qemu-e2k/hw/m68k/next-cube.c
Thomas Huth cd4fc14207 hw/m68k/next-cube: Avoid static RTC variables and introduce control register
Coverity currently complains that the "if (0x00 & (0x80 >> (phase - 8))"
in next-cube.c can never be true. Right it is. The "0x00" is meant as value
of the control register of the RTC, which is currently not implemented yet.
Thus, let's add a register variable for this now. However, the RTC
registers are currently defined as static variables in nextscr2_write(),
which is quite ugly. Thus let's also move the RTC variables to the main
machine state instead. In the long run, we should likely even refactor
the whole RTC code into a separate device in a separate file, but that's
something for calm winter nights later... as a first step, cleaning up
the static variables and shutting up the warning from Coverity should
be sufficient.

Reviewed-by: Richard Henderson <richard.henderson@linaro.org>
Message-Id: <20190921091738.26953-1-huth@tuxfamily.org>
Signed-off-by: Thomas Huth <huth@tuxfamily.org>
2019-10-01 11:42:27 +02:00

986 lines
27 KiB
C

/*
* NeXT Cube System Driver
*
* Copyright (c) 2011 Bryce Lanham
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License,
* or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/hwaddr.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "sysemu/qtest.h"
#include "hw/irq.h"
#include "hw/m68k/next-cube.h"
#include "hw/boards.h"
#include "hw/loader.h"
#include "hw/scsi/esp.h"
#include "hw/sysbus.h"
#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
#include "hw/block/fdc.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "ui/console.h"
#include "target/m68k/cpu.h"
/* #define DEBUG_NEXT */
#ifdef DEBUG_NEXT
#define DPRINTF(fmt, ...) \
do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) do { } while (0)
#endif
#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
#define NEXT_MACHINE(obj) OBJECT_CHECK(NeXTState, (obj), TYPE_NEXT_MACHINE)
#define ENTRY 0x0100001e
#define RAM_SIZE 0x4000000
#define ROM_FILE "Rev_2.5_v66.bin"
typedef struct next_dma {
uint32_t csr;
uint32_t saved_next;
uint32_t saved_limit;
uint32_t saved_start;
uint32_t saved_stop;
uint32_t next;
uint32_t limit;
uint32_t start;
uint32_t stop;
uint32_t next_initbuf;
uint32_t size;
} next_dma;
typedef struct NextRtc {
uint8_t ram[32];
uint8_t command;
uint8_t value;
uint8_t status;
uint8_t control;
uint8_t retval;
} NextRtc;
typedef struct {
MachineState parent;
uint32_t int_mask;
uint32_t int_status;
uint8_t scsi_csr_1;
uint8_t scsi_csr_2;
next_dma dma[10];
qemu_irq *scsi_irq;
qemu_irq scsi_dma;
qemu_irq scsi_reset;
qemu_irq *fd_irq;
uint32_t scr1;
uint32_t scr2;
NextRtc rtc;
} NeXTState;
/* Thanks to NeXT forums for this */
/*
static const uint8_t rtc_ram3[32] = {
0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
};
*/
static const uint8_t rtc_ram2[32] = {
0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
};
#define SCR2_RTCLK 0x2
#define SCR2_RTDATA 0x4
#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
static void nextscr2_write(NeXTState *s, uint32_t val, int size)
{
static int led;
static int phase;
static uint8_t old_scr2;
uint8_t scr2_2;
NextRtc *rtc = &s->rtc;
if (size == 4) {
scr2_2 = (val >> 8) & 0xFF;
} else {
scr2_2 = val & 0xFF;
}
if (val & 0x1) {
DPRINTF("fault!\n");
led++;
if (led == 10) {
DPRINTF("LED flashing, possible fault!\n");
led = 0;
}
}
if (scr2_2 & 0x1) {
/* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
if (phase == -1) {
phase = 0;
}
/* If we are in going down clock... do something */
