* to >4G. Check it. TODO: we might need to support
* it in the future for e.g. PAE.
*/
if (last_addr >= TARGET_PHYS_ADDR_MAX) {
return PCI_BAR_UNMAPPED;
}
return new_addr;
}
static void pci_update_mappings(PCIDevice *d)
{
PCIIORegion *r;
int i;
pcibus_t new_addr, filtered_size;
for(i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
/* this region isn't registered */
if (!r->size)
continue;
new_addr = pci_bar_address(d, i, r->type, r->size);
/* bridge filtering */
filtered_size = r->size;
if (new_addr != PCI_BAR_UNMAPPED) {
pci_bridge_filter(d, &new_addr, &filtered_size, r->type);
}
/* This bar isn't changed */
if (new_addr == r->addr && filtered_size == r->filtered_size)
continue;
/* now do the real mapping */
if (r->addr != PCI_BAR_UNMAPPED) {
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
int class;
/* NOTE: specific hack for IDE in PC case:
only one byte must be mapped. */
class = pci_get_word(d->config + PCI_CLASS_DEVICE);
if (class == 0x0101 && r->size == 4) {
isa_unassign_ioport(r->addr + 2, 1);
} else {
isa_unassign_ioport(r->addr, r->filtered_size);
}
} else {
cpu_register_physical_memory(pci_to_cpu_addr(d->bus, r->addr),
r->filtered_size,
IO_MEM_UNASSIGNED);
qemu_unregister_coalesced_mmio(r->addr, r->filtered_size);
}
}
r->addr = new_addr;
r->filtered_size = filtered_size;
if (r->addr != PCI_BAR_UNMAPPED) {
/*
* TODO: currently almost all the map funcions assumes
* filtered_size == size and addr & ~(size - 1) == addr.
* However with bridge filtering, they aren't always true.
* Teach them such cases, such that filtered_size < size and
* addr & (size - 1) != 0.
*/
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
r->map_func(d, i, r->addr, r->filtered_size, r->type);
} else {
r->map_func(d, i, pci_to_cpu_addr(d->bus, r->addr),
r->filtered_size, r->type);
}
}
}
}
static inline int pci_irq_disabled(PCIDevice *d)
{
return pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE;
}
/* Called after interrupt disabled field update in config space,
* assert/deassert interrupts if necessary.
* Gets original interrupt disable bit value (before update). */
static void pci_update_irq_disabled(PCIDevice *d, int was_irq_disabled)
{
int i, disabled = pci_irq_disabled(d);
if (disabled == was_irq_disabled)
return;
for (i = 0; i < PCI_NUM_PINS; ++i) {
int state = pci_irq_state(d, i);
pci_change_irq_level(d, i, disabled ? -state : state);
}
}
uint32_t pci_default_read_config(PCIDevice *d,
uint32_t address, int len)
{
uint32_t val = 0;
assert(len == 1 || len == 2 || len == 4);
len = MIN(len, pci_config_size(d) - address);
memcpy(&val, d->config + address, len);
return le32_to_cpu(val);
}
void pci_default_write_config(PCIDevice *d, uint32_t addr, uint32_t val, int l)
{
int i, was_irq_disabled = pci_irq_disabled(d);
uint32_t config_size = pci_config_size(d);
for (i = 0; i < l && addr + i < config_size; val >>= 8, ++i) {
uint8_t wmask = d->wmask[addr + i];
d->config[addr + i] = (d->config[addr + i] & ~wmask) | (val & wmask);
}
if (ranges_overlap(addr, l, PCI_BASE_ADDRESS_0, 24) ||
ranges_overlap(addr, l, PCI_ROM_ADDRESS, 4) ||
ranges_overlap(addr, l, PCI_ROM_ADDRESS1, 4) ||
range_covers_byte(addr, l, PCI_COMMAND))
