6b762f29a8
At the moment, spapr_drc_release() has an ugly switch on the DRC type to call the right, device-specific release function. This cleans it up by doing that via a proper QOM method. It's still arguably an abstraction violation for the DRC code to call into the specific device code, but one mess at a time. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Laurent Vivier <lvivier@redhat.com> Reviewed-by: Greg Kurz <groug@kaod.org>
1142 lines
37 KiB
C
1142 lines
37 KiB
C
/*
|
|
* QEMU SPAPR Dynamic Reconfiguration Connector Implementation
|
|
*
|
|
* Copyright IBM Corp. 2014
|
|
*
|
|
* Authors:
|
|
* Michael Roth <mdroth@linux.vnet.ibm.com>
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "qapi/error.h"
|
|
#include "cpu.h"
|
|
#include "qemu/cutils.h"
|
|
#include "hw/ppc/spapr_drc.h"
|
|
#include "qom/object.h"
|
|
#include "hw/qdev.h"
|
|
#include "qapi/visitor.h"
|
|
#include "qemu/error-report.h"
|
|
#include "hw/ppc/spapr.h" /* for RTAS return codes */
|
|
#include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
|
|
#include "trace.h"
|
|
|
|
#define DRC_CONTAINER_PATH "/dr-connector"
|
|
#define DRC_INDEX_TYPE_SHIFT 28
|
|
#define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
|
|
|
|
sPAPRDRConnectorType spapr_drc_type(sPAPRDRConnector *drc)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
return 1 << drck->typeshift;
|
|
}
|
|
|
|
uint32_t spapr_drc_index(sPAPRDRConnector *drc)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
/* no set format for a drc index: it only needs to be globally
|
|
* unique. this is how we encode the DRC type on bare-metal
|
|
* however, so might as well do that here
|
|
*/
|
|
return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
|
|
| (drc->id & DRC_INDEX_ID_MASK);
|
|
}
|
|
|
|
static uint32_t drc_isolate_physical(sPAPRDRConnector *drc)
|
|
{
|
|
/* if the guest is configuring a device attached to this DRC, we
|
|
* should reset the configuration state at this point since it may
|
|
* no longer be reliable (guest released device and needs to start
|
|
* over, or unplug occurred so the FDT is no longer valid)
|
|
*/
|
|
g_free(drc->ccs);
|
|
drc->ccs = NULL;
|
|
|
|
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
|
|
|
|
/* if we're awaiting release, but still in an unconfigured state,
|
|
* it's likely the guest is still in the process of configuring
|
|
* the device and is transitioning the devices to an ISOLATED
|
|
* state as a part of that process. so we only complete the
|
|
* removal when this transition happens for a device in a
|
|
* configured state, as suggested by the state diagram from PAPR+
|
|
* 2.7, 13.4
|
|
*/
|
|
if (drc->awaiting_release) {
|
|
uint32_t drc_index = spapr_drc_index(drc);
|
|
if (drc->configured) {
|
|
trace_spapr_drc_set_isolation_state_finalizing(drc_index);
|
|
spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
|
|
} else {
|
|
trace_spapr_drc_set_isolation_state_deferring(drc_index);
|
|
}
|
|
}
|
|
drc->configured = false;
|
|
|
|
return RTAS_OUT_SUCCESS;
|
|
}
|
|
|
|
static uint32_t drc_unisolate_physical(sPAPRDRConnector *drc)
|
|
{
|
|
/* cannot unisolate a non-existent resource, and, or resources
|
|
* which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
|
|
* 13.5.3.5)
|
|
*/
|
|
if (!drc->dev) {
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
}
|
|
|
|
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED;
|
|
|
|
return RTAS_OUT_SUCCESS;
|
|
}
|
|
|
|
static uint32_t drc_isolate_logical(sPAPRDRConnector *drc)
|
|
{
|
|
/* if the guest is configuring a device attached to this DRC, we
|
|
* should reset the configuration state at this point since it may
|
|
* no longer be reliable (guest released device and needs to start
|
|
* over, or unplug occurred so the FDT is no longer valid)
|
|
*/
|
|
g_free(drc->ccs);
|
|
drc->ccs = NULL;
|
|
|
|
/*
|
|
* Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
|
|
* belong to a DIMM device that is marked for removal.
|
|
*
|
|
* Currently the guest userspace tool drmgr that drives the memory
|
|
* hotplug/unplug will just try to remove a set of 'removable' LMBs
|
|
* in response to a hot unplug request that is based on drc-count.
|
|
* If the LMB being removed doesn't belong to a DIMM device that is
|
|
* actually being unplugged, fail the isolation request here.
