qemu-e2k/hw/dma/xilinx_axidma.c
Peter Maydell 21e5181f95 qdev: Drop taddr properties
Drop all the infrastructure for taddr properties (ie ones which
are 'hwaddr' sized). These are now unused, and any further desired
use would be rather questionable since device properties shouldn't
generally depend on a type that is conceptually variable based on
the target CPU. 32 or 64 bit integer properties should be used instead
as appropriate for the specific device.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Blue Swirl <blauwirbel@gmail.com>
2013-04-20 17:54:52 +00:00

668 lines
18 KiB
C

/*
* QEMU model of Xilinx AXI-DMA block.
*
* Copyright (c) 2011 Edgar E. Iglesias.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw/sysbus.h"
#include "qemu/timer.h"
#include "hw/ptimer.h"
#include "qemu/log.h"
#include "qapi/qmp/qerror.h"
#include "hw/stream.h"
#define D(x)
#define TYPE_XILINX_AXI_DMA "xlnx.axi-dma"
#define TYPE_XILINX_AXI_DMA_DATA_STREAM "xilinx-axi-dma-data-stream"
#define TYPE_XILINX_AXI_DMA_CONTROL_STREAM "xilinx-axi-dma-control-stream"
#define XILINX_AXI_DMA(obj) \
OBJECT_CHECK(XilinxAXIDMA, (obj), TYPE_XILINX_AXI_DMA)
#define XILINX_AXI_DMA_DATA_STREAM(obj) \
OBJECT_CHECK(XilinxAXIDMAStreamSlave, (obj),\
TYPE_XILINX_AXI_DMA_DATA_STREAM)
#define XILINX_AXI_DMA_CONTROL_STREAM(obj) \
OBJECT_CHECK(XilinxAXIDMAStreamSlave, (obj),\
TYPE_XILINX_AXI_DMA_CONTROL_STREAM)
#define R_DMACR (0x00 / 4)
#define R_DMASR (0x04 / 4)
#define R_CURDESC (0x08 / 4)
#define R_TAILDESC (0x10 / 4)
#define R_MAX (0x30 / 4)
#define CONTROL_PAYLOAD_WORDS 5
#define CONTROL_PAYLOAD_SIZE (CONTROL_PAYLOAD_WORDS * (sizeof(uint32_t)))
typedef struct XilinxAXIDMA XilinxAXIDMA;
typedef struct XilinxAXIDMAStreamSlave XilinxAXIDMAStreamSlave;
enum {
DMACR_RUNSTOP = 1,
DMACR_TAILPTR_MODE = 2,
DMACR_RESET = 4
};
enum {
DMASR_HALTED = 1,
DMASR_IDLE = 2,
DMASR_IOC_IRQ = 1 << 12,
DMASR_DLY_IRQ = 1 << 13,
DMASR_IRQ_MASK = 7 << 12
};
struct SDesc {
uint64_t nxtdesc;
uint64_t buffer_address;
uint64_t reserved;
uint32_t control;
uint32_t status;
uint8_t app[CONTROL_PAYLOAD_SIZE];
};
enum {
SDESC_CTRL_EOF = (1 << 26),
SDESC_CTRL_SOF = (1 << 27),
SDESC_CTRL_LEN_MASK = (1 << 23) - 1
};
enum {
SDESC_STATUS_EOF = (1 << 26),
SDESC_STATUS_SOF_BIT = 27,
SDESC_STATUS_SOF = (1 << SDESC_STATUS_SOF_BIT),
SDESC_STATUS_COMPLETE = (1 << 31)
};
struct Stream {
QEMUBH *bh;
ptimer_state *ptimer;
qemu_irq irq;
int nr;
struct SDesc desc;
int pos;
unsigned int complete_cnt;
uint32_t regs[R_MAX];
uint8_t app[20];
};
struct XilinxAXIDMAStreamSlave {
Object parent;
struct XilinxAXIDMA *dma;
};
struct XilinxAXIDMA {
SysBusDevice busdev;
MemoryRegion iomem;
uint32_t freqhz;
StreamSlave *tx_data_dev;
StreamSlave *tx_control_dev;
XilinxAXIDMAStreamSlave rx_data_dev;
XilinxAXIDMAStreamSlave rx_control_dev;
struct Stream streams[2];
StreamCanPushNotifyFn notify;
void *notify_opaque;
};
/*
* Helper calls to extract info from desriptors and other trivial
* state from regs.