pci_update_mappings(d);
if (range_covers_byte(addr, l, PCI_COMMAND))
pci_update_irq_disabled(d, was_irq_disabled);
}
/***********************************************************/
/* generic PCI irq support */
/* 0 <= irq_num <= 3. level must be 0 or 1 */
static void pci_set_irq(void *opaque, int irq_num, int level)
{
PCIDevice *pci_dev = opaque;
int change;
change = level - pci_irq_state(pci_dev, irq_num);
if (!change)
return;
pci_set_irq_state(pci_dev, irq_num, level);
pci_update_irq_status(pci_dev);
if (pci_irq_disabled(pci_dev))
return;
pci_change_irq_level(pci_dev, irq_num, change);
}
/***********************************************************/
/* monitor info on PCI */
typedef struct {
uint16_t class;
const char *desc;
} pci_class_desc;
static const pci_class_desc pci_class_descriptions[] =
{
{ 0x0100, "SCSI controller"},
{ 0x0101, "IDE controller"},
{ 0x0102, "Floppy controller"},
{ 0x0103, "IPI controller"},
{ 0x0104, "RAID controller"},
{ 0x0106, "SATA controller"},
{ 0x0107, "SAS controller"},
{ 0x0180, "Storage controller"},
{ 0x0200, "Ethernet controller"},
{ 0x0201, "Token Ring controller"},
{ 0x0202, "FDDI controller"},
{ 0x0203, "ATM controller"},
{ 0x0280, "Network controller"},
{ 0x0300, "VGA controller"},
{ 0x0301, "XGA controller"},
{ 0x0302, "3D controller"},
{ 0x0380, "Display controller"},
{ 0x0400, "Video controller"},
{ 0x0401, "Audio controller"},
{ 0x0402, "Phone"},
{ 0x0480, "Multimedia controller"},
{ 0x0500, "RAM controller"},
{ 0x0501, "Flash controller"},
{ 0x0580, "Memory controller"},
{ 0x0600, "Host bridge"},
{ 0x0601, "ISA bridge"},
{ 0x0602, "EISA bridge"},
{ 0x0603, "MC bridge"},
{ 0x0604, "PCI bridge"},
{ 0x0605, "PCMCIA bridge"},
{ 0x0606, "NUBUS bridge"},
{ 0x0607, "CARDBUS bridge"},
{ 0x0608, "RACEWAY bridge"},
{ 0x0680, "Bridge"},
{ 0x0c03, "USB controller"},
{ 0, NULL}
};
static void pci_for_each_device_under_bus(PCIBus *bus,
void (*fn)(PCIBus *b, PCIDevice *d))
{
PCIDevice *d;
int devfn;
for(devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) {
d = bus->devices[devfn];
if (d) {
fn(bus, d);
}
}
}
void pci_for_each_device(PCIBus *bus, int bus_num,
void (*fn)(PCIBus *b, PCIDevice *d))
{
bus = pci_find_bus(bus, bus_num);
if (bus) {
pci_for_each_device_under_bus(bus, fn);
}
}
static void pci_device_print(Monitor *mon, QDict *device)
{
QDict *qdict;
QListEntry *entry;
uint64_t addr, size;
monitor_printf(mon, " Bus %2" PRId64 ", ", qdict_get_int(device, "bus"));
monitor_printf(mon, "device %3" PRId64 ", function %" PRId64 ":\n",
qdict_get_int(device, "slot"),
qdict_get_int(device, "function"));
monitor_printf(mon, " ");
qdict = qdict_get_qdict(device, "class_info");
if (qdict_haskey(qdict, "desc")) {
monitor_printf(mon, "%s", qdict_get_str(qdict, "desc"));
} else {
monitor_printf(mon, "Class %04" PRId64, qdict_get_int(qdict, "class"));
}
qdict = qdict_get_qdict(device, "id");
monitor_printf(mon, ": PCI device %04" PRIx64 ":%04" PRIx64 "\n",
qdict_get_int(qdict, "device"),
qdict_get_int(qdict, "vendor"));
if (qdict_haskey(device, "irq")) {
monitor_printf(mon, " IRQ %" PRId64 ".\n",
qdict_get_int(device, "irq"));
}
if (qdict_haskey(device, "pci_bridge")) {