|
|
*/
|
|
if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
|
|
&& !drc->awaiting_release) {
|
|
return RTAS_OUT_HW_ERROR;
|
|
}
|
|
|
|
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
|
|
|
|
/* if we're awaiting release, but still in an unconfigured state,
|
|
* it's likely the guest is still in the process of configuring
|
|
* the device and is transitioning the devices to an ISOLATED
|
|
* state as a part of that process. so we only complete the
|
|
* removal when this transition happens for a device in a
|
|
* configured state, as suggested by the state diagram from PAPR+
|
|
* 2.7, 13.4
|
|
*/
|
|
if (drc->awaiting_release) {
|
|
uint32_t drc_index = spapr_drc_index(drc);
|
|
if (drc->configured) {
|
|
trace_spapr_drc_set_isolation_state_finalizing(drc_index);
|
|
spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
|
|
} else {
|
|
trace_spapr_drc_set_isolation_state_deferring(drc_index);
|
|
}
|
|
}
|
|
drc->configured = false;
|
|
|
|
return RTAS_OUT_SUCCESS;
|
|
}
|
|
|
|
static uint32_t drc_unisolate_logical(sPAPRDRConnector *drc)
|
|
{
|
|
/* cannot unisolate a non-existent resource, and, or resources
|
|
* which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
|
|
* 13.5.3.5)
|
|
*/
|
|
if (!drc->dev ||
|
|
drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
}
|
|
|
|
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED;
|
|
|
|
return RTAS_OUT_SUCCESS;
|
|
}
|
|
|
|
static uint32_t drc_set_usable(sPAPRDRConnector *drc)
|
|
{
|
|
/* if there's no resource/device associated with the DRC, there's
|
|
* no way for us to put it in an allocation state consistent with
|
|
* being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
|
|
* result in an RTAS return code of -3 / "no such indicator"
|
|
*/
|
|
if (!drc->dev) {
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
}
|
|
if (drc->awaiting_release && drc->awaiting_allocation) {
|
|
/* kernel is acknowledging a previous hotplug event
|
|
* while we are already removing it.
|
|
* it's safe to ignore awaiting_allocation here since we know the
|
|
* situation is predicated on the guest either already having done
|
|
* so (boot-time hotplug), or never being able to acquire in the
|
|
* first place (hotplug followed by immediate unplug).
|
|
*/
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
}
|
|
|
|
drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
|
|
drc->awaiting_allocation = false;
|
|
|
|
return RTAS_OUT_SUCCESS;
|
|
}
|
|
|
|
static uint32_t drc_set_unusable(sPAPRDRConnector *drc)
|
|
{
|
|
drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_UNUSABLE;
|
|
if (drc->awaiting_release) {
|
|
uint32_t drc_index = spapr_drc_index(drc);
|
|
trace_spapr_drc_set_allocation_state_finalizing(drc_index);
|
|
spapr_drc_detach(drc, DEVICE(drc->dev), NULL);
|
|
}
|
|
|
|
return RTAS_OUT_SUCCESS;
|
|
}
|
|
|
|
static const char *spapr_drc_name(sPAPRDRConnector *drc)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
/* human-readable name for a DRC to encode into the DT
|
|
* description. this is mainly only used within a guest in place
|
|
* of the unique DRC index.
|
|
*
|
|
* in the case of VIO/PCI devices, it corresponds to a "location
|
|
* code" that maps a logical device/function (DRC index) to a
|
|
* physical (or virtual in the case of VIO) location in the system
|
|
* by chaining together the "location label" for each
|
|
* encapsulating component.
|
|
*
|
|
* since this is more to do with diagnosing physical hardware
|
|
* issues than guest compatibility, we choose location codes/DRC
|
|
* names that adhere to the documented format, but avoid encoding
|
|
* the entire topology information into the label/code, instead
|
|
* just using the location codes based on the labels for the
|
|
* endpoints (VIO/PCI adaptor connectors), which is basically just
|
|
* "C" followed by an integer ID.
|
|
*
|
|
* DRC names as documented by PAPR+ v2.7, 13.5.2.4
|
|
* location codes as documented by PAPR+ v2.7, 12.3.1.5
|
|
*/
|
|
return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
|
|
}
|
|
|
|
/*
|
|
* dr-entity-sense sensor value
|
|
* returned via get-sensor-state RTAS calls
|
|
* as expected by state diagram in PAPR+ 2.7, 13.4
|
|
* based on the current allocation/indicator/power states
|
|
* for the DR connector.
|
|
*/
|
|
static sPAPRDREntitySense physical_entity_sense(sPAPRDRConnector *drc)
|
|
{
|
|
/* this assumes all PCI devices are assigned to a 'live insertion'
|
|
* power domain, where QEMU manages power state automatically as
|
|
* opposed to the guest. present, non-PCI resources are unaffected
|
|
* by power state.
