qemu-e2k/target/s390x/mem_helper.c

1323 lines
35 KiB
C

/*
* S/390 memory access helper routines
*
* Copyright (c) 2009 Ulrich Hecht
* Copyright (c) 2009 Alexander Graf
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/address-spaces.h"
#include "exec/helper-proto.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "qemu/int128.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/s390x/storage-keys.h"
#endif
/*****************************************************************************/
/* Softmmu support */
#if !defined(CONFIG_USER_ONLY)
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
int ret = s390_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
if (unlikely(ret != 0)) {
cpu_loop_exit_restore(cs, retaddr);
}
}
#endif
/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif
/* Reduce the length so that addr + len doesn't cross a page boundary. */
static inline uint32_t adj_len_to_page(uint32_t len, uint64_t addr)
{
#ifndef CONFIG_USER_ONLY
if ((addr & ~TARGET_PAGE_MASK) + len - 1 >= TARGET_PAGE_SIZE) {
return -addr & ~TARGET_PAGE_MASK;
}
#endif
return len;
}
static void fast_memset(CPUS390XState *env, uint64_t dest, uint8_t byte,
uint32_t l, uintptr_t ra)
{
int mmu_idx = cpu_mmu_index(env, false);
while (l > 0) {
void *p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
if (p) {
/* Access to the whole page in write mode granted. */
uint32_t l_adj = adj_len_to_page(l, dest);
memset(p, byte, l_adj);
dest += l_adj;
l -= l_adj;
} else {
/* We failed to get access to the whole page. The next write
access will likely fill the QEMU TLB for the next iteration. */
cpu_stb_data_ra(env, dest, byte, ra);
dest++;
l--;
}
}
}
static void fast_memmove(CPUS390XState *env, uint64_t dest, uint64_t src,
uint32_t l, uintptr_t ra)
{
int mmu_idx = cpu_mmu_index(env, false);
while (l > 0) {
void *src_p = tlb_vaddr_to_host(env, src, MMU_DATA_LOAD, mmu_idx);
void *dest_p = tlb_vaddr_to_host(env, dest, MMU_DATA_STORE, mmu_idx);
if (src_p && dest_p) {
/* Access to both whole pages granted. */
uint32_t l_adj = adj_len_to_page(l, src);
l_adj = adj_len_to_page(l_adj, dest);
memmove(dest_p, src_p, l_adj);
src += l_adj;
dest += l_adj;
l -= l_adj;
} else {
/* We failed to get access to one or both whole pages. The next
read or write access will likely fill the QEMU TLB for the
next iteration. */
cpu_stb_data_ra(env, dest, cpu_ldub_data_ra(env, src, ra), ra);
src++;
dest++;
l--;
}
}
}
/* and on array */
static uint32_t do_helper_nc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
uint32_t i;
uint8_t c = 0;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
for (i = 0; i <= l; i++) {
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
x &= cpu_ldub_data_ra(env, dest + i, ra);
c |= x;
cpu_stb_data_ra(env, dest + i, x, ra);
}
return c != 0;
}
uint32_t HELPER(nc)(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src)
{
return do_helper_nc(env, l, dest, src, GETPC());
}
/* xor on array */
static uint32_t do_helper_xc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
uint32_t i;
uint8_t c = 0;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
/* xor with itself is the same as memset(0) */
if (src == dest) {
fast_memset(env, dest, 0, l + 1, ra);
return 0;
}
for (i = 0; i <= l; i++) {
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
x ^= cpu_ldub_data_ra(env, dest + i, ra);
c |= x;
cpu_stb_data_ra(env, dest + i, x, ra);
}
return c != 0;
}
uint32_t HELPER(xc)(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src)
{
return do_helper_xc(env, l, dest, src, GETPC());