QDict *info;
qdict = qdict_get_qdict(device, "pci_bridge");
info = qdict_get_qdict(qdict, "bus");
monitor_printf(mon, " BUS %" PRId64 ".\n",
qdict_get_int(info, "number"));
monitor_printf(mon, " secondary bus %" PRId64 ".\n",
qdict_get_int(info, "secondary"));
monitor_printf(mon, " subordinate bus %" PRId64 ".\n",
qdict_get_int(info, "subordinate"));
info = qdict_get_qdict(qdict, "io_range");
monitor_printf(mon, " IO range [0x%04"PRIx64", 0x%04"PRIx64"]\n",
qdict_get_int(info, "base"),
qdict_get_int(info, "limit"));
info = qdict_get_qdict(qdict, "memory_range");
monitor_printf(mon,
" memory range [0x%08"PRIx64", 0x%08"PRIx64"]\n",
qdict_get_int(info, "base"),
qdict_get_int(info, "limit"));
info = qdict_get_qdict(qdict, "prefetchable_range");
monitor_printf(mon, " prefetchable memory range "
"[0x%08"PRIx64", 0x%08"PRIx64"]\n",
qdict_get_int(info, "base"),
qdict_get_int(info, "limit"));
}
QLIST_FOREACH_ENTRY(qdict_get_qlist(device, "regions"), entry) {
qdict = qobject_to_qdict(qlist_entry_obj(entry));
monitor_printf(mon, " BAR%d: ", (int) qdict_get_int(qdict, "bar"));
addr = qdict_get_int(qdict, "address");
size = qdict_get_int(qdict, "size");
if (!strcmp(qdict_get_str(qdict, "type"), "io")) {
monitor_printf(mon, "I/O at 0x%04"FMT_PCIBUS
" [0x%04"FMT_PCIBUS"].\n",
addr, addr + size - 1);
} else {
monitor_printf(mon, "%d bit%s memory at 0x%08"FMT_PCIBUS
" [0x%08"FMT_PCIBUS"].\n",
qdict_get_bool(qdict, "mem_type_64") ? 64 : 32,
qdict_get_bool(qdict, "prefetch") ?
" prefetchable" : "", addr, addr + size - 1);
}
}
monitor_printf(mon, " id \"%s\"\n", qdict_get_str(device, "qdev_id"));
if (qdict_haskey(device, "pci_bridge")) {
qdict = qdict_get_qdict(device, "pci_bridge");
if (qdict_haskey(qdict, "devices")) {
QListEntry *dev;
QLIST_FOREACH_ENTRY(qdict_get_qlist(qdict, "devices"), dev) {
pci_device_print(mon, qobject_to_qdict(qlist_entry_obj(dev)));
}
}
}
}
void do_pci_info_print(Monitor *mon, const QObject *data)
{
QListEntry *bus, *dev;
QLIST_FOREACH_ENTRY(qobject_to_qlist(data), bus) {
QDict *qdict = qobject_to_qdict(qlist_entry_obj(bus));
QLIST_FOREACH_ENTRY(qdict_get_qlist(qdict, "devices"), dev) {
pci_device_print(mon, qobject_to_qdict(qlist_entry_obj(dev)));
}
}
}
static QObject *pci_get_dev_class(const PCIDevice *dev)
{
int class;
const pci_class_desc *desc;
class = pci_get_word(dev->config + PCI_CLASS_DEVICE);
desc = pci_class_descriptions;
while (desc->desc && class != desc->class)
desc++;
if (desc->desc) {
return qobject_from_jsonf("{ 'desc': %s, 'class': %d }",
desc->desc, class);
} else {
return qobject_from_jsonf("{ 'class': %d }", class);
}
}
static QObject *pci_get_dev_id(const PCIDevice *dev)
{
return qobject_from_jsonf("{ 'device': %d, 'vendor': %d }",
pci_get_word(dev->config + PCI_VENDOR_ID),
pci_get_word(dev->config + PCI_DEVICE_ID));
}
static QObject *pci_get_regions_list(const PCIDevice *dev)
{
int i;
QList *regions_list;
regions_list = qlist_new();
for (i = 0; i < PCI_NUM_REGIONS; i++) {
QObject *obj;
const PCIIORegion *r = &dev->io_regions[i];
if (!r->size) {
continue;
}
if (r->type & PCI_BASE_ADDRESS_SPACE_IO) {
obj = qobject_from_jsonf("{ 'bar': %d, 'type': 'io', "
"'address': %" PRId64 ", "