if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
((scr2_2 & SCR2_RTCLK) == 0)) {
if (phase < 8) {
rtc->command = (rtc->command << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
if (phase >= 8 && phase < 16) {
rtc->value = (rtc->value << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
/* if we read RAM register, output RT_DATA bit */
if (rtc->command <= 0x1F) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
if (rtc->ram[rtc->command] & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
/* read the status 0x30 */
if (rtc->command == 0x30) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now status = 0x98 (new rtc + FTU) */
if (rtc->status & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
/* read the status 0x31 */
if (rtc->command == 0x31) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
if (rtc->control & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
if ((rtc->command >= 0x20) && (rtc->command <= 0x2F)) {
scr2_2 = scr2_2 & (~SCR2_RTDATA);
/* for now 0x00 */
time_t time_h = time(NULL);
struct tm *info = localtime(&time_h);
int ret = 0;
switch (rtc->command) {
case 0x20:
ret = SCR2_TOBCD(info->tm_sec);
break;
case 0x21:
ret = SCR2_TOBCD(info->tm_min);
break;
case 0x22:
ret = SCR2_TOBCD(info->tm_hour);
break;
case 0x24:
ret = SCR2_TOBCD(info->tm_mday);
break;
case 0x25:
ret = SCR2_TOBCD((info->tm_mon + 1));
break;
case 0x26:
ret = SCR2_TOBCD((info->tm_year - 100));
break;
}
if (ret & (0x80 >> (phase - 8))) {
scr2_2 |= SCR2_RTDATA;
}
rtc->retval = (rtc->retval << 1) |
((scr2_2 & SCR2_RTDATA) ? 1 : 0);
}
}
phase++;
if (phase == 16) {
if (rtc->command >= 0x80 && rtc->command <= 0x9F) {
rtc->ram[rtc->command - 0x80] = rtc->value;
}
/* write to x30 register */
if (rtc->command == 0xB1) {
/* clear FTU */
if (rtc->value & 0x04) {
rtc->status = rtc->status & (~0x18);
s->int_status = s->int_status & (~0x04);
}
}
}
}
} else {
/* else end or abort */
phase = -1;
rtc->command = 0;
rtc->value = 0;
}
s->scr2 = val & 0xFFFF00FF;
s->scr2 |= scr2_2 << 8;
old_scr2 = scr2_2;
}
static uint32_t mmio_readb(NeXTState *s, hwaddr addr)
{
switch (addr) {
case 0xc000:
return (s->scr1 >> 24) & 0xFF;
case 0xc001:
return (s->scr1 >> 16) & 0xFF;
case 0xc002:
return (s->scr1 >> 8) & 0xFF;
case 0xc003:
return (s->scr1 >> 0) & 0xFF;
case 0xd000:
return (s->scr2 >> 24) & 0xFF;
case 0xd001:
return (s->scr2 >> 16) & 0xFF;
case 0xd002:
return (s->scr2 >> 8) & 0xFF;
case 0xd003:
return (s->scr2 >> 0) & 0xFF;
case 0x14020:
DPRINTF("MMIO Read 0x4020\n");
return 0x7f;
default:
DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readw(NeXTState *s, hwaddr addr)
{
switch (addr) {
default:
DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static uint32_t mmio_readl(NeXTState *s, hwaddr addr)
{
switch (addr) {
case 0x7000:
/* DPRINTF("Read INT status: %x\n", s->int_status); */
return s->int_status;
case 0x7800:
DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
return s->int_mask;
case 0xc000:
return s->scr1;
case 0xd000:
return s->scr2;
default:
DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
return 0x0;
}
}
static void mmio_writeb(NeXTState *s, hwaddr addr, uint32_t val)
{
switch (addr) {
case 0xd003:
nextscr2_write(s, val, 1);
break;
default:
DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
}
}
static void mmio_writew(NeXTState *s, hwaddr addr, uint32_t val)
{
DPRINTF("MMIO Write W\n");
}
static void mmio_writel(NeXTState *s, hwaddr addr, uint32_t val)
{
switch (addr) {
case 0x7000:
DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
s->int_status = val;
break;