|
|
*/
|
|
return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
|
|
: SPAPR_DR_ENTITY_SENSE_EMPTY;
|
|
}
|
|
|
|
static sPAPRDREntitySense logical_entity_sense(sPAPRDRConnector *drc)
|
|
{
|
|
if (drc->dev
|
|
&& (drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE)) {
|
|
return SPAPR_DR_ENTITY_SENSE_PRESENT;
|
|
} else {
|
|
return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
|
|
}
|
|
}
|
|
|
|
static void prop_get_index(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
uint32_t value = spapr_drc_index(drc);
|
|
visit_type_uint32(v, name, &value, errp);
|
|
}
|
|
|
|
static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
|
|
void *opaque, Error **errp)
|
|
{
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
Error *err = NULL;
|
|
int fdt_offset_next, fdt_offset, fdt_depth;
|
|
void *fdt;
|
|
|
|
if (!drc->fdt) {
|
|
visit_type_null(v, NULL, errp);
|
|
return;
|
|
}
|
|
|
|
fdt = drc->fdt;
|
|
fdt_offset = drc->fdt_start_offset;
|
|
fdt_depth = 0;
|
|
|
|
do {
|
|
const char *name = NULL;
|
|
const struct fdt_property *prop = NULL;
|
|
int prop_len = 0, name_len = 0;
|
|
uint32_t tag;
|
|
|
|
tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
|
|
switch (tag) {
|
|
case FDT_BEGIN_NODE:
|
|
fdt_depth++;
|
|
name = fdt_get_name(fdt, fdt_offset, &name_len);
|
|
visit_start_struct(v, name, NULL, 0, &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
break;
|
|
case FDT_END_NODE:
|
|
/* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
|
|
g_assert(fdt_depth > 0);
|
|
visit_check_struct(v, &err);
|
|
visit_end_struct(v, NULL);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
fdt_depth--;
|
|
break;
|
|
case FDT_PROP: {
|
|
int i;
|
|
prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
|
|
name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
|
|
visit_start_list(v, name, NULL, 0, &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
for (i = 0; i < prop_len; i++) {
|
|
visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], &err);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
}
|
|
visit_check_list(v, &err);
|
|
visit_end_list(v, NULL);
|
|
if (err) {
|
|
error_propagate(errp, err);
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
error_setg(&error_abort, "device FDT in unexpected state: %d", tag);
|
|
}
|
|
fdt_offset = fdt_offset_next;
|
|
} while (fdt_depth != 0);
|
|
}
|
|
|
|
void spapr_drc_attach(sPAPRDRConnector *drc, DeviceState *d, void *fdt,
|
|
int fdt_start_offset, bool coldplug, Error **errp)
|
|
{
|
|
trace_spapr_drc_attach(spapr_drc_index(drc));
|
|
|
|
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
|
|
error_setg(errp, "an attached device is still awaiting release");
|
|
return;
|
|
}
|
|
if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
g_assert(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE);
|
|
}
|
|
g_assert(fdt || coldplug);
|
|
|
|
drc->dev = d;
|
|
drc->fdt = fdt;
|
|
drc->fdt_start_offset = fdt_start_offset;
|
|
drc->configured = coldplug;
|
|
|
|
if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
drc->awaiting_allocation = true;
|
|
}
|
|
|
|
object_property_add_link(OBJECT(drc), "device",
|
|
object_get_typename(OBJECT(drc->dev)),
|
|
(Object **)(&drc->dev),
|
|
NULL, 0, NULL);
|
|
}
|
|
|
|
static void spapr_drc_release(sPAPRDRConnector *drc)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
drck->release(drc->dev);
|
|
|
|
drc->awaiting_release = false;
|
|
g_free(drc->fdt);
|
|
drc->fdt = NULL;
|
|
drc->fdt_start_offset = 0;
|
|
object_property_del(OBJECT(drc), "device", NULL);
|
|
drc->dev = NULL;
|
|
}
|
|
|
|
void spapr_drc_detach(sPAPRDRConnector *drc, DeviceState *d, Error **errp)
|
|
{
|
|
trace_spapr_drc_detach(spapr_drc_index(drc));
|
|
|
|
if (drc->isolation_state != SPAPR_DR_ISOLATION_STATE_ISOLATED) {
|
|
trace_spapr_drc_awaiting_isolated(spapr_drc_index(drc));
|
|
drc->awaiting_release = true;
|
|
return;
|
|
}
|
|
|
|
if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI &&
|
|
drc->allocation_state != SPAPR_DR_ALLOCATION_STATE_UNUSABLE) {
|
|
trace_spapr_drc_awaiting_unusable(spapr_drc_index(drc));
|
|
drc->awaiting_release = true;
|
|
return;
|
|
}
|
|
|
|
if (drc->awaiting_allocation) {
|
|
drc->awaiting_release = true;
|
|
trace_spapr_drc_awaiting_allocation(spapr_drc_index(drc));
|
|
return;
|
|
}
|
|
|
|
spapr_drc_release(drc);
|
|
}
|
|
|
|
static bool release_pending(sPAPRDRConnector *drc)
|
|
{
|
|
return drc->awaiting_release;
|
|
}
|
|
|
|
static void drc_reset(void *opaque)
|
|
{
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(opaque);
|
|
|
|
trace_spapr_drc_reset(spapr_drc_index(drc));
|
|
|
|
g_free(drc->ccs);
|
|
drc->ccs = NULL;
|
|
|
|
/* immediately upon reset we can safely assume DRCs whose devices
|
|
* are pending removal can be safely removed.