"'size': %" PRId64 " }",
i, r->addr, r->size);
} else {
int mem_type_64 = r->type & PCI_BASE_ADDRESS_MEM_TYPE_64;
obj = qobject_from_jsonf("{ 'bar': %d, 'type': 'memory', "
"'mem_type_64': %i, 'prefetch': %i, "
"'address': %" PRId64 ", "
"'size': %" PRId64 " }",
i, mem_type_64,
r->type & PCI_BASE_ADDRESS_MEM_PREFETCH,
r->addr, r->size);
}
qlist_append_obj(regions_list, obj);
}
return QOBJECT(regions_list);
}
static QObject *pci_get_devices_list(PCIBus *bus, int bus_num);
static QObject *pci_get_dev_dict(PCIDevice *dev, PCIBus *bus, int bus_num)
{
uint8_t type;
QObject *obj;
obj = qobject_from_jsonf("{ 'bus': %d, 'slot': %d, 'function': %d," "'class_info': %p, 'id': %p, 'regions': %p,"
" 'qdev_id': %s }",
bus_num,
PCI_SLOT(dev->devfn), PCI_FUNC(dev->devfn),
pci_get_dev_class(dev), pci_get_dev_id(dev),
pci_get_regions_list(dev),
dev->qdev.id ? dev->qdev.id : "");
if (dev->config[PCI_INTERRUPT_PIN] != 0) {
QDict *qdict = qobject_to_qdict(obj);
qdict_put(qdict, "irq", qint_from_int(dev->config[PCI_INTERRUPT_LINE]));
}
type = dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION;
if (type == PCI_HEADER_TYPE_BRIDGE) {
QDict *qdict;
QObject *pci_bridge;
pci_bridge = qobject_from_jsonf("{ 'bus': "
"{ 'number': %d, 'secondary': %d, 'subordinate': %d }, "
"'io_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "}, "
"'memory_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "}, "
"'prefetchable_range': { 'base': %" PRId64 ", 'limit': %" PRId64 "} }",
dev->config[PCI_PRIMARY_BUS], dev->config[PCI_SECONDARY_BUS],
dev->config[PCI_SUBORDINATE_BUS],
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_IO),
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_IO),
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY),
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY),
pci_bridge_get_base(dev, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_PREFETCH),
pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_SPACE_MEMORY |
PCI_BASE_ADDRESS_MEM_PREFETCH));
if (dev->config[PCI_SECONDARY_BUS] != 0) {
PCIBus *child_bus = pci_find_bus(bus, dev->config[PCI_SECONDARY_BUS]);
if (child_bus) {
qdict = qobject_to_qdict(pci_bridge);
qdict_put_obj(qdict, "devices",
pci_get_devices_list(child_bus,
dev->config[PCI_SECONDARY_BUS]));
}
}
qdict = qobject_to_qdict(obj);
qdict_put_obj(qdict, "pci_bridge", pci_bridge);
}
return obj;
}
static QObject *pci_get_devices_list(PCIBus *bus, int bus_num)
{
int devfn;
PCIDevice *dev;
QList *dev_list;
dev_list = qlist_new();
for (devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) {
dev = bus->devices[devfn];
if (dev) {
qlist_append_obj(dev_list, pci_get_dev_dict(dev, bus, bus_num));
}
}
return QOBJECT(dev_list);
}
static QObject *pci_get_bus_dict(PCIBus *bus, int bus_num)
{
bus = pci_find_bus(bus, bus_num);
if (bus) {
return qobject_from_jsonf("{ 'bus': %d, 'devices': %p }",
bus_num, pci_get_devices_list(bus, bus_num));
}
return NULL;
}
/**
* do_pci_info(): PCI buses and devices information
*
* The returned QObject is a QList of all buses. Each bus is
* represented by a QDict, which has a key with a QList of all
* PCI devices attached to it. Each device is represented by
* a QDict.
