717 lines
24 KiB
C
717 lines
24 KiB
C
/*
|
|
* Copyright(c) 2019-2022 Qualcomm Innovation Center, Inc. All Rights Reserved.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef HEXAGON_MACROS_H
|
|
#define HEXAGON_MACROS_H
|
|
|
|
#include "cpu.h"
|
|
#include "hex_regs.h"
|
|
#include "reg_fields.h"
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define READ_REG(dest, NUM) gen_read_reg(dest, NUM)
|
|
#else
|
|
#define READ_REG(NUM) (env->gpr[(NUM)])
|
|
#define READ_PREG(NUM) (env->pred[NUM])
|
|
|
|
#define WRITE_RREG(NUM, VAL) log_reg_write(env, NUM, VAL, slot)
|
|
#define WRITE_PREG(NUM, VAL) log_pred_write(env, NUM, VAL)
|
|
#endif
|
|
|
|
#define PCALIGN 4
|
|
#define PCALIGN_MASK (PCALIGN - 1)
|
|
|
|
#define GET_FIELD(FIELD, REGIN) \
|
|
fEXTRACTU_BITS(REGIN, reg_field_info[FIELD].width, \
|
|
reg_field_info[FIELD].offset)
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define GET_USR_FIELD(FIELD, DST) \
|
|
tcg_gen_extract_tl(DST, hex_gpr[HEX_REG_USR], \
|
|
reg_field_info[FIELD].offset, \
|
|
reg_field_info[FIELD].width)
|
|
|
|
#define TYPE_INT(X) __builtin_types_compatible_p(typeof(X), int)
|
|
#define TYPE_TCGV(X) __builtin_types_compatible_p(typeof(X), TCGv)
|
|
#define TYPE_TCGV_I64(X) __builtin_types_compatible_p(typeof(X), TCGv_i64)
|
|
|
|
#define SET_USR_FIELD_FUNC(X) \
|
|
__builtin_choose_expr(TYPE_INT(X), \
|
|
gen_set_usr_fieldi, \
|
|
__builtin_choose_expr(TYPE_TCGV(X), \
|
|
gen_set_usr_field, (void)0))
|
|
#define SET_USR_FIELD(FIELD, VAL) \
|
|
SET_USR_FIELD_FUNC(VAL)(FIELD, VAL)
|
|
#else
|
|
#define GET_USR_FIELD(FIELD) \
|
|
fEXTRACTU_BITS(env->gpr[HEX_REG_USR], reg_field_info[FIELD].width, \
|
|
reg_field_info[FIELD].offset)
|
|
|
|
#define SET_USR_FIELD(FIELD, VAL) \
|
|
fINSERT_BITS(env->new_value[HEX_REG_USR], reg_field_info[FIELD].width, \
|
|
reg_field_info[FIELD].offset, (VAL))
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
/*
|
|
* Section 5.5 of the Hexagon V67 Programmer's Reference Manual
|
|
*
|
|
* Slot 1 store with slot 0 load
|
|
* A slot 1 store operation with a slot 0 load operation can appear in a packet.
|
|
* The packet attribute :mem_noshuf inhibits the instruction reordering that
|
|
* would otherwise be done by the assembler. For example:
|
|
* {
|
|
* memw(R5) = R2 // slot 1 store
|
|
* R3 = memh(R6) // slot 0 load
|
|
* }:mem_noshuf
|
|
* Unlike most packetized operations, these memory operations are not executed
|
|
* in parallel (Section 3.3.1). Instead, the store instruction in Slot 1
|
|
* effectively executes first, followed by the load instruction in Slot 0. If
|
|
* the addresses of the two operations are overlapping, the load will receive
|
|
* the newly stored data. This feature is supported in processor versions
|
|
* V65 or greater.
|
|
*
|
|
*
|
|
* For qemu, we look for a load in slot 0 when there is a store in slot 1
|
|
* in the same packet. When we see this, we call a helper that merges the
|
|
* bytes from the store buffer with the value loaded from memory.