|
|
*/
|
|
if (drc->awaiting_release) {
|
|
spapr_drc_release(drc);
|
|
}
|
|
|
|
drc->awaiting_allocation = false;
|
|
|
|
if (drc->dev) {
|
|
/* A device present at reset is coldplugged */
|
|
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_UNISOLATED;
|
|
if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
|
|
}
|
|
drc->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
|
|
} else {
|
|
/* Otherwise device is absent, but might be hotplugged */
|
|
drc->isolation_state = SPAPR_DR_ISOLATION_STATE_ISOLATED;
|
|
if (spapr_drc_type(drc) != SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_UNUSABLE;
|
|
}
|
|
drc->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
|
|
}
|
|
}
|
|
|
|
static bool spapr_drc_needed(void *opaque)
|
|
{
|
|
sPAPRDRConnector *drc = (sPAPRDRConnector *)opaque;
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
bool rc = false;
|
|
sPAPRDREntitySense value = drck->dr_entity_sense(drc);
|
|
|
|
/* If no dev is plugged in there is no need to migrate the DRC state */
|
|
if (value != SPAPR_DR_ENTITY_SENSE_PRESENT) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* If there is dev plugged in, we need to migrate the DRC state when
|
|
* it is different from cold-plugged state
|
|
*/
|
|
switch (spapr_drc_type(drc)) {
|
|
case SPAPR_DR_CONNECTOR_TYPE_PCI:
|
|
case SPAPR_DR_CONNECTOR_TYPE_CPU:
|
|
case SPAPR_DR_CONNECTOR_TYPE_LMB:
|
|
rc = !((drc->isolation_state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) &&
|
|
(drc->allocation_state == SPAPR_DR_ALLOCATION_STATE_USABLE) &&
|
|
drc->configured && !drc->awaiting_release);
|
|
break;
|
|
case SPAPR_DR_CONNECTOR_TYPE_PHB:
|
|
case SPAPR_DR_CONNECTOR_TYPE_VIO:
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_spapr_drc = {
|
|
.name = "spapr_drc",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.needed = spapr_drc_needed,
|
|
.fields = (VMStateField []) {
|
|
VMSTATE_UINT32(isolation_state, sPAPRDRConnector),
|
|
VMSTATE_UINT32(allocation_state, sPAPRDRConnector),
|
|
VMSTATE_UINT32(dr_indicator, sPAPRDRConnector),
|
|
VMSTATE_BOOL(configured, sPAPRDRConnector),
|
|
VMSTATE_BOOL(awaiting_release, sPAPRDRConnector),
|
|
VMSTATE_BOOL(awaiting_allocation, sPAPRDRConnector),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void realize(DeviceState *d, Error **errp)
|
|
{
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
|
|
Object *root_container;
|
|
char link_name[256];
|
|
gchar *child_name;
|
|
Error *err = NULL;
|
|
|
|
trace_spapr_drc_realize(spapr_drc_index(drc));
|
|
/* NOTE: we do this as part of realize/unrealize due to the fact
|
|
* that the guest will communicate with the DRC via RTAS calls
|
|
* referencing the global DRC index. By unlinking the DRC
|
|
* from DRC_CONTAINER_PATH/<drc_index> we effectively make it
|
|
* inaccessible by the guest, since lookups rely on this path
|
|
* existing in the composition tree
|
|
*/
|
|
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
|
|
snprintf(link_name, sizeof(link_name), "%x", spapr_drc_index(drc));
|
|
child_name = object_get_canonical_path_component(OBJECT(drc));
|
|
trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
|
|
object_property_add_alias(root_container, link_name,
|
|
drc->owner, child_name, &err);
|
|
if (err) {
|
|
error_report_err(err);
|
|
object_unref(OBJECT(drc));
|
|
}
|
|
g_free(child_name);
|
|
vmstate_register(DEVICE(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
|
|
drc);
|
|
qemu_register_reset(drc_reset, drc);
|
|
trace_spapr_drc_realize_complete(spapr_drc_index(drc));
|
|
}
|
|
|
|
static void unrealize(DeviceState *d, Error **errp)
|
|
{
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(d);
|
|
Object *root_container;
|
|
char name[256];
|
|
Error *err = NULL;
|
|
|
|
trace_spapr_drc_unrealize(spapr_drc_index(drc));
|
|
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
|
|
snprintf(name, sizeof(name), "%x", spapr_drc_index(drc));
|
|
object_property_del(root_container, name, &err);
|
|
if (err) {
|
|
error_report_err(err);
|
|
object_unref(OBJECT(drc));
|
|
}
|
|
}
|
|
|
|
sPAPRDRConnector *spapr_dr_connector_new(Object *owner, const char *type,
|
|
uint32_t id)
|
|
{
