qemu-e2k/target/arm/gdbstub.c
Peter Maydell b355f08a37 target/arm: Don't put FPEXC and FPSID in org.gnu.gdb.arm.vfp XML
Currently we send VFP XML which includes D0..D15 or D0..D31, plus
FPSID, FPSCR and FPEXC.  The upstream GDB tolerates this, but its
definition of this XML feature does not include FPSID or FPEXC.  In
particular, for M-profile cores there are no FPSID or FPEXC
registers, so advertising those is wrong.

Move FPSID and FPEXC into their own bit of XML which we only send for
A and R profile cores.  This brings our definition of the XML
org.gnu.gdb.arm.vfp feature into line with GDB's own (at least for
non-Neon cores...) and means we don't claim to have FPSID and FPEXC
on M-profile.

(It seems unlikely to me that any gdbstub users really care about
being able to look at FPEXC and FPSID; but we've supplied them to gdb
for a decade and it's not hard to keep doing so.)

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-id: 20210921162901.17508-5-peter.maydell@linaro.org
2021-09-30 13:42:10 +01:00

476 lines
16 KiB
C

/*
* ARM gdb server stub
*
* Copyright (c) 2003-2005 Fabrice Bellard
* Copyright (c) 2013 SUSE LINUX Products GmbH
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "exec/gdbstub.h"
typedef struct RegisterSysregXmlParam {
CPUState *cs;
GString *s;
int n;
} RegisterSysregXmlParam;
/* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
whatever the target description contains. Due to a historical mishap
the FPA registers appear in between core integer regs and the CPSR.
We hack round this by giving the FPA regs zero size when talking to a
newer gdb. */
int arm_cpu_gdb_read_register(CPUState *cs, GByteArray *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (n < 16) {
/* Core integer register. */
return gdb_get_reg32(mem_buf, env->regs[n]);
}
if (n < 24) {
/* FPA registers. */
if (gdb_has_xml) {
return 0;
}
return gdb_get_zeroes(mem_buf, 12);
}
switch (n) {
case 24:
/* FPA status register. */
if (gdb_has_xml) {
return 0;
}
return gdb_get_reg32(mem_buf, 0);
case 25:
/* CPSR, or XPSR for M-profile */
if (arm_feature(env, ARM_FEATURE_M)) {
return gdb_get_reg32(mem_buf, xpsr_read(env));
} else {
return gdb_get_reg32(mem_buf, cpsr_read(env));
}
}
/* Unknown register. */
return 0;
}
int arm_cpu_gdb_write_register(CPUState *cs, uint8_t *mem_buf, int n)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t tmp;
tmp = ldl_p(mem_buf);
/* Mask out low bit of PC to workaround gdb bugs. This will probably
cause problems if we ever implement the Jazelle DBX extensions. */
if (n == 15) {
tmp &= ~1;
}
if (n < 16) {
/* Core integer register. */
if (n == 13 && arm_feature(env, ARM_FEATURE_M)) {
/* M profile SP low bits are always 0 */
tmp &= ~3;
}
env->regs[n] = tmp;
return 4;
}
if (n < 24) { /* 16-23 */
/* FPA registers (ignored). */
if (gdb_has_xml) {
return 0;
}
return 12;
}
switch (n) {
case 24:
/* FPA status register (ignored). */
if (gdb_has_xml) {
return 0;
}
return 4;
case 25:
/* CPSR, or XPSR for M-profile */
if (arm_feature(env, ARM_FEATURE_M)) {
/*
* Don't allow writing to XPSR.Exception as it can cause
* a transition into or out of handler mode (it's not
* writeable via the MSR insn so this is a reasonable
* restriction). Other fields are safe to update.