}
/* or on array */
static uint32_t do_helper_oc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
uint32_t i;
uint8_t c = 0;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
for (i = 0; i <= l; i++) {
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
x |= cpu_ldub_data_ra(env, dest + i, ra);
c |= x;
cpu_stb_data_ra(env, dest + i, x, ra);
}
return c != 0;
}
uint32_t HELPER(oc)(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src)
{
return do_helper_oc(env, l, dest, src, GETPC());
}
/* memmove */
static uint32_t do_helper_mvc(CPUS390XState *env, uint32_t l, uint64_t dest,
uint64_t src, uintptr_t ra)
{
uint32_t i;
HELPER_LOG("%s l %d dest %" PRIx64 " src %" PRIx64 "\n",
__func__, l, dest, src);
/* mvc and memmove do not behave the same when areas overlap! */
/* mvc with source pointing to the byte after the destination is the
same as memset with the first source byte */
if (dest == src + 1) {
fast_memset(env, dest, cpu_ldub_data_ra(env, src, ra), l + 1, ra);
} else if (dest < src || src + l < dest) {
fast_memmove(env, dest, src, l + 1, ra);
} else {
/* slow version with byte accesses which always work */
for (i = 0; i <= l; i++) {
uint8_t x = cpu_ldub_data_ra(env, src + i, ra);
cpu_stb_data_ra(env, dest + i, x, ra);
}
}
return env->cc_op;
}
void HELPER(mvc)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
do_helper_mvc(env, l, dest, src, GETPC());
}
/* move inverse */
void HELPER(mvcin)(CPUS390XState *env, uint32_t l, uint64_t dest, uint64_t src)
{
uintptr_t ra = GETPC();
int i;
for (i = 0; i <= l; i++) {
uint8_t v = cpu_ldub_data_ra(env, src - i, ra);
cpu_stb_data_ra(env, dest + i, v, ra);
}
}
/* compare unsigned byte arrays */
static uint32_t do_helper_clc(CPUS390XState *env, uint32_t l, uint64_t s1,
uint64_t s2, uintptr_t ra)
{
uint32_t i;
uint32_t cc = 0;
HELPER_LOG("%s l %d s1 %" PRIx64 " s2 %" PRIx64 "\n",
__func__, l, s1, s2);
for (i = 0; i <= l; i++) {
uint8_t x = cpu_ldub_data_ra(env, s1 + i, ra);
uint8_t y = cpu_ldub_data_ra(env, s2 + i, ra);
HELPER_LOG("%02x (%c)/%02x (%c) ", x, x, y, y);
if (x < y) {
cc = 1;
break;
} else if (x > y) {
cc = 2;
break;
}
}
HELPER_LOG("\n");
return cc;
}
uint32_t HELPER(clc)(CPUS390XState *env, uint32_t l, uint64_t s1, uint64_t s2)
{
return do_helper_clc(env, l, s1, s2, GETPC());
}
/* compare logical under mask */
uint32_t HELPER(clm)(CPUS390XState *env, uint32_t r1, uint32_t mask,
uint64_t addr)
{
uintptr_t ra = GETPC();
uint32_t cc = 0;
HELPER_LOG("%s: r1 0x%x mask 0x%x addr 0x%" PRIx64 "\n", __func__, r1,
mask, addr);
while (mask) {
if (mask & 8) {
uint8_t d = cpu_ldub_data_ra(env, addr, ra);
uint8_t r = extract32(r1, 24, 8);
HELPER_LOG("mask 0x%x %02x/%02x (0x%" PRIx64 ") ", mask, r, d,
addr);
if (r < d) {
cc = 1;
break;
} else if (r > d) {
cc = 2;
break;
}
addr++;
}
mask = (mask << 1) & 0xf;
r1 <<= 8;
}
HELPER_LOG("\n");
return cc;
}
static inline uint64_t fix_address(CPUS390XState *env, uint64_t a)
{
/* 31-Bit mode */
if (!(env->psw.mask & PSW_MASK_64)) {
a &= 0x7fffffff;
}
return a;
}
static inline uint64_t get_address(CPUS390XState *env, int x2, int b2, int d2)
{
uint64_t r = d2;
if (x2) {
r += env->regs[x2];
}
if (b2) {
r += env->regs[b2];
}
return fix_address(env, r);
}
static inline uint64_t get_address_31fix(CPUS390XState *env, int reg)
{
return fix_address(env, env->regs[reg]);
}
/* search string (c is byte to search, r2 is string, r1 end of string) */
uint64_t HELPER(srst)(CPUS390XState *env, uint64_t r0, uint64_t end,
uint64_t str)
{
uintptr_t ra = GETPC();
uint32_t len;