|
|
*/
|
|
#define CHECK_NOSHUF \
|
|
do { \
|
|
if (insn->slot == 0 && pkt->pkt_has_store_s1) { \
|
|
process_store(ctx, pkt, 1); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define MEM_LOAD1s(DST, VA) \
|
|
do { \
|
|
CHECK_NOSHUF; \
|
|
tcg_gen_qemu_ld8s(DST, VA, ctx->mem_idx); \
|
|
} while (0)
|
|
#define MEM_LOAD1u(DST, VA) \
|
|
do { \
|
|
CHECK_NOSHUF; \
|
|
tcg_gen_qemu_ld8u(DST, VA, ctx->mem_idx); \
|
|
} while (0)
|
|
#define MEM_LOAD2s(DST, VA) \
|
|
do { \
|
|
CHECK_NOSHUF; \
|
|
tcg_gen_qemu_ld16s(DST, VA, ctx->mem_idx); \
|
|
} while (0)
|
|
#define MEM_LOAD2u(DST, VA) \
|
|
do { \
|
|
CHECK_NOSHUF; \
|
|
tcg_gen_qemu_ld16u(DST, VA, ctx->mem_idx); \
|
|
} while (0)
|
|
#define MEM_LOAD4s(DST, VA) \
|
|
do { \
|
|
CHECK_NOSHUF; \
|
|
tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
|
|
} while (0)
|
|
#define MEM_LOAD4u(DST, VA) \
|
|
do { \
|
|
CHECK_NOSHUF; \
|
|
tcg_gen_qemu_ld32s(DST, VA, ctx->mem_idx); \
|
|
} while (0)
|
|
#define MEM_LOAD8u(DST, VA) \
|
|
do { \
|
|
CHECK_NOSHUF; \
|
|
tcg_gen_qemu_ld64(DST, VA, ctx->mem_idx); \
|
|
} while (0)
|
|
|
|
#define MEM_STORE1_FUNC(X) \
|
|
__builtin_choose_expr(TYPE_INT(X), \
|
|
gen_store1i, \
|
|
__builtin_choose_expr(TYPE_TCGV(X), \
|
|
gen_store1, (void)0))
|
|
#define MEM_STORE1(VA, DATA, SLOT) \
|
|
MEM_STORE1_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
|
|
|
|
#define MEM_STORE2_FUNC(X) \
|
|
__builtin_choose_expr(TYPE_INT(X), \
|
|
gen_store2i, \
|
|
__builtin_choose_expr(TYPE_TCGV(X), \
|
|
gen_store2, (void)0))
|
|
#define MEM_STORE2(VA, DATA, SLOT) \
|
|
MEM_STORE2_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
|
|
|
|
#define MEM_STORE4_FUNC(X) \
|
|
__builtin_choose_expr(TYPE_INT(X), \
|
|
gen_store4i, \
|
|
__builtin_choose_expr(TYPE_TCGV(X), \
|
|
gen_store4, (void)0))
|
|
#define MEM_STORE4(VA, DATA, SLOT) \
|
|
MEM_STORE4_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
|
|
|
|
#define MEM_STORE8_FUNC(X) \
|
|
__builtin_choose_expr(TYPE_INT(X), \
|
|
gen_store8i, \
|
|
__builtin_choose_expr(TYPE_TCGV_I64(X), \
|
|
gen_store8, (void)0))
|
|
#define MEM_STORE8(VA, DATA, SLOT) \
|
|
MEM_STORE8_FUNC(DATA)(cpu_env, VA, DATA, ctx, SLOT)
|
|
#else
|
|
#define MEM_LOAD1s(VA) ((int8_t)mem_load1(env, slot, VA))
|
|
#define MEM_LOAD1u(VA) ((uint8_t)mem_load1(env, slot, VA))
|
|
#define MEM_LOAD2s(VA) ((int16_t)mem_load2(env, slot, VA))
|
|
#define MEM_LOAD2u(VA) ((uint16_t)mem_load2(env, slot, VA))
|
|
#define MEM_LOAD4s(VA) ((int32_t)mem_load4(env, slot, VA))