*/
xpsr_write(env, tmp, ~XPSR_EXCP);
} else {
cpsr_write(env, tmp, 0xffffffff, CPSRWriteByGDBStub);
}
return 4;
}
/* Unknown register. */
return 0;
}
static int vfp_gdb_get_reg(CPUARMState *env, GByteArray *buf, int reg)
{
ARMCPU *cpu = env_archcpu(env);
int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
/* VFP data registers are always little-endian. */
if (reg < nregs) {
return gdb_get_reg64(buf, *aa32_vfp_dreg(env, reg));
}
if (arm_feature(env, ARM_FEATURE_NEON)) {
/* Aliases for Q regs. */
nregs += 16;
if (reg < nregs) {
uint64_t *q = aa32_vfp_qreg(env, reg - 32);
return gdb_get_reg128(buf, q[0], q[1]);
}
}
switch (reg - nregs) {
case 0:
return gdb_get_reg32(buf, vfp_get_fpscr(env));
}
return 0;
}
static int vfp_gdb_set_reg(CPUARMState *env, uint8_t *buf, int reg)
{
ARMCPU *cpu = env_archcpu(env);
int nregs = cpu_isar_feature(aa32_simd_r32, cpu) ? 32 : 16;
if (reg < nregs) {
*aa32_vfp_dreg(env, reg) = ldq_le_p(buf);
return 8;
}
if (arm_feature(env, ARM_FEATURE_NEON)) {
nregs += 16;
if (reg < nregs) {
uint64_t *q = aa32_vfp_qreg(env, reg - 32);
q[0] = ldq_le_p(buf);
q[1] = ldq_le_p(buf + 8);
return 16;
}
}
switch (reg - nregs) {
case 0:
vfp_set_fpscr(env, ldl_p(buf));
return 4;
}
return 0;
}
static int vfp_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
{
switch (reg) {
case 0:
return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPSID]);
case 1:
return gdb_get_reg32(buf, env->vfp.xregs[ARM_VFP_FPEXC]);
}
return 0;
}
static int vfp_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
{
switch (reg) {
case 0:
env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf);
return 4;
case 1:
env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30);
return 4;
}
return 0;
}
/**
* arm_get/set_gdb_*: get/set a gdb register
* @env: the CPU state
* @buf: a buffer to copy to/from
* @reg: register number (offset from start of group)
*
* We return the number of bytes copied
*/
static int arm_gdb_get_sysreg(CPUARMState *env, GByteArray *buf, int reg)
{
ARMCPU *cpu = env_archcpu(env);
const ARMCPRegInfo *ri;
uint32_t key;
key = cpu->dyn_sysreg_xml.data.cpregs.keys[reg];
ri = get_arm_cp_reginfo(cpu->cp_regs, key);
if (ri) {
if (cpreg_field_is_64bit(ri)) {
return gdb_get_reg64(buf, (uint64_t)read_raw_cp_reg(env, ri));
} else {
return gdb_get_reg32(buf, (uint32_t)read_raw_cp_reg(env, ri));
}
}
return 0;
}
static int arm_gdb_set_sysreg(CPUARMState *env, uint8_t *buf, int reg)
{
return 0;
}
static void arm_gen_one_xml_sysreg_tag(GString *s, DynamicGDBXMLInfo *dyn_xml,
ARMCPRegInfo *ri, uint32_t ri_key,
int bitsize, int regnum)
{
g_string_append_printf(s, "<reg name=\"%s\"", ri->name);
g_string_append_printf(s, " bitsize=\"%d\"", bitsize);
g_string_append_printf(s, " regnum=\"%d\"", regnum);
g_string_append_printf(s, " group=\"cp_regs\"/>");
dyn_xml->data.cpregs.keys[dyn_xml->num] = ri_key;
dyn_xml->num++;
}
static void arm_register_sysreg_for_xml(gpointer key, gpointer value,
gpointer p)
{
uint32_t ri_key = *(uint32_t *)key;