case 0x7800:
DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
s->int_mask = val;
break;
case 0xc000:
DPRINTF("SCR1 Write: %x\n", val);
break;
case 0xd000:
nextscr2_write(s, val, 4);
break;
default:
DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
}
}
static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
return mmio_readb(ns, addr);
case 2:
return mmio_readw(ns, addr);
case 4:
return mmio_readl(ns, addr);
default:
g_assert_not_reached();
}
}
static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
mmio_writeb(ns, addr, value);
break;
case 2:
mmio_writew(ns, addr, value);
break;
case 4:
mmio_writel(ns, addr, value);
break;
default:
g_assert_not_reached();
}
}
static const MemoryRegionOps mmio_ops = {
.read = mmio_readfn,
.write = mmio_writefn,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static uint32_t scr_readb(NeXTState *s, hwaddr addr)
{
switch (addr) {
case 0x14108:
DPRINTF("FD read @ %x\n", (unsigned int)addr);
return 0x40 | 0x04 | 0x2 | 0x1;
case 0x14020:
DPRINTF("SCSI 4020 STATUS READ %X\n", s->scsi_csr_1);
return s->scsi_csr_1;
case 0x14021:
DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
return 0x40;
/*
* These 4 registers are the hardware timer, not sure which register
* is the latch instead of data, but no problems so far
*/
case 0x1a000:
return 0xff & (clock() >> 24);
case 0x1a001:
return 0xff & (clock() >> 16);
case 0x1a002:
return 0xff & (clock() >> 8);
case 0x1a003:
/* Hack: We need to have this change consistently to make it work */
return 0xFF & clock();
default:
DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
return 0;
}
}
static uint32_t scr_readw(NeXTState *s, hwaddr addr)
{
DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
return 0;
}
static uint32_t scr_readl(NeXTState *s, hwaddr addr)
{
DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
return 0;
}
#define SCSICSR_ENABLE 0x01
#define SCSICSR_RESET 0x02 /* reset scsi dma */
#define SCSICSR_FIFOFL 0x04
#define SCSICSR_DMADIR 0x08 /* if set, scsi to mem */
#define SCSICSR_CPUDMA 0x10 /* if set, dma enabled */
#define SCSICSR_INTMASK 0x20 /* if set, interrupt enabled */
static void scr_writeb(NeXTState *s, hwaddr addr, uint32_t value)
{
switch (addr) {
case 0x14108:
DPRINTF("FDCSR Write: %x\n", value);
if (value == 0x0) {
/* qemu_irq_raise(s->fd_irq[0]); */
}
break;
case 0x14020: /* SCSI Control Register */
if (value & SCSICSR_FIFOFL) {
DPRINTF("SCSICSR FIFO Flush\n");
/* will have to add another irq to the esp if this is needed */
/* esp_puflush_fifo(esp_g); */
/* qemu_irq_pulse(s->scsi_dma); */
}
if (value & SCSICSR_ENABLE) {
DPRINTF("SCSICSR Enable\n");
/*
* qemu_irq_raise(s->scsi_dma);
* s->scsi_csr_1 = 0xc0;
* s->scsi_csr_1 |= 0x1;
* qemu_irq_pulse(s->scsi_dma);
*/
}
/*
* else
* s->scsi_csr_1 &= ~SCSICSR_ENABLE;
*/
if (value & SCSICSR_RESET) {
DPRINTF("SCSICSR Reset\n");
/* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
/* qemu_irq_raise(s->scsi_reset); */
/* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */
}
if (value & SCSICSR_DMADIR) {
DPRINTF("SCSICSR DMAdir\n");
}
if (value & SCSICSR_CPUDMA) {
DPRINTF("SCSICSR CPUDMA\n");
/* qemu_irq_raise(s->scsi_dma); */
s->int_status |= 0x4000000;
} else {
s->int_status &= ~(0x4000000);
}
if (value & SCSICSR_INTMASK) {
DPRINTF("SCSICSR INTMASK\n");
/*
* int_mask &= ~0x1000;
* s->scsi_csr_1 |= value;
* s->scsi_csr_1 &= ~SCSICSR_INTMASK;
* if (s->scsi_queued) {
* s->scsi_queued = 0;
* next_irq(s, NEXT_SCSI_I, level);
* }
*/
} else {
/* int_mask |= 0x1000; */
}
if (value & 0x80) {
/* int_mask |= 0x1000; */