*
* The bus QDict contains the following:
*
* - "bus": bus number
* - "devices": a QList of QDicts, each QDict represents a PCI
* device
*
* The PCI device QDict contains the following:
*
* - "bus": identical to the parent's bus number
* - "slot": slot number
* - "function": function number
* - "class_info": a QDict containing:
* - "desc": device class description (optional)
* - "class": device class number
* - "id": a QDict containing:
* - "device": device ID
* - "vendor": vendor ID
* - "irq": device's IRQ if assigned (optional)
* - "qdev_id": qdev id string
* - "pci_bridge": It's a QDict, only present if this device is a
* PCI bridge, contains:
* - "bus": bus number
* - "secondary": secondary bus number
* - "subordinate": subordinate bus number
* - "io_range": a QDict with memory range information
* - "memory_range": a QDict with memory range information
* - "prefetchable_range": a QDict with memory range information
* - "devices": a QList of PCI devices if there's any attached (optional)
* - "regions": a QList of QDicts, each QDict represents a
* memory region of this device
*
* The memory range QDict contains the following:
*
* - "base": base memory address
* - "limit": limit value
*
* The region QDict can be an I/O region or a memory region,
* an I/O region QDict contains the following:
*
* - "type": "io"
* - "bar": BAR number
* - "address": memory address
* - "size": memory size
*
* A memory region QDict contains the following:
*
* - "type": "memory"
* - "bar": BAR number
* - "address": memory address
* - "size": memory size
* - "mem_type_64": true or false
* - "prefetch": true or false
*/
void do_pci_info(Monitor *mon, QObject **ret_data)
{
QList *bus_list;
struct PCIHostBus *host;
bus_list = qlist_new();
QLIST_FOREACH(host, &host_buses, next) {
QObject *obj = pci_get_bus_dict(host->bus, 0);
if (obj) {
qlist_append_obj(bus_list, obj);
}
}
*ret_data = QOBJECT(bus_list);
}
static const char * const pci_nic_models[] = {
"ne2k_pci",
"i82551",
"i82557b",
"i82559er",
"rtl8139",
"e1000",
"pcnet",
"virtio",
NULL
};
static const char * const pci_nic_names[] = {
"ne2k_pci",
"i82551",
"i82557b",
"i82559er",
"rtl8139",
"e1000",
"pcnet",
"virtio-net-pci",
NULL
};
/* Initialize a PCI NIC. */
/* FIXME callers should check for failure, but don't */
PCIDevice *pci_nic_init(NICInfo *nd, const char *default_model,
const char *default_devaddr)
{
const char *devaddr = nd->devaddr ? nd->devaddr : default_devaddr;
PCIBus *bus;
int devfn;
PCIDevice *pci_dev;
DeviceState *dev;
int i;
i = qemu_find_nic_model(nd, pci_nic_models, default_model);
if (i < 0)
return NULL;
bus = pci_get_bus_devfn(&devfn, devaddr);
if (!bus) {
qemu_error("Invalid PCI device address %s for device %s\n",
devaddr, pci_nic_names[i]);
return NULL;
}
pci_dev = pci_create(bus, devfn, pci_nic_names[i]);
dev = &pci_dev->qdev;
if (nd->name)
dev->id = qemu_strdup(nd->name);