ARMCPRegInfo *ri = value;
RegisterSysregXmlParam *param = (RegisterSysregXmlParam *)p;
GString *s = param->s;
ARMCPU *cpu = ARM_CPU(param->cs);
CPUARMState *env = &cpu->env;
DynamicGDBXMLInfo *dyn_xml = &cpu->dyn_sysreg_xml;
if (!(ri->type & (ARM_CP_NO_RAW | ARM_CP_NO_GDB))) {
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
if (ri->state == ARM_CP_STATE_AA64) {
arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
param->n++);
}
} else {
if (ri->state == ARM_CP_STATE_AA32) {
if (!arm_feature(env, ARM_FEATURE_EL3) &&
(ri->secure & ARM_CP_SECSTATE_S)) {
return;
}
if (ri->type & ARM_CP_64BIT) {
arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 64,
param->n++);
} else {
arm_gen_one_xml_sysreg_tag(s , dyn_xml, ri, ri_key, 32,
param->n++);
}
}
}
}
}
int arm_gen_dynamic_sysreg_xml(CPUState *cs, int base_reg)
{
ARMCPU *cpu = ARM_CPU(cs);
GString *s = g_string_new(NULL);
RegisterSysregXmlParam param = {cs, s, base_reg};
cpu->dyn_sysreg_xml.num = 0;
cpu->dyn_sysreg_xml.data.cpregs.keys = g_new(uint32_t, g_hash_table_size(cpu->cp_regs));
g_string_printf(s, "<?xml version=\"1.0\"?>");
g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
g_string_append_printf(s, "<feature name=\"org.qemu.gdb.arm.sys.regs\">");
g_hash_table_foreach(cpu->cp_regs, arm_register_sysreg_for_xml, &param);
g_string_append_printf(s, "</feature>");
cpu->dyn_sysreg_xml.desc = g_string_free(s, false);
return cpu->dyn_sysreg_xml.num;
}
struct TypeSize {
const char *gdb_type;
int size;
const char sz, suffix;
};
static const struct TypeSize vec_lanes[] = {
/* quads */
{ "uint128", 128, 'q', 'u' },
{ "int128", 128, 'q', 's' },
/* 64 bit */
{ "ieee_double", 64, 'd', 'f' },
{ "uint64", 64, 'd', 'u' },
{ "int64", 64, 'd', 's' },
/* 32 bit */
{ "ieee_single", 32, 's', 'f' },
{ "uint32", 32, 's', 'u' },
{ "int32", 32, 's', 's' },
/* 16 bit */
{ "ieee_half", 16, 'h', 'f' },
{ "uint16", 16, 'h', 'u' },
{ "int16", 16, 'h', 's' },
/* bytes */
{ "uint8", 8, 'b', 'u' },
{ "int8", 8, 'b', 's' },
};
int arm_gen_dynamic_svereg_xml(CPUState *cs, int base_reg)
{
ARMCPU *cpu = ARM_CPU(cs);
GString *s = g_string_new(NULL);
DynamicGDBXMLInfo *info = &cpu->dyn_svereg_xml;
g_autoptr(GString) ts = g_string_new("");
int i, j, bits, reg_width = (cpu->sve_max_vq * 128);
info->num = 0;
g_string_printf(s, "<?xml version=\"1.0\"?>");
g_string_append_printf(s, "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">");
g_string_append_printf(s, "<feature name=\"org.gnu.gdb.aarch64.sve\">");
/* First define types and totals in a whole VL */
for (i = 0; i < ARRAY_SIZE(vec_lanes); i++) {
int count = reg_width / vec_lanes[i].size;
g_string_printf(ts, "svev%c%c", vec_lanes[i].sz, vec_lanes[i].suffix);
g_string_append_printf(s,
"<vector id=\"%s\" type=\"%s\" count=\"%d\"/>",
ts->str, vec_lanes[i].gdb_type, count);
}
/*
* Now define a union for each size group containing unsigned and
* signed and potentially float versions of each size from 128 to
* 8 bits.