uint8_t v, c = r0;
str = fix_address(env, str);
end = fix_address(env, end);
/* Assume for now that R2 is unmodified. */
env->retxl = str;
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
for (len = 0; len < 0x2000; ++len) {
if (str + len == end) {
/* Character not found. R1 & R2 are unmodified. */
env->cc_op = 2;
return end;
}
v = cpu_ldub_data_ra(env, str + len, ra);
if (v == c) {
/* Character found. Set R1 to the location; R2 is unmodified. */
env->cc_op = 1;
return str + len;
}
}
/* CPU-determined bytes processed. Advance R2 to next byte to process. */
env->retxl = str + len;
env->cc_op = 3;
return end;
}
/* unsigned string compare (c is string terminator) */
uint64_t HELPER(clst)(CPUS390XState *env, uint64_t c, uint64_t s1, uint64_t s2)
{
uintptr_t ra = GETPC();
uint32_t len;
c = c & 0xff;
s1 = fix_address(env, s1);
s2 = fix_address(env, s2);
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
for (len = 0; len < 0x2000; ++len) {
uint8_t v1 = cpu_ldub_data_ra(env, s1 + len, ra);
uint8_t v2 = cpu_ldub_data_ra(env, s2 + len, ra);
if (v1 == v2) {
if (v1 == c) {
/* Equal. CC=0, and don't advance the registers. */
env->cc_op = 0;
env->retxl = s2;
return s1;
}
} else {
/* Unequal. CC={1,2}, and advance the registers. Note that
the terminator need not be zero, but the string that contains
the terminator is by definition "low". */
env->cc_op = (v1 == c ? 1 : v2 == c ? 2 : v1 < v2 ? 1 : 2);
env->retxl = s2 + len;
return s1 + len;
}
}
/* CPU-determined bytes equal; advance the registers. */
env->cc_op = 3;
env->retxl = s2 + len;
return s1 + len;
}
/* move page */
uint32_t HELPER(mvpg)(CPUS390XState *env, uint64_t r0, uint64_t r1, uint64_t r2)
{
/* ??? missing r0 handling, which includes access keys, but more
importantly optional suppression of the exception! */
fast_memmove(env, r1, r2, TARGET_PAGE_SIZE, GETPC());
return 0; /* data moved */
}
/* string copy (c is string terminator) */
uint64_t HELPER(mvst)(CPUS390XState *env, uint64_t c, uint64_t d, uint64_t s)
{
uintptr_t ra = GETPC();
uint32_t len;
c = c & 0xff;
d = fix_address(env, d);
s = fix_address(env, s);
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
for (len = 0; len < 0x2000; ++len) {
uint8_t v = cpu_ldub_data_ra(env, s + len, ra);
cpu_stb_data_ra(env, d + len, v, ra);
if (v == c) {
/* Complete. Set CC=1 and advance R1. */
env->cc_op = 1;
env->retxl = s;
return d + len;
}
}
/* Incomplete. Set CC=3 and signal to advance R1 and R2. */
env->cc_op = 3;
env->retxl = s + len;
return d + len;
}
/* load access registers r1 to r3 from memory at a2 */
void HELPER(lam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
int i;
for (i = r1;; i = (i + 1) % 16) {
env->aregs[i] = cpu_ldl_data_ra(env, a2, ra);
a2 += 4;
if (i == r3) {
break;
}
}
}
/* store access registers r1 to r3 in memory at a2 */
void HELPER(stam)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
int i;
for (i = r1;; i = (i + 1) % 16) {
cpu_stl_data_ra(env, a2, env->aregs[i], ra);
a2 += 4;
if (i == r3) {
break;
}
}
}
/* move long */
uint32_t HELPER(mvcl)(CPUS390XState *env, uint32_t r1, uint32_t r2)
{
uintptr_t ra = GETPC();
uint64_t destlen = env->regs[r1 + 1] & 0xffffff;
uint64_t dest = get_address_31fix(env, r1);
uint64_t srclen = env->regs[r2 + 1] & 0xffffff;
uint64_t src = get_address_31fix(env, r2);
uint8_t pad = env->regs[r2 + 1] >> 24;
uint8_t v;
uint32_t cc;
if (destlen == srclen) {
cc = 0;
} else if (destlen < srclen) {
cc = 1;
} else {
cc = 2;
}
if (srclen > destlen) {
srclen = destlen;
}