|
|
#define MEM_LOAD4u(VA) ((uint32_t)mem_load4(env, slot, VA))
|
|
#define MEM_LOAD8s(VA) ((int64_t)mem_load8(env, slot, VA))
|
|
#define MEM_LOAD8u(VA) ((uint64_t)mem_load8(env, slot, VA))
|
|
|
|
#define MEM_STORE1(VA, DATA, SLOT) log_store32(env, VA, DATA, 1, SLOT)
|
|
#define MEM_STORE2(VA, DATA, SLOT) log_store32(env, VA, DATA, 2, SLOT)
|
|
#define MEM_STORE4(VA, DATA, SLOT) log_store32(env, VA, DATA, 4, SLOT)
|
|
#define MEM_STORE8(VA, DATA, SLOT) log_store64(env, VA, DATA, 8, SLOT)
|
|
#endif
|
|
|
|
#define CANCEL cancel_slot(env, slot)
|
|
|
|
#define LOAD_CANCEL(EA) do { CANCEL; } while (0)
|
|
|
|
#ifdef QEMU_GENERATE
|
|
static inline void gen_pred_cancel(TCGv pred, int slot_num)
|
|
{
|
|
TCGv slot_mask = tcg_temp_new();
|
|
TCGv tmp = tcg_temp_new();
|
|
TCGv zero = tcg_constant_tl(0);
|
|
tcg_gen_ori_tl(slot_mask, hex_slot_cancelled, 1 << slot_num);
|
|
tcg_gen_andi_tl(tmp, pred, 1);
|
|
tcg_gen_movcond_tl(TCG_COND_EQ, hex_slot_cancelled, tmp, zero,
|
|
slot_mask, hex_slot_cancelled);
|
|
tcg_temp_free(slot_mask);
|
|
tcg_temp_free(tmp);
|
|
}
|
|
#define PRED_LOAD_CANCEL(PRED, EA) \
|
|
gen_pred_cancel(PRED, insn->is_endloop ? 4 : insn->slot)
|
|
#endif
|
|
|
|
#define STORE_CANCEL(EA) { env->slot_cancelled |= (1 << slot); }
|
|
|
|
#define fMAX(A, B) (((A) > (B)) ? (A) : (B))
|
|
|
|
#define fMIN(A, B) (((A) < (B)) ? (A) : (B))
|
|
|
|
#define fABS(A) (((A) < 0) ? (-(A)) : (A))
|
|
#define fINSERT_BITS(REG, WIDTH, OFFSET, INVAL) \
|
|
REG = ((WIDTH) ? deposit64(REG, (OFFSET), (WIDTH), (INVAL)) : REG)
|
|
#define fEXTRACTU_BITS(INREG, WIDTH, OFFSET) \
|
|
((WIDTH) ? extract64((INREG), (OFFSET), (WIDTH)) : 0LL)
|
|
#define fEXTRACTU_BIDIR(INREG, WIDTH, OFFSET) \
|
|
(fZXTN(WIDTH, 32, fBIDIR_LSHIFTR((INREG), (OFFSET), 4_8)))
|
|
#define fEXTRACTU_RANGE(INREG, HIBIT, LOWBIT) \
|
|
(((HIBIT) - (LOWBIT) + 1) ? \
|
|
extract64((INREG), (LOWBIT), ((HIBIT) - (LOWBIT) + 1)) : \
|
|
0LL)
|
|
#define fINSERT_RANGE(INREG, HIBIT, LOWBIT, INVAL) \
|
|
do { \
|
|
int width = ((HIBIT) - (LOWBIT) + 1); \
|
|
INREG = (width >= 0 ? \
|
|
deposit64((INREG), (LOWBIT), width, (INVAL)) : \
|
|
INREG); \
|
|
} while (0)
|
|
|
|
#define f8BITSOF(VAL) ((VAL) ? 0xff : 0x00)
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fLSBOLD(VAL) tcg_gen_andi_tl(LSB, (VAL), 1)
|
|
#else
|
|
#define fLSBOLD(VAL) ((VAL) & 1)
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fLSBNEW(PVAL) tcg_gen_andi_tl(LSB, (PVAL), 1)
|
|
#define fLSBNEW0 tcg_gen_andi_tl(LSB, hex_new_pred_value[0], 1)