*/
for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
const char suf[] = { 'q', 'd', 's', 'h', 'b' };
g_string_append_printf(s, "<union id=\"svevn%c\">", suf[i]);
for (j = 0; j < ARRAY_SIZE(vec_lanes); j++) {
if (vec_lanes[j].size == bits) {
g_string_append_printf(s, "<field name=\"%c\" type=\"svev%c%c\"/>",
vec_lanes[j].suffix,
vec_lanes[j].sz, vec_lanes[j].suffix);
}
}
g_string_append(s, "</union>");
}
/* And now the final union of unions */
g_string_append(s, "<union id=\"svev\">");
for (bits = 128, i = 0; bits >= 8; bits /= 2, i++) {
const char suf[] = { 'q', 'd', 's', 'h', 'b' };
g_string_append_printf(s, "<field name=\"%c\" type=\"svevn%c\"/>",
suf[i], suf[i]);
}
g_string_append(s, "</union>");
/* Finally the sve prefix type */
g_string_append_printf(s,
"<vector id=\"svep\" type=\"uint8\" count=\"%d\"/>",
reg_width / 8);
/* Then define each register in parts for each vq */
for (i = 0; i < 32; i++) {
g_string_append_printf(s,
"<reg name=\"z%d\" bitsize=\"%d\""
" regnum=\"%d\" type=\"svev\"/>",
i, reg_width, base_reg++);
info->num++;
}
/* fpscr & status registers */
g_string_append_printf(s, "<reg name=\"fpsr\" bitsize=\"32\""
" regnum=\"%d\" group=\"float\""
" type=\"int\"/>", base_reg++);
g_string_append_printf(s, "<reg name=\"fpcr\" bitsize=\"32\""
" regnum=\"%d\" group=\"float\""
" type=\"int\"/>", base_reg++);
info->num += 2;
for (i = 0; i < 16; i++) {
g_string_append_printf(s,
"<reg name=\"p%d\" bitsize=\"%d\""
" regnum=\"%d\" type=\"svep\"/>",
i, cpu->sve_max_vq * 16, base_reg++);
info->num++;
}
g_string_append_printf(s,
"<reg name=\"ffr\" bitsize=\"%d\""
" regnum=\"%d\" group=\"vector\""
" type=\"svep\"/>",
cpu->sve_max_vq * 16, base_reg++);
g_string_append_printf(s,
"<reg name=\"vg\" bitsize=\"64\""
" regnum=\"%d\" type=\"int\"/>",
base_reg++);
info->num += 2;
g_string_append_printf(s, "</feature>");
cpu->dyn_svereg_xml.desc = g_string_free(s, false);
return cpu->dyn_svereg_xml.num;
}
const char *arm_gdb_get_dynamic_xml(CPUState *cs, const char *xmlname)
{
ARMCPU *cpu = ARM_CPU(cs);
if (strcmp(xmlname, "system-registers.xml") == 0) {
return cpu->dyn_sysreg_xml.desc;
} else if (strcmp(xmlname, "sve-registers.xml") == 0) {
return cpu->dyn_svereg_xml.desc;
}
return NULL;
}
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu)
{
CPUState *cs = CPU(cpu);
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/*
* The lower part of each SVE register aliases to the FPU
* registers so we don't need to include both.
*/
#ifdef TARGET_AARCH64
if (isar_feature_aa64_sve(&cpu->isar)) {
gdb_register_coprocessor(cs, arm_gdb_get_svereg, arm_gdb_set_svereg,
arm_gen_dynamic_svereg_xml(cs, cs->gdb_num_regs),
"sve-registers.xml", 0);
} else {
gdb_register_coprocessor(cs, aarch64_fpu_gdb_get_reg,
aarch64_fpu_gdb_set_reg,
34, "aarch64-fpu.xml", 0);
}
#endif
} else {
if (arm_feature(env, ARM_FEATURE_NEON)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
49, "arm-neon.xml", 0);
} else if (cpu_isar_feature(aa32_simd_r32, cpu)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
33, "arm-vfp3.xml", 0);
} else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
gdb_register_coprocessor(cs, vfp_gdb_get_reg, vfp_gdb_set_reg,
17, "arm-vfp.xml", 0);
}
if (!arm_feature(env, ARM_FEATURE_M)) {
/*
* A and R profile have FP sysregs FPEXC and FPSID that we
* expose to gdb.
*/
gdb_register_coprocessor(cs, vfp_gdb_get_sysreg, vfp_gdb_set_sysreg,
2, "arm-vfp-sysregs.xml", 0);
}
}
gdb_register_coprocessor(cs, arm_gdb_get_sysreg, arm_gdb_set_sysreg,
arm_gen_dynamic_sysreg_xml(cs, cs->gdb_num_regs),
"system-registers.xml", 0);
}