for (; destlen && srclen; src++, dest++, destlen--, srclen--) {
v = cpu_ldub_data_ra(env, src, ra);
cpu_stb_data_ra(env, dest, v, ra);
}
for (; destlen; dest++, destlen--) {
cpu_stb_data_ra(env, dest, pad, ra);
}
env->regs[r1 + 1] = destlen;
/* can't use srclen here, we trunc'ed it */
env->regs[r2 + 1] -= src - env->regs[r2];
env->regs[r1] = dest;
env->regs[r2] = src;
return cc;
}
/* move long extended another memcopy insn with more bells and whistles */
uint32_t HELPER(mvcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t destlen = env->regs[r1 + 1];
uint64_t dest = env->regs[r1];
uint64_t srclen = env->regs[r3 + 1];
uint64_t src = env->regs[r3];
uint8_t pad = a2 & 0xff;
uint8_t v;
uint32_t cc;
if (!(env->psw.mask & PSW_MASK_64)) {
destlen = (uint32_t)destlen;
srclen = (uint32_t)srclen;
dest &= 0x7fffffff;
src &= 0x7fffffff;
}
if (destlen == srclen) {
cc = 0;
} else if (destlen < srclen) {
cc = 1;
} else {
cc = 2;
}
if (srclen > destlen) {
srclen = destlen;
}
for (; destlen && srclen; src++, dest++, destlen--, srclen--) {
v = cpu_ldub_data_ra(env, src, ra);
cpu_stb_data_ra(env, dest, v, ra);
}
for (; destlen; dest++, destlen--) {
cpu_stb_data_ra(env, dest, pad, ra);
}
env->regs[r1 + 1] = destlen;
/* can't use srclen here, we trunc'ed it */
/* FIXME: 31-bit mode! */
env->regs[r3 + 1] -= src - env->regs[r3];
env->regs[r1] = dest;
env->regs[r3] = src;
return cc;
}
/* compare logical long extended memcompare insn with padding */
uint32_t HELPER(clcle)(CPUS390XState *env, uint32_t r1, uint64_t a2,
uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t destlen = env->regs[r1 + 1];
uint64_t dest = get_address_31fix(env, r1);
uint64_t srclen = env->regs[r3 + 1];
uint64_t src = get_address_31fix(env, r3);
uint8_t pad = a2 & 0xff;
uint32_t cc = 0;
if (!(destlen || srclen)) {
return cc;
}
if (srclen > destlen) {
srclen = destlen;
}
for (; destlen || srclen; src++, dest++, destlen--, srclen--) {
uint8_t v1 = srclen ? cpu_ldub_data_ra(env, src, ra) : pad;
uint8_t v2 = destlen ? cpu_ldub_data_ra(env, dest, ra) : pad;
if (v1 != v2) {
cc = (v1 < v2) ? 1 : 2;
break;
}
}
env->regs[r1 + 1] = destlen;
/* can't use srclen here, we trunc'ed it */
env->regs[r3 + 1] -= src - env->regs[r3];
env->regs[r1] = dest;
env->regs[r3] = src;
return cc;
}
/* checksum */
uint64_t HELPER(cksm)(CPUS390XState *env, uint64_t r1,
uint64_t src, uint64_t src_len)
{
uintptr_t ra = GETPC();
uint64_t max_len, len;
uint64_t cksm = (uint32_t)r1;
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
max_len = (src_len > 0x2000 ? 0x2000 : src_len);
/* Process full words as available. */
for (len = 0; len + 4 <= max_len; len += 4, src += 4) {
cksm += (uint32_t)cpu_ldl_data_ra(env, src, ra);
}
switch (max_len - len) {
case 1:
cksm += cpu_ldub_data_ra(env, src, ra) << 24;
len += 1;
break;
case 2:
cksm += cpu_lduw_data_ra(env, src, ra) << 16;
len += 2;
break;
case 3:
cksm += cpu_lduw_data_ra(env, src, ra) << 16;
cksm += cpu_ldub_data_ra(env, src + 2, ra) << 8;
len += 3;
break;
}
/* Fold the carry from the checksum. Note that we can see carry-out
during folding more than once (but probably not more than twice). */
while (cksm > 0xffffffffull) {
cksm = (uint32_t)cksm + (cksm >> 32);
}
/* Indicate whether or not we've processed everything. */
env->cc_op = (len == src_len ? 0 : 3);
/* Return both cksm and processed length. */
env->retxl = cksm;
return len;
}
void HELPER(pack)(CPUS390XState *env, uint32_t len, uint64_t dest, uint64_t src)
{
uintptr_t ra = GETPC();
int len_dest = len >> 4;
int len_src = len & 0xf;
uint8_t b;