|
|
#define fLSBNEW1 tcg_gen_andi_tl(LSB, hex_new_pred_value[1], 1)
|
|
#else
|
|
#define fLSBNEW(PVAL) ((PVAL) & 1)
|
|
#define fLSBNEW0 (env->new_pred_value[0] & 1)
|
|
#define fLSBNEW1 (env->new_pred_value[1] & 1)
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fLSBOLDNOT(VAL) \
|
|
do { \
|
|
tcg_gen_andi_tl(LSB, (VAL), 1); \
|
|
tcg_gen_xori_tl(LSB, LSB, 1); \
|
|
} while (0)
|
|
#define fLSBNEWNOT(PNUM) \
|
|
do { \
|
|
tcg_gen_andi_tl(LSB, (PNUM), 1); \
|
|
tcg_gen_xori_tl(LSB, LSB, 1); \
|
|
} while (0)
|
|
#else
|
|
#define fLSBNEWNOT(PNUM) (!fLSBNEW(PNUM))
|
|
#define fLSBOLDNOT(VAL) (!fLSBOLD(VAL))
|
|
#define fLSBNEW0NOT (!fLSBNEW0)
|
|
#define fLSBNEW1NOT (!fLSBNEW1)
|
|
#endif
|
|
|
|
#define fNEWREG(VAL) ((int32_t)(VAL))
|
|
|
|
#define fNEWREG_ST(VAL) (VAL)
|
|
|
|
#define fVSATUVALN(N, VAL) \
|
|
({ \
|
|
(((int64_t)(VAL)) < 0) ? 0 : ((1LL << (N)) - 1); \
|
|
})
|
|
#define fSATUVALN(N, VAL) \
|
|
({ \
|
|
fSET_OVERFLOW(); \
|
|
((VAL) < 0) ? 0 : ((1LL << (N)) - 1); \
|
|
})
|
|
#define fSATVALN(N, VAL) \
|
|
({ \
|
|
fSET_OVERFLOW(); \
|
|
((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
|
|
})
|
|
#define fVSATVALN(N, VAL) \
|
|
({ \
|
|
((VAL) < 0) ? (-(1LL << ((N) - 1))) : ((1LL << ((N) - 1)) - 1); \
|
|
})
|
|
#define fZXTN(N, M, VAL) (((N) != 0) ? extract64((VAL), 0, (N)) : 0LL)
|
|
#define fSXTN(N, M, VAL) (((N) != 0) ? sextract64((VAL), 0, (N)) : 0LL)
|
|
#define fSATN(N, VAL) \
|
|
((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATVALN(N, VAL))
|
|
#define fVSATN(N, VAL) \
|
|
((fSXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATVALN(N, VAL))
|
|
#define fADDSAT64(DST, A, B) \
|
|
do { \
|
|
uint64_t __a = fCAST8u(A); \
|
|
uint64_t __b = fCAST8u(B); \
|
|
uint64_t __sum = __a + __b; \
|
|
uint64_t __xor = __a ^ __b; \
|
|
const uint64_t __mask = 0x8000000000000000ULL; \
|
|
if (__xor & __mask) { \
|
|
DST = __sum; \
|
|
} \
|
|
else if ((__a ^ __sum) & __mask) { \
|
|
if (__sum & __mask) { \
|
|
DST = 0x7FFFFFFFFFFFFFFFLL; \
|
|
fSET_OVERFLOW(); \
|
|
} else { \
|
|
DST = 0x8000000000000000LL; \
|
|
fSET_OVERFLOW(); \
|
|
} \
|
|
} else { \
|
|
DST = __sum; \
|
|
} \
|
|
} while (0)
|
|
#define fVSATUN(N, VAL) \
|
|
((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fVSATUVALN(N, VAL))
|
|
#define fSATUN(N, VAL) \
|
|
((fZXTN(N, 64, VAL) == (VAL)) ? (VAL) : fSATUVALN(N, VAL))
|
|
#define fSATH(VAL) (fSATN(16, VAL))
|
|
#define fSATUH(VAL) (fSATUN(16, VAL))
|
|