/* s->scsi_csr_1 |= 0x80; */
}
DPRINTF("SCSICSR Write: %x\n", value);
/* s->scsi_csr_1 = value; */
return;
/* Hardware timer latch - not implemented yet */
case 0x1a000:
default:
DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
}
}
static void scr_writew(NeXTState *s, hwaddr addr, uint32_t value)
{
DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
}
static void scr_writel(NeXTState *s, hwaddr addr, uint32_t value)
{
DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
}
static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
return scr_readb(ns, addr);
case 2:
return scr_readw(ns, addr);
case 4:
return scr_readl(ns, addr);
default:
g_assert_not_reached();
}
}
static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
unsigned size)
{
NeXTState *ns = NEXT_MACHINE(opaque);
switch (size) {
case 1:
scr_writeb(ns, addr, value);
break;
case 2:
scr_writew(ns, addr, value);
break;
case 4:
scr_writel(ns, addr, value);
break;
default:
g_assert_not_reached();
}
}
static const MemoryRegionOps scr_ops = {
.read = scr_readfn,
.write = scr_writefn,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
#define NEXTDMA_SCSI(x) (0x10 + x)
#define NEXTDMA_FD(x) (0x10 + x)
#define NEXTDMA_ENTX(x) (0x110 + x)
#define NEXTDMA_ENRX(x) (0x150 + x)
#define NEXTDMA_CSR 0x0
#define NEXTDMA_NEXT 0x4000
#define NEXTDMA_LIMIT 0x4004
#define NEXTDMA_START 0x4008
#define NEXTDMA_STOP 0x400c
#define NEXTDMA_NEXT_INIT 0x4200
#define NEXTDMA_SIZE 0x4204
static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_ENRX(NEXTDMA_CSR):
if (value & DMA_DEV2M) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
}
if (value & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
}
if (value & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
}
if (value & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
}
if (value & DMA_RESET) {
next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
break;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_ENRX].next = value;
break;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_ENRX].limit = value;
break;
case NEXTDMA_SCSI(NEXTDMA_CSR):
if (value & DMA_DEV2M) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
}
if (value & DMA_SETENABLE) {
/* DPRINTF("SCSI DMA ENABLE\n"); */
next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
}
if (value & DMA_SETSUPDATE) {
next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
}
if (value & DMA_CLRCOMPLETE) {
next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
}
if (value & DMA_RESET) {
next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
DMA_ENABLE | DMA_DEV2M);
/* DPRINTF("SCSI DMA RESET\n"); */
}
/* DPRINTF("RXCSR \tWrite: %x\n",value); */
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
next_state->dma[NEXTDMA_SCSI].next = value;
break;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
next_state->dma[NEXTDMA_SCSI].limit = value;
break;
case NEXTDMA_SCSI(NEXTDMA_START):
next_state->dma[NEXTDMA_SCSI].start = value;
break;
case NEXTDMA_SCSI(NEXTDMA_STOP):
next_state->dma[NEXTDMA_SCSI].stop = value;
break;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
break;
default:
DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
}
}
static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
{
NeXTState *next_state = NEXT_MACHINE(opaque);
switch (addr) {
case NEXTDMA_SCSI(NEXTDMA_CSR):
DPRINTF("SCSI DMA CSR READ\n");
return next_state->dma[NEXTDMA_SCSI].csr;
case NEXTDMA_ENRX(NEXTDMA_CSR):
return next_state->dma[NEXTDMA_ENRX].csr;
case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