*/
static inline int stream_desc_sof(struct SDesc *d)
{
return d->control & SDESC_CTRL_SOF;
}
static inline int stream_desc_eof(struct SDesc *d)
{
return d->control & SDESC_CTRL_EOF;
}
static inline int stream_resetting(struct Stream *s)
{
return !!(s->regs[R_DMACR] & DMACR_RESET);
}
static inline int stream_running(struct Stream *s)
{
return s->regs[R_DMACR] & DMACR_RUNSTOP;
}
static inline int stream_halted(struct Stream *s)
{
return s->regs[R_DMASR] & DMASR_HALTED;
}
static inline int stream_idle(struct Stream *s)
{
return !!(s->regs[R_DMASR] & DMASR_IDLE);
}
static void stream_reset(struct Stream *s)
{
s->regs[R_DMASR] = DMASR_HALTED; /* starts up halted. */
s->regs[R_DMACR] = 1 << 16; /* Starts with one in compl threshold. */
}
/* Map an offset addr into a channel index. */
static inline int streamid_from_addr(hwaddr addr)
{
int sid;
sid = addr / (0x30);
sid &= 1;
return sid;
}
#ifdef DEBUG_ENET
static void stream_desc_show(struct SDesc *d)
{
qemu_log("buffer_addr = " PRIx64 "\n", d->buffer_address);
qemu_log("nxtdesc = " PRIx64 "\n", d->nxtdesc);
qemu_log("control = %x\n", d->control);
qemu_log("status = %x\n", d->status);
}
#endif
static void stream_desc_load(struct Stream *s, hwaddr addr)
{
struct SDesc *d = &s->desc;
cpu_physical_memory_read(addr, d, sizeof *d);
/* Convert from LE into host endianness. */
d->buffer_address = le64_to_cpu(d->buffer_address);
d->nxtdesc = le64_to_cpu(d->nxtdesc);
d->control = le32_to_cpu(d->control);
d->status = le32_to_cpu(d->status);
}
static void stream_desc_store(struct Stream *s, hwaddr addr)
{
struct SDesc *d = &s->desc;
/* Convert from host endianness into LE. */
d->buffer_address = cpu_to_le64(d->buffer_address);
d->nxtdesc = cpu_to_le64(d->nxtdesc);
d->control = cpu_to_le32(d->control);
d->status = cpu_to_le32(d->status);
cpu_physical_memory_write(addr, d, sizeof *d);
}
static void stream_update_irq(struct Stream *s)
{
unsigned int pending, mask, irq;
pending = s->regs[R_DMASR] & DMASR_IRQ_MASK;
mask = s->regs[R_DMACR] & DMASR_IRQ_MASK;
irq = pending & mask;
qemu_set_irq(s->irq, !!irq);
}
static void stream_reload_complete_cnt(struct Stream *s)
{
unsigned int comp_th;
comp_th = (s->regs[R_DMACR] >> 16) & 0xff;
s->complete_cnt = comp_th;
}
static void timer_hit(void *opaque)
{
struct Stream *s = opaque;
stream_reload_complete_cnt(s);
s->regs[R_DMASR] |= DMASR_DLY_IRQ;
stream_update_irq(s);
}
static void stream_complete(struct Stream *s)
{
unsigned int comp_delay;
/* Start the delayed timer. */
comp_delay = s->regs[R_DMACR] >> 24;
if (comp_delay) {
ptimer_stop(s->ptimer);
ptimer_set_count(s->ptimer, comp_delay);
ptimer_run(s->ptimer, 1);
}
s->complete_cnt--;
if (s->complete_cnt == 0) {
/* Raise the IOC irq. */
s->regs[R_DMASR] |= DMASR_IOC_IRQ;
stream_reload_complete_cnt(s);
}
}
static void stream_process_mem2s(struct Stream *s, StreamSlave *tx_data_dev,
StreamSlave *tx_control_dev)
{
uint32_t prev_d;
unsigned char txbuf[16 * 1024];
unsigned int txlen;
if (!stream_running(s) || stream_idle(s)) {
return;