qdev_set_nic_properties(dev, nd);
if (qdev_init(dev) < 0)
return NULL;
return pci_dev;
}
PCIDevice *pci_nic_init_nofail(NICInfo *nd, const char *default_model,
const char *default_devaddr)
{
PCIDevice *res;
if (qemu_show_nic_models(nd->model, pci_nic_models))
exit(0);
res = pci_nic_init(nd, default_model, default_devaddr);
if (!res)
exit(1);
return res;
}
typedef struct {
PCIDevice dev;
PCIBus bus;
uint32_t vid;
uint32_t did;
} PCIBridge;
static void pci_bridge_update_mappings_fn(PCIBus *b, PCIDevice *d)
{
pci_update_mappings(d);
}
static void pci_bridge_update_mappings(PCIBus *b)
{
PCIBus *child;
pci_for_each_device_under_bus(b, pci_bridge_update_mappings_fn);
QLIST_FOREACH(child, &b->child, sibling) {
pci_bridge_update_mappings(child);
}
}
static void pci_bridge_write_config(PCIDevice *d,
uint32_t address, uint32_t val, int len)
{
pci_default_write_config(d, address, val, len);
if (/* io base/limit */
ranges_overlap(address, len, PCI_IO_BASE, 2) ||
/* memory base/limit, prefetchable base/limit and
io base/limit upper 16 */
ranges_overlap(address, len, PCI_MEMORY_BASE, 20)) {
pci_bridge_update_mappings(d->bus);
}
}
PCIBus *pci_find_bus(PCIBus *bus, int bus_num)
{
PCIBus *sec, *ret;
if (!bus)
return NULL;
if (pci_bus_num(bus) == bus_num) {
return bus;
}
/* try child bus */
QLIST_FOREACH(sec, &bus->child, sibling) {
if (!bus->parent_dev /* pci host bridge */
|| (pci_bus_num(sec) <= bus_num &&
bus_num <= bus->parent_dev->config[PCI_SUBORDINATE_BUS]) ) {
ret = pci_find_bus(sec, bus_num);
if (ret) {
return ret;
}
}
}
return NULL;
}
PCIDevice *pci_find_device(PCIBus *bus, int bus_num, int slot, int function)
{
bus = pci_find_bus(bus, bus_num);
if (!bus)
return NULL;
return bus->devices[PCI_DEVFN(slot, function)];
}
static int pci_bridge_initfn(PCIDevice *dev)
{
PCIBridge *s = DO_UPCAST(PCIBridge, dev, dev);
pci_config_set_vendor_id(s->dev.config, s->vid);
pci_config_set_device_id(s->dev.config, s->did);
pci_set_word(dev->config + PCI_STATUS,
PCI_STATUS_66MHZ | PCI_STATUS_FAST_BACK);
pci_config_set_class(dev->config, PCI_CLASS_BRIDGE_PCI);
dev->config[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_BRIDGE;
pci_set_word(dev->config + PCI_SEC_STATUS,
PCI_STATUS_66MHZ | PCI_STATUS_FAST_BACK);
return 0;
}
static int pci_bridge_exitfn(PCIDevice *pci_dev)
{
PCIBridge *s = DO_UPCAST(PCIBridge, dev, pci_dev);
PCIBus *bus = &s->bus;
pci_unregister_secondary_bus(bus);
return 0;
}
PCIBus *pci_bridge_init(PCIBus *bus, int devfn, uint16_t vid, uint16_t did,
pci_map_irq_fn map_irq, const char *name)
{
PCIDevice *dev;
PCIBridge *s;
dev = pci_create(bus, devfn, "pci-bridge");
qdev_prop_set_uint32(&dev->qdev, "vendorid", vid);
qdev_prop_set_uint32(&dev->qdev, "deviceid", did);
qdev_init_nofail(&dev->qdev);
s = DO_UPCAST(PCIBridge, dev, dev);
pci_register_secondary_bus(bus, &s->bus, &s->dev, map_irq, name);
return &s->bus;
}