dest += len_dest;
src += len_src;
/* last byte is special, it only flips the nibbles */
b = cpu_ldub_data_ra(env, src, ra);
cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
src--;
len_src--;
/* now pack every value */
while (len_dest >= 0) {
b = 0;
if (len_src > 0) {
b = cpu_ldub_data_ra(env, src, ra) & 0x0f;
src--;
len_src--;
}
if (len_src > 0) {
b |= cpu_ldub_data_ra(env, src, ra) << 4;
src--;
len_src--;
}
len_dest--;
dest--;
cpu_stb_data_ra(env, dest, b, ra);
}
}
void HELPER(unpk)(CPUS390XState *env, uint32_t len, uint64_t dest,
uint64_t src)
{
uintptr_t ra = GETPC();
int len_dest = len >> 4;
int len_src = len & 0xf;
uint8_t b;
int second_nibble = 0;
dest += len_dest;
src += len_src;
/* last byte is special, it only flips the nibbles */
b = cpu_ldub_data_ra(env, src, ra);
cpu_stb_data_ra(env, dest, (b << 4) | (b >> 4), ra);
src--;
len_src--;
/* now pad every nibble with 0xf0 */
while (len_dest > 0) {
uint8_t cur_byte = 0;
if (len_src > 0) {
cur_byte = cpu_ldub_data_ra(env, src, ra);
}
len_dest--;
dest--;
/* only advance one nibble at a time */
if (second_nibble) {
cur_byte >>= 4;
len_src--;
src--;
}
second_nibble = !second_nibble;
/* digit */
cur_byte = (cur_byte & 0xf);
/* zone bits */
cur_byte |= 0xf0;
cpu_stb_data_ra(env, dest, cur_byte, ra);
}
}
static uint32_t do_helper_tr(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans, uintptr_t ra)
{
uint32_t i;
for (i = 0; i <= len; i++) {
uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
uint8_t new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
cpu_stb_data_ra(env, array + i, new_byte, ra);
}
return env->cc_op;
}
void HELPER(tr)(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans)
{
do_helper_tr(env, len, array, trans, GETPC());
}
uint64_t HELPER(tre)(CPUS390XState *env, uint64_t array,
uint64_t len, uint64_t trans)
{
uintptr_t ra = GETPC();
uint8_t end = env->regs[0] & 0xff;
uint64_t l = len;
uint64_t i;
uint32_t cc = 0;
if (!(env->psw.mask & PSW_MASK_64)) {
array &= 0x7fffffff;
l = (uint32_t)l;
}
/* Lest we fail to service interrupts in a timely manner, limit the
amount of work we're willing to do. For now, let's cap at 8k. */
if (l > 0x2000) {
l = 0x2000;
cc = 3;
}
for (i = 0; i < l; i++) {
uint8_t byte, new_byte;
byte = cpu_ldub_data_ra(env, array + i, ra);
if (byte == end) {
cc = 1;
break;
}
new_byte = cpu_ldub_data_ra(env, trans + byte, ra);
cpu_stb_data_ra(env, array + i, new_byte, ra);
}
env->cc_op = cc;
env->retxl = len - i;
return array + i;
}
static uint32_t do_helper_trt(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans, uintptr_t ra)
{
uint32_t i;
for (i = 0; i <= len; i++) {
uint8_t byte = cpu_ldub_data_ra(env, array + i, ra);
uint8_t sbyte = cpu_ldub_data_ra(env, trans + byte, ra);
if (sbyte != 0) {
env->regs[1] = array + i;
env->regs[2] = deposit64(env->regs[2], 0, 8, sbyte);
return (i == len) ? 2 : 1;
}
}
return 0;
}
uint32_t HELPER(trt)(CPUS390XState *env, uint32_t len, uint64_t array,
uint64_t trans)
{
return do_helper_trt(env, len, array, trans, GETPC());
}
void HELPER(cdsg)(CPUS390XState *env, uint64_t addr,
uint32_t r1, uint32_t r3)
{
uintptr_t ra = GETPC();
Int128 cmpv = int128_make128(env->regs[r1 + 1], env->regs[r1]);
Int128 newv = int128_make128(env->regs[r3 + 1], env->regs[r3]);
Int128 oldv;
bool fail;
if (parallel_cpus) {
#ifndef CONFIG_ATOMIC128
cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
#else
int mem_idx = cpu_mmu_index(env, false);
TCGMemOpIdx oi = make_memop_idx(MO_TEQ | MO_ALIGN_16, mem_idx);
oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