return next_state->dma[NEXTDMA_ENRX].next_initbuf;
case NEXTDMA_ENRX(NEXTDMA_NEXT):
return next_state->dma[NEXTDMA_ENRX].next;
case NEXTDMA_ENRX(NEXTDMA_LIMIT):
return next_state->dma[NEXTDMA_ENRX].limit;
case NEXTDMA_SCSI(NEXTDMA_NEXT):
return next_state->dma[NEXTDMA_SCSI].next;
case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
return next_state->dma[NEXTDMA_SCSI].next_initbuf;
case NEXTDMA_SCSI(NEXTDMA_LIMIT):
return next_state->dma[NEXTDMA_SCSI].limit;
case NEXTDMA_SCSI(NEXTDMA_START):
return next_state->dma[NEXTDMA_SCSI].start;
case NEXTDMA_SCSI(NEXTDMA_STOP):
return next_state->dma[NEXTDMA_SCSI].stop;
default:
DPRINTF("DMA read @ %x\n", (unsigned int)addr);
return 0;
}
/*
* once the csr's are done, subtract 0x3FEC from the addr, and that will
* normalize the upper registers
*/
}
static const MemoryRegionOps dma_ops = {
.read = dma_readl,
.write = dma_writel,
.impl.min_access_size = 4,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
/*
* TODO: set the shift numbers as values in the enum, so the first switch
* will not be needed
*/
void next_irq(void *opaque, int number, int level)
{
M68kCPU *cpu = opaque;
int shift = 0;
NeXTState *ns = NEXT_MACHINE(qdev_get_machine());
/* first switch sets interupt status */
/* DPRINTF("IRQ %i\n",number); */
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
shift = 7;;
break;
case NEXT_KBD_I:
shift = 3;
break;
case NEXT_PWR_I:
shift = 2;
break;
case NEXT_ENRX_I:
shift = 9;
break;
case NEXT_ENTX_I:
shift = 10;
break;
case NEXT_SCSI_I:
shift = 12;
break;
case NEXT_CLK_I:
shift = 5;
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
shift = 17;
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
shift = 28;
break;
case NEXT_ENRX_DMA_I:
shift = 27;
break;
case NEXT_SCSI_DMA_I:
shift = 26;
break;
case NEXT_SND_I:
shift = 23;
break;
case NEXT_SCC_DMA_I:
shift = 21;
break;
}
/*
* this HAS to be wrong, the interrupt handlers in mach and together
* int_status and int_mask and return if there is a hit
*/
if (ns->int_mask & (1 << shift)) {
DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
/* return; */
}
/* second switch triggers the correct interrupt */
if (level) {
ns->int_status |= 1 << shift;
switch (number) {
/* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
case NEXT_FD_I:
case NEXT_KBD_I:
case NEXT_PWR_I:
case NEXT_ENRX_I:
case NEXT_ENTX_I:
case NEXT_SCSI_I:
case NEXT_CLK_I:
m68k_set_irq_level(cpu, 3, 27);
break;
/* level 5 - scc (serial) */
case NEXT_SCC_I:
m68k_set_irq_level(cpu, 5, 29);
break;
/* level 6 - audio etherrx/tx dma */
case NEXT_ENTX_DMA_I:
case NEXT_ENRX_DMA_I:
case NEXT_SCSI_DMA_I:
case NEXT_SND_I:
case NEXT_SCC_DMA_I:
m68k_set_irq_level(cpu, 6, 30);
break;
}
} else {
ns->int_status &= ~(1 << shift);
cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
}
}
static void next_serial_irq(void *opaque, int n, int level)
{
/* DPRINTF("SCC IRQ NUM %i\n",n); */
if (n) {
next_irq(opaque, NEXT_SCC_DMA_I, level);
} else {
next_irq(opaque, NEXT_SCC_I, level);
}
}
static void next_escc_init(M68kCPU *cpu)
{
qemu_irq *ser_irq = qemu_allocate_irqs(next_serial_irq, cpu, 2);
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, TYPE_ESCC);
qdev_prop_set_uint32(dev, "disabled", 0);
qdev_prop_set_uint32(dev, "frequency", 9600 * 384);
qdev_prop_set_uint32(dev, "it_shift", 0);
qdev_prop_set_bit(dev, "bit_swap", true);
qdev_prop_set_chr(dev, "chrB", serial_hd(1));
qdev_prop_set_chr(dev, "chrA", serial_hd(0));
qdev_prop_set_uint32(dev, "chnBtype", escc_serial);
qdev_prop_set_uint32(dev, "chnAtype", escc_serial);