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(object_new(type));
|
|
char *prop_name;
|
|
|
|
drc->id = id;
|
|
drc->owner = owner;
|
|
prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
|
|
spapr_drc_index(drc));
|
|
object_property_add_child(owner, prop_name, OBJECT(drc), NULL);
|
|
object_property_set_bool(OBJECT(drc), true, "realized", NULL);
|
|
g_free(prop_name);
|
|
|
|
/* PCI slot always start in a USABLE state, and stay there */
|
|
if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_PCI) {
|
|
drc->allocation_state = SPAPR_DR_ALLOCATION_STATE_USABLE;
|
|
}
|
|
|
|
return drc;
|
|
}
|
|
|
|
static void spapr_dr_connector_instance_init(Object *obj)
|
|
{
|
|
sPAPRDRConnector *drc = SPAPR_DR_CONNECTOR(obj);
|
|
|
|
object_property_add_uint32_ptr(obj, "id", &drc->id, NULL);
|
|
object_property_add(obj, "index", "uint32", prop_get_index,
|
|
NULL, NULL, NULL, NULL);
|
|
object_property_add(obj, "fdt", "struct", prop_get_fdt,
|
|
NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
|
|
{
|
|
DeviceClass *dk = DEVICE_CLASS(k);
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
|
|
|
|
dk->realize = realize;
|
|
dk->unrealize = unrealize;
|
|
drck->release_pending = release_pending;
|
|
/*
|
|
* Reason: it crashes FIXME find and document the real reason
|
|
*/
|
|
dk->user_creatable = false;
|
|
}
|
|
|
|
static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
|
|
|
|
drck->dr_entity_sense = physical_entity_sense;
|
|
drck->isolate = drc_isolate_physical;
|
|
drck->unisolate = drc_unisolate_physical;
|
|
}
|
|
|
|
static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
|
|
|
|
drck->dr_entity_sense = logical_entity_sense;
|
|
drck->isolate = drc_isolate_logical;
|
|
drck->unisolate = drc_unisolate_logical;
|
|
}
|
|
|
|
static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
|
|
|
|
drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
|
|
drck->typename = "CPU";
|
|
drck->drc_name_prefix = "CPU ";
|
|
drck->release = spapr_core_release;
|
|
}
|
|
|
|
static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
|
|
|
|
drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
|
|
drck->typename = "28";
|
|
drck->drc_name_prefix = "C";
|
|
drck->release = spapr_phb_remove_pci_device_cb;
|
|
}
|
|
|
|
static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
|
|
{
|
|
sPAPRDRConnectorClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
|
|
|
|
drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
|
|
drck->typename = "MEM";
|
|
drck->drc_name_prefix = "LMB ";
|
|
drck->release = spapr_lmb_release;
|
|
}
|
|
|
|
static const TypeInfo spapr_dr_connector_info = {
|
|
.name = TYPE_SPAPR_DR_CONNECTOR,
|
|
.parent = TYPE_DEVICE,
|
|
.instance_size = sizeof(sPAPRDRConnector),
|
|
.instance_init = spapr_dr_connector_instance_init,
|
|
.class_size = sizeof(sPAPRDRConnectorClass),
|
|
.class_init = spapr_dr_connector_class_init,
|
|
.abstract = true,
|
|
};
|
|
|
|
static const TypeInfo spapr_drc_physical_info = {
|
|
.name = TYPE_SPAPR_DRC_PHYSICAL,
|
|
.parent = TYPE_SPAPR_DR_CONNECTOR,
|
|
.instance_size = sizeof(sPAPRDRConnector),
|
|
.class_init = spapr_drc_physical_class_init,
|
|
.abstract = true,
|
|
};
|
|
|
|
static const TypeInfo spapr_drc_logical_info = {
|
|
.name = TYPE_SPAPR_DRC_LOGICAL,
|
|
.parent = TYPE_SPAPR_DR_CONNECTOR,
|
|
.instance_size = sizeof(sPAPRDRConnector),
|
|
.class_init = spapr_drc_logical_class_init,
|
|
.abstract = true,
|
|
};
|
|
|
|
static const TypeInfo spapr_drc_cpu_info = {
|
|
.name = TYPE_SPAPR_DRC_CPU,
|
|
.parent = TYPE_SPAPR_DRC_LOGICAL,
|
|
.instance_size = sizeof(sPAPRDRConnector),
|
|
.class_init = spapr_drc_cpu_class_init,
|
|
};
|
|
|
|
static const TypeInfo spapr_drc_pci_info = {
|
|
.name = TYPE_SPAPR_DRC_PCI,
|
|
.parent = TYPE_SPAPR_DRC_PHYSICAL,
|
|
.instance_size = sizeof(sPAPRDRConnector),
|
|
.class_init = spapr_drc_pci_class_init,
|
|
};
|
|
|
|
static const TypeInfo spapr_drc_lmb_info = {
|
|
.name = TYPE_SPAPR_DRC_LMB,
|
|
.parent = TYPE_SPAPR_DRC_LOGICAL,
|
|
.instance_size = sizeof(sPAPRDRConnector),
|
|
.class_init = spapr_drc_lmb_class_init,
|
|
};
|
|
|
|
/* helper functions for external users */
|
|
|
|
sPAPRDRConnector *spapr_drc_by_index(uint32_t index)
|
|
{
|