}
while (1) {
stream_desc_load(s, s->regs[R_CURDESC]);
if (s->desc.status & SDESC_STATUS_COMPLETE) {
s->regs[R_DMASR] |= DMASR_HALTED;
break;
}
if (stream_desc_sof(&s->desc)) {
s->pos = 0;
stream_push(tx_control_dev, s->desc.app, sizeof(s->desc.app));
}
txlen = s->desc.control & SDESC_CTRL_LEN_MASK;
if ((txlen + s->pos) > sizeof txbuf) {
hw_error("%s: too small internal txbuf! %d\n", __func__,
txlen + s->pos);
}
cpu_physical_memory_read(s->desc.buffer_address,
txbuf + s->pos, txlen);
s->pos += txlen;
if (stream_desc_eof(&s->desc)) {
stream_push(tx_data_dev, txbuf, s->pos);
s->pos = 0;
stream_complete(s);
}
/* Update the descriptor. */
s->desc.status = txlen | SDESC_STATUS_COMPLETE;
stream_desc_store(s, s->regs[R_CURDESC]);
/* Advance. */
prev_d = s->regs[R_CURDESC];
s->regs[R_CURDESC] = s->desc.nxtdesc;
if (prev_d == s->regs[R_TAILDESC]) {
s->regs[R_DMASR] |= DMASR_IDLE;
break;
}
}
}
static size_t stream_process_s2mem(struct Stream *s, unsigned char *buf,
size_t len)
{
uint32_t prev_d;
unsigned int rxlen;
size_t pos = 0;
int sof = 1;
if (!stream_running(s) || stream_idle(s)) {
return 0;
}
while (len) {
stream_desc_load(s, s->regs[R_CURDESC]);
if (s->desc.status & SDESC_STATUS_COMPLETE) {
s->regs[R_DMASR] |= DMASR_HALTED;
break;
}
rxlen = s->desc.control & SDESC_CTRL_LEN_MASK;
if (rxlen > len) {
/* It fits. */
rxlen = len;
}
cpu_physical_memory_write(s->desc.buffer_address, buf + pos, rxlen);
len -= rxlen;
pos += rxlen;
/* Update the descriptor. */
if (!len) {
stream_complete(s);
memcpy(s->desc.app, s->app, sizeof(s->desc.app));
s->desc.status |= SDESC_STATUS_EOF;
}
s->desc.status |= sof << SDESC_STATUS_SOF_BIT;
s->desc.status |= SDESC_STATUS_COMPLETE;
stream_desc_store(s, s->regs[R_CURDESC]);
sof = 0;
/* Advance. */
prev_d = s->regs[R_CURDESC];
s->regs[R_CURDESC] = s->desc.nxtdesc;
if (prev_d == s->regs[R_TAILDESC]) {
s->regs[R_DMASR] |= DMASR_IDLE;
break;
}
}
return pos;
}
static void xilinx_axidma_reset(DeviceState *dev)
{
int i;
XilinxAXIDMA *s = XILINX_AXI_DMA(dev);
for (i = 0; i < 2; i++) {
stream_reset(&s->streams[i]);
}
}
static size_t
xilinx_axidma_control_stream_push(StreamSlave *obj, unsigned char *buf,
size_t len)
{
XilinxAXIDMAStreamSlave *cs = XILINX_AXI_DMA_CONTROL_STREAM(obj);
struct Stream *s = &cs->dma->streams[1];
if (len != CONTROL_PAYLOAD_SIZE) {
hw_error("AXI DMA requires %d byte control stream payload\n",
(int)CONTROL_PAYLOAD_SIZE);
}
memcpy(s->app, buf, len);
return len;
}
static bool
xilinx_axidma_data_stream_can_push(StreamSlave *obj,
StreamCanPushNotifyFn notify,
void *notify_opaque)
{
XilinxAXIDMAStreamSlave *ds = XILINX_AXI_DMA_DATA_STREAM(obj);
struct Stream *s = &ds->dma->streams[1];
if (!stream_running(s) || stream_idle(s)) {
ds->dma->notify = notify;
ds->dma->notify_opaque = notify_opaque;
return false;
}
return true;
}
static size_t
xilinx_axidma_data_stream_push(StreamSlave *obj, unsigned char *buf, size_t len)
{
XilinxAXIDMAStreamSlave *ds = XILINX_AXI_DMA_DATA_STREAM(obj);
struct Stream *s = &ds->dma->streams[1];