fail = !int128_eq(oldv, cmpv);
#endif
} else {
uint64_t oldh, oldl;
oldh = cpu_ldq_data_ra(env, addr + 0, ra);
oldl = cpu_ldq_data_ra(env, addr + 8, ra);
oldv = int128_make128(oldl, oldh);
fail = !int128_eq(oldv, cmpv);
if (fail) {
newv = oldv;
}
cpu_stq_data_ra(env, addr + 0, int128_gethi(newv), ra);
cpu_stq_data_ra(env, addr + 8, int128_getlo(newv), ra);
}
env->cc_op = fail;
env->regs[r1] = int128_gethi(oldv);
env->regs[r1 + 1] = int128_getlo(oldv);
}
#if !defined(CONFIG_USER_ONLY)
void HELPER(lctlg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
S390CPU *cpu = s390_env_get_cpu(env);
bool PERchanged = false;
uint64_t src = a2;
uint32_t i;
for (i = r1;; i = (i + 1) % 16) {
uint64_t val = cpu_ldq_data_ra(env, src, ra);
if (env->cregs[i] != val && i >= 9 && i <= 11) {
PERchanged = true;
}
env->cregs[i] = val;
HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%" PRIx64 "\n",
i, src, val);
src += sizeof(uint64_t);
if (i == r3) {
break;
}
}
if (PERchanged && env->psw.mask & PSW_MASK_PER) {
s390_cpu_recompute_watchpoints(CPU(cpu));
}
tlb_flush(CPU(cpu));
}
void HELPER(lctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
S390CPU *cpu = s390_env_get_cpu(env);
bool PERchanged = false;
uint64_t src = a2;
uint32_t i;
for (i = r1;; i = (i + 1) % 16) {
uint32_t val = cpu_ldl_data_ra(env, src, ra);
if ((uint32_t)env->cregs[i] != val && i >= 9 && i <= 11) {
PERchanged = true;
}
env->cregs[i] = deposit64(env->cregs[i], 0, 32, val);
HELPER_LOG("load ctl %d from 0x%" PRIx64 " == 0x%x\n", i, src, val);
src += sizeof(uint32_t);
if (i == r3) {
break;
}
}
if (PERchanged && env->psw.mask & PSW_MASK_PER) {
s390_cpu_recompute_watchpoints(CPU(cpu));
}
tlb_flush(CPU(cpu));
}
void HELPER(stctg)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t dest = a2;
uint32_t i;
for (i = r1;; i = (i + 1) % 16) {
cpu_stq_data_ra(env, dest, env->cregs[i], ra);
dest += sizeof(uint64_t);
if (i == r3) {
break;
}
}
}
void HELPER(stctl)(CPUS390XState *env, uint32_t r1, uint64_t a2, uint32_t r3)
{
uintptr_t ra = GETPC();
uint64_t dest = a2;
uint32_t i;
for (i = r1;; i = (i + 1) % 16) {
cpu_stl_data_ra(env, dest, env->cregs[i], ra);
dest += sizeof(uint32_t);
if (i == r3) {
break;
}
}
}
uint32_t HELPER(testblock)(CPUS390XState *env, uint64_t real_addr)
{
uintptr_t ra = GETPC();
CPUState *cs = CPU(s390_env_get_cpu(env));
uint64_t abs_addr;
int i;
real_addr = fix_address(env, real_addr);
abs_addr = mmu_real2abs(env, real_addr) & TARGET_PAGE_MASK;
if (!address_space_access_valid(&address_space_memory, abs_addr,
TARGET_PAGE_SIZE, true)) {
cpu_restore_state(cs, ra);
program_interrupt(env, PGM_ADDRESSING, 4);
return 1;
}
/* Check low-address protection */
if ((env->cregs[0] & CR0_LOWPROT) && real_addr < 0x2000) {
cpu_restore_state(cs, ra);
program_interrupt(env, PGM_PROTECTION, 4);
return 1;
}
for (i = 0; i < TARGET_PAGE_SIZE; i += 8) {
stq_phys(cs->as, abs_addr + i, 0);
}
return 0;
}
uint32_t HELPER(tprot)(uint64_t a1, uint64_t a2)
{
/* XXX implement */
return 0;
}
/* insert storage key extended */
uint64_t HELPER(iske)(CPUS390XState *env, uint64_t r2)
{
static S390SKeysState *ss;
static S390SKeysClass *skeyclass;
uint64_t addr = get_address(env, 0, 0, r2);
uint8_t key;
if (addr > ram_size) {
return 0;
}
if (unlikely(!ss)) {
ss = s390_get_skeys_device();
skeyclass = S390_SKEYS_GET_CLASS(ss);
}
if (skeyclass->get_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key)) {
return 0;
}
return key;
}
/* set storage key extended */
void HELPER(sske)(CPUS390XState *env, uint64_t r1, uint64_t r2)