|
Object *obj;
|
|
char name[256];
|
|
|
|
snprintf(name, sizeof(name), "%s/%x", DRC_CONTAINER_PATH, index);
|
|
obj = object_resolve_path(name, NULL);
|
|
|
|
return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
|
|
}
|
|
|
|
sPAPRDRConnector *spapr_drc_by_id(const char *type, uint32_t id)
|
|
{
|
|
sPAPRDRConnectorClass *drck
|
|
= SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
|
|
|
|
return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
|
|
| (id & DRC_INDEX_ID_MASK));
|
|
}
|
|
|
|
/**
|
|
* spapr_drc_populate_dt
|
|
*
|
|
* @fdt: libfdt device tree
|
|
* @path: path in the DT to generate properties
|
|
* @owner: parent Object/DeviceState for which to generate DRC
|
|
* descriptions for
|
|
* @drc_type_mask: mask of sPAPRDRConnectorType values corresponding
|
|
* to the types of DRCs to generate entries for
|
|
*
|
|
* generate OF properties to describe DRC topology/indices to guests
|
|
*
|
|
* as documented in PAPR+ v2.1, 13.5.2
|
|
*/
|
|
int spapr_drc_populate_dt(void *fdt, int fdt_offset, Object *owner,
|
|
uint32_t drc_type_mask)
|
|
{
|
|
Object *root_container;
|
|
ObjectProperty *prop;
|
|
ObjectPropertyIterator iter;
|
|
uint32_t drc_count = 0;
|
|
GArray *drc_indexes, *drc_power_domains;
|
|
GString *drc_names, *drc_types;
|
|
int ret;
|
|
|
|
/* the first entry of each properties is a 32-bit integer encoding
|
|
* the number of elements in the array. we won't know this until
|
|
* we complete the iteration through all the matching DRCs, but
|
|
* reserve the space now and set the offsets accordingly so we
|
|
* can fill them in later.
|
|
*/
|
|
drc_indexes = g_array_new(false, true, sizeof(uint32_t));
|
|
drc_indexes = g_array_set_size(drc_indexes, 1);
|
|
drc_power_domains = g_array_new(false, true, sizeof(uint32_t));
|
|
drc_power_domains = g_array_set_size(drc_power_domains, 1);
|
|
drc_names = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
|
|
drc_types = g_string_set_size(g_string_new(NULL), sizeof(uint32_t));
|
|
|
|
/* aliases for all DRConnector objects will be rooted in QOM
|
|
* composition tree at DRC_CONTAINER_PATH
|
|
*/
|
|
root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
|
|
|
|
object_property_iter_init(&iter, root_container);
|
|
while ((prop = object_property_iter_next(&iter))) {
|
|
Object *obj;
|
|
sPAPRDRConnector *drc;
|
|
sPAPRDRConnectorClass *drck;
|
|
uint32_t drc_index, drc_power_domain;
|
|
|
|
if (!strstart(prop->type, "link<", NULL)) {
|
|
continue;
|
|
}
|
|
|
|
obj = object_property_get_link(root_container, prop->name, NULL);
|
|
drc = SPAPR_DR_CONNECTOR(obj);
|
|
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
if (owner && (drc->owner != owner)) {
|
|
continue;
|
|
}
|
|
|
|
if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
|
|
continue;
|
|
}
|
|
|
|
drc_count++;
|
|
|
|
/* ibm,drc-indexes */
|
|
drc_index = cpu_to_be32(spapr_drc_index(drc));
|
|
g_array_append_val(drc_indexes, drc_index);
|
|
|
|
/* ibm,drc-power-domains */
|
|
drc_power_domain = cpu_to_be32(-1);
|
|
g_array_append_val(drc_power_domains, drc_power_domain);
|
|
|
|
/* ibm,drc-names */
|
|
drc_names = g_string_append(drc_names, spapr_drc_name(drc));
|
|
drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
|
|
|
|
/* ibm,drc-types */
|
|
drc_types = g_string_append(drc_types, drck->typename);
|
|
drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
|
|
}
|
|
|
|
/* now write the drc count into the space we reserved at the
|
|
* beginning of the arrays previously
|
|
*/
|
|
*(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
|
|
*(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
|
|
*(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
|
|
*(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-indexes",
|
|
drc_indexes->data,
|
|
drc_indexes->len * sizeof(uint32_t));
|
|
if (ret) {
|
|
error_report("Couldn't create ibm,drc-indexes property");
|
|
goto out;
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-power-domains",
|
|
drc_power_domains->data,
|
|
drc_power_domains->len * sizeof(uint32_t));
|
|
if (ret) {
|
|
error_report("Couldn't finalize ibm,drc-power-domains property");
|
|
goto out;
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-names",