PCIDevice *pci_bridge_get_device(PCIBus *bus)
{
return bus->parent_dev;
}
static int pci_qdev_init(DeviceState *qdev, DeviceInfo *base)
{
PCIDevice *pci_dev = (PCIDevice *)qdev;
PCIDeviceInfo *info = container_of(base, PCIDeviceInfo, qdev);
PCIBus *bus;
int devfn, rc;
/* initialize cap_present for pci_is_express() and pci_config_size() */
if (info->is_express) {
pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS;
}
bus = FROM_QBUS(PCIBus, qdev_get_parent_bus(qdev));
devfn = pci_dev->devfn;
pci_dev = do_pci_register_device(pci_dev, bus, base->name, devfn,
info->config_read, info->config_write,
info->header_type);
if (pci_dev == NULL)
return -1;
rc = info->init(pci_dev);
if (rc != 0)
return rc;
/* rom loading */
if (pci_dev->romfile == NULL && info->romfile != NULL)
pci_dev->romfile = qemu_strdup(info->romfile);
pci_add_option_rom(pci_dev);
if (qdev->hotplugged)
bus->hotplug(pci_dev, 1);
return 0;
}
static int pci_unplug_device(DeviceState *qdev)
{
PCIDevice *dev = DO_UPCAST(PCIDevice, qdev, qdev);
dev->bus->hotplug(dev, 0);
return 0;
}
void pci_qdev_register(PCIDeviceInfo *info)
{
info->qdev.init = pci_qdev_init;
info->qdev.unplug = pci_unplug_device;
info->qdev.exit = pci_unregister_device;
info->qdev.bus_info = &pci_bus_info;
qdev_register(&info->qdev);
}
void pci_qdev_register_many(PCIDeviceInfo *info)
{
while (info->qdev.name) {
pci_qdev_register(info);
info++;
}
}
PCIDevice *pci_create(PCIBus *bus, int devfn, const char *name)
{
DeviceState *dev;
dev = qdev_create(&bus->qbus, name);
qdev_prop_set_uint32(dev, "addr", devfn);
return DO_UPCAST(PCIDevice, qdev, dev);
}
PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name)
{
PCIDevice *dev = pci_create(bus, devfn, name);
qdev_init_nofail(&dev->qdev);
return dev;
}
static int pci_find_space(PCIDevice *pdev, uint8_t size)
{
int config_size = pci_config_size(pdev);
int offset = PCI_CONFIG_HEADER_SIZE;
int i;
for (i = PCI_CONFIG_HEADER_SIZE; i < config_size; ++i)
if (pdev->used[i])
offset = i + 1;
else if (i - offset + 1 == size)
return offset;
return 0;
}
static uint8_t pci_find_capability_list(PCIDevice *pdev, uint8_t cap_id,
uint8_t *prev_p)
{
uint8_t next, prev;
if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST))
return 0;
for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]);
prev = next + PCI_CAP_LIST_NEXT)
if (pdev->config[next + PCI_CAP_LIST_ID] == cap_id)
break;
if (prev_p)
*prev_p = prev;
return next;
}
static void pci_map_option_rom(PCIDevice *pdev, int region_num, pcibus_t addr, pcibus_t size, int type)
{
cpu_register_physical_memory(addr, size, pdev->rom_offset);
}
/* Add an option rom for the device */
static int pci_add_option_rom(PCIDevice *pdev)
{
int size;
char *path;
void *ptr;
if (!pdev->romfile)
return 0;
if (strlen(pdev->romfile) == 0)
return 0;
if (!pdev->rom_bar) {
/*
* Load rom via fw_cfg instead of creating a rom bar,
* for 0.11 compatibility.