qdev_init_nofail(dev);
s = SYS_BUS_DEVICE(dev);
sysbus_connect_irq(s, 0, ser_irq[0]);
sysbus_connect_irq(s, 1, ser_irq[1]);
sysbus_mmio_map(s, 0, 0x2118000);
}
static void next_cube_init(MachineState *machine)
{
M68kCPU *cpu;
CPUM68KState *env;
MemoryRegion *ram = g_new(MemoryRegion, 1);
MemoryRegion *rom = g_new(MemoryRegion, 1);
MemoryRegion *mmiomem = g_new(MemoryRegion, 1);
MemoryRegion *scrmem = g_new(MemoryRegion, 1);
MemoryRegion *dmamem = g_new(MemoryRegion, 1);
MemoryRegion *bmapm1 = g_new(MemoryRegion, 1);
MemoryRegion *bmapm2 = g_new(MemoryRegion, 1);
MemoryRegion *sysmem = get_system_memory();
NeXTState *ns = NEXT_MACHINE(machine);
DeviceState *dev;
/* Initialize the cpu core */
cpu = M68K_CPU(cpu_create(machine->cpu_type));
if (!cpu) {
error_report("Unable to find m68k CPU definition");
exit(1);
}
env = &cpu->env;
/* Initialize CPU registers. */
env->vbr = 0;
env->sr = 0x2700;
/* Set internal registers to initial values */
/* 0x0000XX00 << vital bits */
ns->scr1 = 0x00011102;
ns->scr2 = 0x00ff0c80;
ns->rtc.status = 0x90;
/* Load RTC RAM - TODO: provide possibility to load contents from file */
memcpy(ns->rtc.ram, rtc_ram2, 32);
/* 64MB RAM starting at 0x04000000 */
memory_region_allocate_system_memory(ram, NULL, "next.ram", ram_size);
memory_region_add_subregion(sysmem, 0x04000000, ram);
/* Framebuffer */
dev = qdev_create(NULL, TYPE_NEXTFB);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0B000000);
/* MMIO */
memory_region_init_io(mmiomem, NULL, &mmio_ops, machine, "next.mmio",
0xD0000);
memory_region_add_subregion(sysmem, 0x02000000, mmiomem);
/* BMAP memory */
memory_region_init_ram_shared_nomigrate(bmapm1, NULL, "next.bmapmem", 64,
true, &error_fatal);
memory_region_add_subregion(sysmem, 0x020c0000, bmapm1);
/* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64);
memory_region_add_subregion(sysmem, 0x820c0000, bmapm2);
/* BMAP IO - acts as a catch-all for now */
memory_region_init_io(scrmem, NULL, &scr_ops, machine, "next.scr",
0x20000);
memory_region_add_subregion(sysmem, 0x02100000, scrmem);
/* KBD */
dev = qdev_create(NULL, TYPE_NEXTKBD);
qdev_init_nofail(dev);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0200e000);
/* Load ROM here */
if (bios_name == NULL) {
bios_name = ROM_FILE;
}
/* still not sure if the rom should also be mapped at 0x0*/
memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal);
memory_region_add_subregion(sysmem, 0x01000000, rom);
if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
if (!qtest_enabled()) {
error_report("Failed to load firmware '%s'.", bios_name);
}
} else {
uint8_t *ptr;
/* Initial PC is always at offset 4 in firmware binaries */
ptr = rom_ptr(0x01000004, 4);
g_assert(ptr != NULL);
env->pc = ldl_p(ptr);
if (env->pc >= 0x01020000) {
error_report("'%s' does not seem to be a valid firmware image.",
bios_name);
exit(1);
}
}
/* Serial */
next_escc_init(cpu);
/* TODO: */
/* Network */
/* SCSI */
/* DMA */
memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000);
memory_region_add_subregion(sysmem, 0x02000000, dmamem);
}
static void next_machine_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->desc = "NeXT Cube";
mc->init = next_cube_init;
mc->default_ram_size = RAM_SIZE;
mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
}
static const TypeInfo next_typeinfo = {
.name = TYPE_NEXT_MACHINE,
.parent = TYPE_MACHINE,
.class_init = next_machine_class_init,
.instance_size = sizeof(NeXTState),
};
static void next_register_type(void)
{
type_register_static(&next_typeinfo);
}
type_init(next_register_type)