size_t ret;
ret = stream_process_s2mem(s, buf, len);
stream_update_irq(s);
return ret;
}
static uint64_t axidma_read(void *opaque, hwaddr addr,
unsigned size)
{
XilinxAXIDMA *d = opaque;
struct Stream *s;
uint32_t r = 0;
int sid;
sid = streamid_from_addr(addr);
s = &d->streams[sid];
addr = addr % 0x30;
addr >>= 2;
switch (addr) {
case R_DMACR:
/* Simulate one cycles reset delay. */
s->regs[addr] &= ~DMACR_RESET;
r = s->regs[addr];
break;
case R_DMASR:
s->regs[addr] &= 0xffff;
s->regs[addr] |= (s->complete_cnt & 0xff) << 16;
s->regs[addr] |= (ptimer_get_count(s->ptimer) & 0xff) << 24;
r = s->regs[addr];
break;
default:
r = s->regs[addr];
D(qemu_log("%s ch=%d addr=" TARGET_FMT_plx " v=%x\n",
__func__, sid, addr * 4, r));
break;
}
return r;
}
static void axidma_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XilinxAXIDMA *d = opaque;
struct Stream *s;
int sid;
sid = streamid_from_addr(addr);
s = &d->streams[sid];
addr = addr % 0x30;
addr >>= 2;
switch (addr) {
case R_DMACR:
/* Tailptr mode is always on. */
value |= DMACR_TAILPTR_MODE;
/* Remember our previous reset state. */
value |= (s->regs[addr] & DMACR_RESET);
s->regs[addr] = value;
if (value & DMACR_RESET) {
stream_reset(s);
}
if ((value & 1) && !stream_resetting(s)) {
/* Start processing. */
s->regs[R_DMASR] &= ~(DMASR_HALTED | DMASR_IDLE);
}
stream_reload_complete_cnt(s);
break;
case R_DMASR:
/* Mask away write to clear irq lines. */
value &= ~(value & DMASR_IRQ_MASK);
s->regs[addr] = value;
break;
case R_TAILDESC:
s->regs[addr] = value;
s->regs[R_DMASR] &= ~DMASR_IDLE; /* Not idle. */
if (!sid) {
stream_process_mem2s(s, d->tx_data_dev, d->tx_control_dev);
}
break;
default:
D(qemu_log("%s: ch=%d addr=" TARGET_FMT_plx " v=%x\n",
__func__, sid, addr * 4, (unsigned)value));
s->regs[addr] = value;
break;
}
if (sid == 1 && d->notify) {
d->notify(d->notify_opaque);
d->notify = NULL;
}
stream_update_irq(s);
}
static const MemoryRegionOps axidma_ops = {
.read = axidma_read,
.write = axidma_write,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void xilinx_axidma_realize(DeviceState *dev, Error **errp)
{
XilinxAXIDMA *s = XILINX_AXI_DMA(dev);
XilinxAXIDMAStreamSlave *ds = XILINX_AXI_DMA_DATA_STREAM(&s->rx_data_dev);
XilinxAXIDMAStreamSlave *cs = XILINX_AXI_DMA_CONTROL_STREAM(
&s->rx_control_dev);
Error *local_errp = NULL;
object_property_add_link(OBJECT(ds), "dma", TYPE_XILINX_AXI_DMA,
(Object **)&ds->dma, &local_errp);
object_property_add_link(OBJECT(cs), "dma", TYPE_XILINX_AXI_DMA,
(Object **)&cs->dma, &local_errp);
if (local_errp) {
goto xilinx_axidma_realize_fail;
}
object_property_set_link(OBJECT(ds), OBJECT(s), "dma", &local_errp);
object_property_set_link(OBJECT(cs), OBJECT(s), "dma", &local_errp);
if (local_errp) {
goto xilinx_axidma_realize_fail;
}
int i;
for (i = 0; i < 2; i++) {
s->streams[i].nr = i;
s->streams[i].bh = qemu_bh_new(timer_hit, &s->streams[i]);
s->streams[i].ptimer = ptimer_init(s->streams[i].bh);
ptimer_set_freq(s->streams[i].ptimer, s->freqhz);
}
return;