*/
int class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
if (class == 0x0300) {
rom_add_vga(pdev->romfile);
} else {
rom_add_option(pdev->romfile);
}
return 0;
}
path = qemu_find_file(QEMU_FILE_TYPE_BIOS, pdev->romfile);
if (path == NULL) {
path = qemu_strdup(pdev->romfile);
}
size = get_image_size(path);
if (size < 0) {
qemu_error("%s: failed to find romfile \"%s\"\n", __FUNCTION__,
pdev->romfile);
return -1;
}
if (size & (size - 1)) {
size = 1 << qemu_fls(size);
}
pdev->rom_offset = qemu_ram_alloc(size);
ptr = qemu_get_ram_ptr(pdev->rom_offset);
load_image(path, ptr);
qemu_free(path);
pci_register_bar(pdev, PCI_ROM_SLOT, size,
0, pci_map_option_rom);
return 0;
}
/* Reserve space and add capability to the linked list in pci config space */
int pci_add_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size)
{
uint8_t offset = pci_find_space(pdev, size);
uint8_t *config = pdev->config + offset;
if (!offset)
return -ENOSPC;
config[PCI_CAP_LIST_ID] = cap_id;
config[PCI_CAP_LIST_NEXT] = pdev->config[PCI_CAPABILITY_LIST];
pdev->config[PCI_CAPABILITY_LIST] = offset;
pdev->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
memset(pdev->used + offset, 0xFF, size);
/* Make capability read-only by default */
memset(pdev->wmask + offset, 0, size);
/* Check capability by default */
memset(pdev->cmask + offset, 0xFF, size);
return offset;
}
/* Unlink capability from the pci config space. */
void pci_del_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size)
{
uint8_t prev, offset = pci_find_capability_list(pdev, cap_id, &prev);
if (!offset)
return;
pdev->config[prev] = pdev->config[offset + PCI_CAP_LIST_NEXT];
/* Make capability writeable again */
memset(pdev->wmask + offset, 0xff, size);
/* Clear cmask as device-specific registers can't be checked */
memset(pdev->cmask + offset, 0, size);
memset(pdev->used + offset, 0, size);
if (!pdev->config[PCI_CAPABILITY_LIST])
pdev->config[PCI_STATUS] &= ~PCI_STATUS_CAP_LIST;
}
/* Reserve space for capability at a known offset (to call after load). */
void pci_reserve_capability(PCIDevice *pdev, uint8_t offset, uint8_t size)
{
memset(pdev->used + offset, 0xff, size);
}
uint8_t pci_find_capability(PCIDevice *pdev, uint8_t cap_id)
{
return pci_find_capability_list(pdev, cap_id, NULL);
}
static void pcibus_dev_print(Monitor *mon, DeviceState *dev, int indent)
{
PCIDevice *d = (PCIDevice *)dev;
const pci_class_desc *desc;
char ctxt[64];
PCIIORegion *r;
int i, class;
class = pci_get_word(d->config + PCI_CLASS_DEVICE);
desc = pci_class_descriptions;
while (desc->desc && class != desc->class)
desc++;
if (desc->desc) {
snprintf(ctxt, sizeof(ctxt), "%s", desc->desc);
} else {
snprintf(ctxt, sizeof(ctxt), "Class %04x", class);
}
monitor_printf(mon, "%*sclass %s, addr %02x:%02x.%x, "
"pci id %04x:%04x (sub %04x:%04x)\n",
indent, "", ctxt,
d->config[PCI_SECONDARY_BUS],
PCI_SLOT(d->devfn), PCI_FUNC(d->devfn),
pci_get_word(d->config + PCI_VENDOR_ID),
pci_get_word(d->config + PCI_DEVICE_ID),
pci_get_word(d->config + PCI_SUBSYSTEM_VENDOR_ID),
pci_get_word(d->config + PCI_SUBSYSTEM_ID));
for (i = 0; i < PCI_NUM_REGIONS; i++) {
r = &d->io_regions[i];
if (!r->size)
continue;
monitor_printf(mon, "%*sbar %d: %s at 0x%"FMT_PCIBUS
" [0x%"FMT_PCIBUS"]\n",
indent, "",
i, r->type & PCI_BASE_ADDRESS_SPACE_IO ? "i/o" : "mem",
r->addr, r->addr + r->size - 1);
}
}
static PCIDeviceInfo bridge_info = {
.qdev.name = "pci-bridge",
.qdev.size = sizeof(PCIBridge),
.init = pci_bridge_initfn,
.exit = pci_bridge_exitfn,
.config_write = pci_bridge_write_config,
.header_type = PCI_HEADER_TYPE_BRIDGE,
.qdev.props = (Property[]) {
DEFINE_PROP_HEX32("vendorid", PCIBridge, vid, 0),
DEFINE_PROP_HEX32("deviceid", PCIBridge, did, 0),
DEFINE_PROP_END_OF_LIST(),
}
};
static void pci_register_devices(void)
{
pci_qdev_register(&bridge_info);
}
device_init(pci_register_devices)