{
static S390SKeysState *ss;
static S390SKeysClass *skeyclass;
uint64_t addr = get_address(env, 0, 0, r2);
uint8_t key;
if (addr > ram_size) {
return;
}
if (unlikely(!ss)) {
ss = s390_get_skeys_device();
skeyclass = S390_SKEYS_GET_CLASS(ss);
}
key = (uint8_t) r1;
skeyclass->set_skeys(ss, addr / TARGET_PAGE_SIZE, 1, &key);
}
/* reset reference bit extended */
uint32_t HELPER(rrbe)(CPUS390XState *env, uint64_t r2)
{
static S390SKeysState *ss;
static S390SKeysClass *skeyclass;
uint8_t re, key;
if (r2 > ram_size) {
return 0;
}
if (unlikely(!ss)) {
ss = s390_get_skeys_device();
skeyclass = S390_SKEYS_GET_CLASS(ss);
}
if (skeyclass->get_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
return 0;
}
re = key & (SK_R | SK_C);
key &= ~SK_R;
if (skeyclass->set_skeys(ss, r2 / TARGET_PAGE_SIZE, 1, &key)) {
return 0;
}
/*
* cc
*
* 0 Reference bit zero; change bit zero
* 1 Reference bit zero; change bit one
* 2 Reference bit one; change bit zero
* 3 Reference bit one; change bit one
*/
return re >> 1;
}
uint32_t HELPER(mvcs)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
{
uintptr_t ra = GETPC();
int cc = 0, i;
HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
__func__, l, a1, a2);
if (l > 256) {
/* max 256 */
l = 256;
cc = 3;
}
/* XXX replace w/ memcpy */
for (i = 0; i < l; i++) {
uint8_t x = cpu_ldub_primary_ra(env, a2 + i, ra);
cpu_stb_secondary_ra(env, a1 + i, x, ra);
}
return cc;
}
uint32_t HELPER(mvcp)(CPUS390XState *env, uint64_t l, uint64_t a1, uint64_t a2)
{
uintptr_t ra = GETPC();
int cc = 0, i;
HELPER_LOG("%s: %16" PRIx64 " %16" PRIx64 " %16" PRIx64 "\n",
__func__, l, a1, a2);
if (l > 256) {
/* max 256 */
l = 256;
cc = 3;
}
/* XXX replace w/ memcpy */
for (i = 0; i < l; i++) {
uint8_t x = cpu_ldub_secondary_ra(env, a2 + i, ra);
cpu_stb_primary_ra(env, a1 + i, x, ra);
}
return cc;
}
/* invalidate pte */
void HELPER(ipte)(CPUS390XState *env, uint64_t pto, uint64_t vaddr,
uint32_t m4)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
uint64_t page = vaddr & TARGET_PAGE_MASK;
uint64_t pte_addr, pte;
/* Compute the page table entry address */
pte_addr = (pto & _SEGMENT_ENTRY_ORIGIN);
pte_addr += (vaddr & VADDR_PX) >> 9;
/* Mark the page table entry as invalid */
pte = ldq_phys(cs->as, pte_addr);
pte |= _PAGE_INVALID;
stq_phys(cs->as, pte_addr, pte);
/* XXX we exploit the fact that Linux passes the exact virtual
address here - it's not obliged to! */
/* XXX: the LC bit should be considered as 0 if the local-TLB-clearing
facility is not installed. */
if (m4 & 1) {
tlb_flush_page(cs, page);
} else {
tlb_flush_page_all_cpus_synced(cs, page);
}
/* XXX 31-bit hack */
if (m4 & 1) {
tlb_flush_page(cs, page ^ 0x80000000);
} else {
tlb_flush_page_all_cpus_synced(cs, page ^ 0x80000000);
}
}
/* flush local tlb */
void HELPER(ptlb)(CPUS390XState *env)
{
S390CPU *cpu = s390_env_get_cpu(env);
tlb_flush(CPU(cpu));
}
/* flush global tlb */
void HELPER(purge)(CPUS390XState *env)
{
S390CPU *cpu = s390_env_get_cpu(env);
tlb_flush_all_cpus_synced(CPU(cpu));
}
/* load using real address */
uint64_t HELPER(lura)(CPUS390XState *env, uint64_t addr)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
return (uint32_t)ldl_phys(cs->as, get_address(env, 0, 0, addr));
}
uint64_t HELPER(lurag)(CPUS390XState *env, uint64_t addr)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
return ldq_phys(cs->as, get_address(env, 0, 0, addr));
}
/* store using real address */
void HELPER(stura)(CPUS390XState *env, uint64_t addr, uint64_t v1)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