|
|
drc_names->str, drc_names->len);
|
|
if (ret) {
|
|
error_report("Couldn't finalize ibm,drc-names property");
|
|
goto out;
|
|
}
|
|
|
|
ret = fdt_setprop(fdt, fdt_offset, "ibm,drc-types",
|
|
drc_types->str, drc_types->len);
|
|
if (ret) {
|
|
error_report("Couldn't finalize ibm,drc-types property");
|
|
goto out;
|
|
}
|
|
|
|
out:
|
|
g_array_free(drc_indexes, true);
|
|
g_array_free(drc_power_domains, true);
|
|
g_string_free(drc_names, true);
|
|
g_string_free(drc_types, true);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* RTAS calls
|
|
*/
|
|
|
|
static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
|
|
{
|
|
sPAPRDRConnector *drc = spapr_drc_by_index(idx);
|
|
sPAPRDRConnectorClass *drck;
|
|
|
|
if (!drc) {
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
}
|
|
|
|
trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
|
|
|
|
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
|
|
switch (state) {
|
|
case SPAPR_DR_ISOLATION_STATE_ISOLATED:
|
|
return drck->isolate(drc);
|
|
|
|
case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
|
|
return drck->unisolate(drc);
|
|
|
|
default:
|
|
return RTAS_OUT_PARAM_ERROR;
|
|
}
|
|
}
|
|
|
|
static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
|
|
{
|
|
sPAPRDRConnector *drc = spapr_drc_by_index(idx);
|
|
|
|
if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
|
|
return RTAS_OUT_NO_SUCH_INDICATOR;
|
|
}
|
|
|
|
trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
|
|
|
|
switch (state) {
|
|
case SPAPR_DR_ALLOCATION_STATE_USABLE:
|
|
return drc_set_usable(drc);
|
|
|
|
case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
|
|
return drc_set_unusable(drc);
|
|
|
|
default:
|
|
return RTAS_OUT_PARAM_ERROR;
|
|
}
|
|
}
|
|
|
|
static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
|
|
{
|
|
sPAPRDRConnector *drc = spapr_drc_by_index(idx);
|
|
|
|
if (!drc) {
|
|
return RTAS_OUT_PARAM_ERROR;
|
|
}
|
|
|
|
trace_spapr_drc_set_dr_indicator(idx, state);
|
|
drc->dr_indicator = state;
|
|
return RTAS_OUT_SUCCESS;
|
|
}
|
|
|
|
static void rtas_set_indicator(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
uint32_t token,
|
|
uint32_t nargs, target_ulong args,
|
|
uint32_t nret, target_ulong rets)
|
|
{
|
|
uint32_t type, idx, state;
|
|
uint32_t ret = RTAS_OUT_SUCCESS;
|
|
|
|
if (nargs != 3 || nret != 1) {
|
|
ret = RTAS_OUT_PARAM_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
type = rtas_ld(args, 0);
|
|
idx = rtas_ld(args, 1);
|
|
state = rtas_ld(args, 2);
|
|
|
|
switch (type) {
|
|
case RTAS_SENSOR_TYPE_ISOLATION_STATE:
|
|
ret = rtas_set_isolation_state(idx, state);
|
|
break;
|
|
case RTAS_SENSOR_TYPE_DR:
|
|
ret = rtas_set_dr_indicator(idx, state);
|
|
break;
|
|
case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
|
|
ret = rtas_set_allocation_state(idx, state);
|
|
break;
|
|
default:
|
|
ret = RTAS_OUT_NOT_SUPPORTED;
|
|
}
|
|
|
|
out:
|
|
rtas_st(rets, 0, ret);
|
|
}
|
|
|
|
static void rtas_get_sensor_state(PowerPCCPU *cpu, sPAPRMachineState *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
uint32_t sensor_type;
|
|
uint32_t sensor_index;
|
|
uint32_t sensor_state = 0;
|
|
sPAPRDRConnector *drc;
|
|
sPAPRDRConnectorClass *drck;
|
|
uint32_t ret = RTAS_OUT_SUCCESS;
|
|
|
|
if (nargs != 2 || nret != 2) {
|
|
ret = RTAS_OUT_PARAM_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
sensor_type = rtas_ld(args, 0);
|
|
sensor_index = rtas_ld(args, 1);
|
|
|
|
if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
|
|
/* currently only DR-related sensors are implemented */
|
|
trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
|
|
sensor_type);
|
|
ret = RTAS_OUT_NOT_SUPPORTED;
|
|
goto out;
|
|
}
|
|
|
|
drc = spapr_drc_by_index(sensor_index);
|
|
if (!drc) {
|
|
trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
|
|
ret = RTAS_OUT_PARAM_ERROR;
|
|
goto out;
|
|
}
|
|
drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
|
|
sensor_state = drck->dr_entity_sense(drc);
|
|
|
|
out:
|
|
rtas_st(rets, 0, ret);
|
|
rtas_st(rets, 1, sensor_state);
|
|
}
|
|
|
|
/* configure-connector work area offsets, int32_t units for field
|
|
* indexes, bytes for field offset/len values.