xilinx_axidma_realize_fail:
if (!*errp) {
*errp = local_errp;
}
}
static void xilinx_axidma_init(Object *obj)
{
XilinxAXIDMA *s = XILINX_AXI_DMA(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
Error *errp = NULL;
object_property_add_link(obj, "axistream-connected", TYPE_STREAM_SLAVE,
(Object **) &s->tx_data_dev, &errp);
assert_no_error(errp);
object_property_add_link(obj, "axistream-control-connected",
TYPE_STREAM_SLAVE,
(Object **) &s->tx_control_dev, &errp);
assert_no_error(errp);
object_initialize(&s->rx_data_dev, TYPE_XILINX_AXI_DMA_DATA_STREAM);
object_initialize(&s->rx_control_dev, TYPE_XILINX_AXI_DMA_CONTROL_STREAM);
object_property_add_child(OBJECT(s), "axistream-connected-target",
(Object *)&s->rx_data_dev, &errp);
assert_no_error(errp);
object_property_add_child(OBJECT(s), "axistream-control-connected-target",
(Object *)&s->rx_control_dev, &errp);
assert_no_error(errp);
sysbus_init_irq(sbd, &s->streams[0].irq);
sysbus_init_irq(sbd, &s->streams[1].irq);
memory_region_init_io(&s->iomem, &axidma_ops, s,
"xlnx.axi-dma", R_MAX * 4 * 2);
sysbus_init_mmio(sbd, &s->iomem);
}
static Property axidma_properties[] = {
DEFINE_PROP_UINT32("freqhz", XilinxAXIDMA, freqhz, 50000000),
DEFINE_PROP_END_OF_LIST(),
};
static void axidma_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = xilinx_axidma_realize,
dc->reset = xilinx_axidma_reset;
dc->props = axidma_properties;
}
static StreamSlaveClass xilinx_axidma_data_stream_class = {
.push = xilinx_axidma_data_stream_push,
.can_push = xilinx_axidma_data_stream_can_push,
};
static StreamSlaveClass xilinx_axidma_control_stream_class = {
.push = xilinx_axidma_control_stream_push,
};
static void xilinx_axidma_stream_class_init(ObjectClass *klass, void *data)
{
StreamSlaveClass *ssc = STREAM_SLAVE_CLASS(klass);
ssc->push = ((StreamSlaveClass *)data)->push;
ssc->can_push = ((StreamSlaveClass *)data)->can_push;
}
static const TypeInfo axidma_info = {
.name = TYPE_XILINX_AXI_DMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxAXIDMA),
.class_init = axidma_class_init,
.instance_init = xilinx_axidma_init,
};
static const TypeInfo xilinx_axidma_data_stream_info = {
.name = TYPE_XILINX_AXI_DMA_DATA_STREAM,
.parent = TYPE_OBJECT,
.instance_size = sizeof(struct XilinxAXIDMAStreamSlave),
.class_init = xilinx_axidma_stream_class_init,
.class_data = &xilinx_axidma_data_stream_class,
.interfaces = (InterfaceInfo[]) {
{ TYPE_STREAM_SLAVE },
{ }
}
};
static const TypeInfo xilinx_axidma_control_stream_info = {
.name = TYPE_XILINX_AXI_DMA_CONTROL_STREAM,
.parent = TYPE_OBJECT,
.instance_size = sizeof(struct XilinxAXIDMAStreamSlave),
.class_init = xilinx_axidma_stream_class_init,
.class_data = &xilinx_axidma_control_stream_class,
.interfaces = (InterfaceInfo[]) {
{ TYPE_STREAM_SLAVE },
{ }
}
};
static void xilinx_axidma_register_types(void)
{
type_register_static(&axidma_info);
type_register_static(&xilinx_axidma_data_stream_info);
type_register_static(&xilinx_axidma_control_stream_info);
}
type_init(xilinx_axidma_register_types)