stl_phys(cs->as, get_address(env, 0, 0, addr), (uint32_t)v1);
if ((env->psw.mask & PSW_MASK_PER) &&
(env->cregs[9] & PER_CR9_EVENT_STORE) &&
(env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
/* PSW is saved just before calling the helper. */
env->per_address = env->psw.addr;
env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
}
}
void HELPER(sturg)(CPUS390XState *env, uint64_t addr, uint64_t v1)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
stq_phys(cs->as, get_address(env, 0, 0, addr), v1);
if ((env->psw.mask & PSW_MASK_PER) &&
(env->cregs[9] & PER_CR9_EVENT_STORE) &&
(env->cregs[9] & PER_CR9_EVENT_STORE_REAL)) {
/* PSW is saved just before calling the helper. */
env->per_address = env->psw.addr;
env->per_perc_atmid = PER_CODE_EVENT_STORE_REAL | get_per_atmid(env);
}
}
/* load real address */
uint64_t HELPER(lra)(CPUS390XState *env, uint64_t addr)
{
CPUState *cs = CPU(s390_env_get_cpu(env));
uint32_t cc = 0;
uint64_t asc = env->psw.mask & PSW_MASK_ASC;
uint64_t ret;
int old_exc, flags;
/* XXX incomplete - has more corner cases */
if (!(env->psw.mask & PSW_MASK_64) && (addr >> 32)) {
cpu_restore_state(cs, GETPC());
program_interrupt(env, PGM_SPECIAL_OP, 2);
}
old_exc = cs->exception_index;
if (mmu_translate(env, addr, 0, asc, &ret, &flags, true)) {
cc = 3;
}
if (cs->exception_index == EXCP_PGM) {
ret = env->int_pgm_code | 0x80000000;
} else {
ret |= addr & ~TARGET_PAGE_MASK;
}
cs->exception_index = old_exc;
env->cc_op = cc;
return ret;
}
#endif
/* Execute instruction. This instruction executes an insn modified with
the contents of r1. It does not change the executed instruction in memory;
it does not change the program counter.
Perform this by recording the modified instruction in env->ex_value.
This will be noticed by cpu_get_tb_cpu_state and thus tb translation.
*/
void HELPER(ex)(CPUS390XState *env, uint32_t ilen, uint64_t r1, uint64_t addr)
{
uint64_t insn = cpu_lduw_code(env, addr);
uint8_t opc = insn >> 8;
/* Or in the contents of R1[56:63]. */
insn |= r1 & 0xff;
/* Load the rest of the instruction. */
insn <<= 48;
switch (get_ilen(opc)) {
case 2:
break;
case 4:
insn |= (uint64_t)cpu_lduw_code(env, addr + 2) << 32;
break;
case 6:
insn |= (uint64_t)(uint32_t)cpu_ldl_code(env, addr + 2) << 16;
break;
default:
g_assert_not_reached();
}
/* The very most common cases can be sped up by avoiding a new TB. */
if ((opc & 0xf0) == 0xd0) {
typedef uint32_t (*dx_helper)(CPUS390XState *, uint32_t, uint64_t,
uint64_t, uintptr_t);
static const dx_helper dx[16] = {
[0x2] = do_helper_mvc,
[0x4] = do_helper_nc,
[0x5] = do_helper_clc,
[0x6] = do_helper_oc,
[0x7] = do_helper_xc,
[0xc] = do_helper_tr,
[0xd] = do_helper_trt,
};
dx_helper helper = dx[opc & 0xf];
if (helper) {
uint32_t l = extract64(insn, 48, 8);
uint32_t b1 = extract64(insn, 44, 4);
uint32_t d1 = extract64(insn, 32, 12);
uint32_t b2 = extract64(insn, 28, 4);
uint32_t d2 = extract64(insn, 16, 12);
uint64_t a1 = get_address(env, 0, b1, d1);
uint64_t a2 = get_address(env, 0, b2, d2);
env->cc_op = helper(env, l, a1, a2, 0);
env->psw.addr += ilen;
return;
}
} else if (opc == 0x0a) {
env->int_svc_code = extract64(insn, 48, 8);
env->int_svc_ilen = ilen;
helper_exception(env, EXCP_SVC);
g_assert_not_reached();
}
/* Record the insn we want to execute as well as the ilen to use
during the execution of the target insn. This will also ensure
that ex_value is non-zero, which flags that we are in a state
that requires such execution. */
env->ex_value = insn | ilen;
}