|
|
*
|
|
* as documented by PAPR+ v2.7, 13.5.3.5
|
|
*/
|
|
#define CC_IDX_NODE_NAME_OFFSET 2
|
|
#define CC_IDX_PROP_NAME_OFFSET 2
|
|
#define CC_IDX_PROP_LEN 3
|
|
#define CC_IDX_PROP_DATA_OFFSET 4
|
|
#define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
|
|
#define CC_WA_LEN 4096
|
|
|
|
static void configure_connector_st(target_ulong addr, target_ulong offset,
|
|
const void *buf, size_t len)
|
|
{
|
|
cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
|
|
buf, MIN(len, CC_WA_LEN - offset));
|
|
}
|
|
|
|
static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
|
|
sPAPRMachineState *spapr,
|
|
uint32_t token, uint32_t nargs,
|
|
target_ulong args, uint32_t nret,
|
|
target_ulong rets)
|
|
{
|
|
uint64_t wa_addr;
|
|
uint64_t wa_offset;
|
|
uint32_t drc_index;
|
|
sPAPRDRConnector *drc;
|
|
sPAPRConfigureConnectorState *ccs;
|
|
sPAPRDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
|
|
int rc;
|
|
|
|
if (nargs != 2 || nret != 1) {
|
|
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
|
|
return;
|
|
}
|
|
|
|
wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
|
|
|
|
drc_index = rtas_ld(wa_addr, 0);
|
|
drc = spapr_drc_by_index(drc_index);
|
|
if (!drc) {
|
|
trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
|
|
rc = RTAS_OUT_PARAM_ERROR;
|
|
goto out;
|
|
}
|
|
|
|
if (!drc->fdt) {
|
|
trace_spapr_rtas_ibm_configure_connector_missing_fdt(drc_index);
|
|
rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
|
|
goto out;
|
|
}
|
|
|
|
ccs = drc->ccs;
|
|
if (!ccs) {
|
|
ccs = g_new0(sPAPRConfigureConnectorState, 1);
|
|
ccs->fdt_offset = drc->fdt_start_offset;
|
|
drc->ccs = ccs;
|
|
}
|
|
|
|
do {
|
|
uint32_t tag;
|
|
const char *name;
|
|
const struct fdt_property *prop;
|
|
int fdt_offset_next, prop_len;
|
|
|
|
tag = fdt_next_tag(drc->fdt, ccs->fdt_offset, &fdt_offset_next);
|
|
|
|
switch (tag) {
|
|
case FDT_BEGIN_NODE:
|
|
ccs->fdt_depth++;
|
|
name = fdt_get_name(drc->fdt, ccs->fdt_offset, NULL);
|
|
|
|
/* provide the name of the next OF node */
|
|
wa_offset = CC_VAL_DATA_OFFSET;
|
|
rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
|
|
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
|
|
resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
|
|
break;
|
|
case FDT_END_NODE:
|
|
ccs->fdt_depth--;
|
|
if (ccs->fdt_depth == 0) {
|
|
sPAPRDRIsolationState state = drc->isolation_state;
|
|
uint32_t drc_index = spapr_drc_index(drc);
|
|
/* done sending the device tree, don't need to track
|
|
* the state anymore
|
|
*/
|
|
trace_spapr_drc_set_configured(drc_index);
|
|
if (state == SPAPR_DR_ISOLATION_STATE_UNISOLATED) {
|
|
drc->configured = true;
|
|
} else {
|
|
/* guest should be not configuring an isolated device */
|
|
trace_spapr_drc_set_configured_skipping(drc_index);
|
|
}
|
|
g_free(ccs);
|
|
drc->ccs = NULL;
|
|
ccs = NULL;
|
|
resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
|
|
} else {
|
|
resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
|
|
}
|
|
break;
|
|
case FDT_PROP:
|
|
prop = fdt_get_property_by_offset(drc->fdt, ccs->fdt_offset,
|
|
&prop_len);
|
|
name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
|
|
|
|
/* provide the name of the next OF property */
|
|
wa_offset = CC_VAL_DATA_OFFSET;
|
|
rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
|
|
configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
|
|
|
|
/* provide the length and value of the OF property. data gets
|
|
* placed immediately after NULL terminator of the OF property's
|
|
* name string
|
|
*/
|
|
wa_offset += strlen(name) + 1,
|
|
rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
|
|
rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
|
|
configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
|
|
resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
|
|
break;
|
|
case FDT_END:
|
|
resp = SPAPR_DR_CC_RESPONSE_ERROR;
|
|
default:
|
|
/* keep seeking for an actionable tag */
|
|
break;
|
|
}
|
|
if (ccs) {
|
|
ccs->fdt_offset = fdt_offset_next;
|
|
}
|
|
} while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
|
|
|
|
rc = resp;
|
|
out:
|
|
rtas_st(rets, 0, rc);
|
|
}
|
|
|
|
static void spapr_drc_register_types(void)
|
|
{
|
|
type_register_static(&spapr_dr_connector_info);
|
|
type_register_static(&spapr_drc_physical_info);
|
|
type_register_static(&spapr_drc_logical_info);
|
|
type_register_static(&spapr_drc_cpu_info);
|
|
type_register_static(&spapr_drc_pci_info);
|
|
type_register_static(&spapr_drc_lmb_info);
|
|
|
|
spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
|
|
rtas_set_indicator);
|
|
spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
|
|
rtas_get_sensor_state);
|
|
spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
|
|
rtas_ibm_configure_connector);
|
|
}
|
|
type_init(spapr_drc_register_types)
|