#define fVSATH(VAL) (fVSATN(16, VAL))
|
|
#define fVSATUH(VAL) (fVSATUN(16, VAL))
|
|
#define fSATUB(VAL) (fSATUN(8, VAL))
|
|
#define fSATB(VAL) (fSATN(8, VAL))
|
|
#define fVSATUB(VAL) (fVSATUN(8, VAL))
|
|
#define fVSATB(VAL) (fVSATN(8, VAL))
|
|
#define fIMMEXT(IMM) (IMM = IMM)
|
|
#define fMUST_IMMEXT(IMM) fIMMEXT(IMM)
|
|
|
|
#define fPCALIGN(IMM) IMM = (IMM & ~PCALIGN_MASK)
|
|
|
|
#ifdef QEMU_GENERATE
|
|
static inline TCGv gen_read_ireg(TCGv result, TCGv val, int shift)
|
|
{
|
|
/*
|
|
* Section 2.2.4 of the Hexagon V67 Programmer's Reference Manual
|
|
*
|
|
* The "I" value from a modifier register is divided into two pieces
|
|
* LSB bits 23:17
|
|
* MSB bits 31:28
|
|
* The value is signed
|
|
*
|
|
* At the end we shift the result according to the shift argument
|
|
*/
|
|
TCGv msb = tcg_temp_new();
|
|
TCGv lsb = tcg_temp_new();
|
|
|
|
tcg_gen_extract_tl(lsb, val, 17, 7);
|
|
tcg_gen_sari_tl(msb, val, 21);
|
|
tcg_gen_deposit_tl(result, msb, lsb, 0, 7);
|
|
|
|
tcg_gen_shli_tl(result, result, shift);
|
|
|
|
tcg_temp_free(msb);
|
|
tcg_temp_free(lsb);
|
|
|
|
return result;
|
|
}
|
|
#define fREAD_IREG(VAL, SHIFT) gen_read_ireg(ireg, (VAL), (SHIFT))
|
|
#else
|
|
#define fREAD_IREG(VAL) \
|
|
(fSXTN(11, 64, (((VAL) & 0xf0000000) >> 21) | ((VAL >> 17) & 0x7f)))
|
|
#endif
|
|
|
|
#define fREAD_LR() (READ_REG(HEX_REG_LR))
|
|
|
|
#define fWRITE_LR(A) WRITE_RREG(HEX_REG_LR, A)
|
|
#define fWRITE_FP(A) WRITE_RREG(HEX_REG_FP, A)
|
|
#define fWRITE_SP(A) WRITE_RREG(HEX_REG_SP, A)
|
|
|
|
#define fREAD_SP() (READ_REG(HEX_REG_SP))
|
|
#define fREAD_LC0 (READ_REG(HEX_REG_LC0))
|
|
#define fREAD_LC1 (READ_REG(HEX_REG_LC1))
|
|
#define fREAD_SA0 (READ_REG(HEX_REG_SA0))
|
|
#define fREAD_SA1 (READ_REG(HEX_REG_SA1))
|
|
#define fREAD_FP() (READ_REG(HEX_REG_FP))
|
|
#ifdef FIXME
|
|
/* Figure out how to get insn->extension_valid to helper */
|
|
#define fREAD_GP() \
|
|
(insn->extension_valid ? 0 : READ_REG(HEX_REG_GP))
|
|
#else
|
|
#define fREAD_GP() READ_REG(HEX_REG_GP)
|
|
#endif
|
|
#define fREAD_PC() (READ_REG(HEX_REG_PC))
|
|
|
|
#define fREAD_NPC() (env->next_PC & (0xfffffffe))
|
|
|
|
#define fREAD_P0() (READ_PREG(0))
|
|
#define fREAD_P3() (READ_PREG(3))
|
|
|
|
#define fCHECK_PCALIGN(A)
|
|
|
|
#define fWRITE_NPC(A) write_new_pc(env, A)
|
|
|
|
#define fBRANCH(LOC, TYPE) fWRITE_NPC(LOC)
|
|
#define fJUMPR(REGNO, TARGET, TYPE) fBRANCH(TARGET, COF_TYPE_JUMPR)
|
|
#define fHINTJR(TARGET) { /* Not modelled in qemu */}
|
|
#define fCALL(A) \
|
|
do { \
|
|
fWRITE_LR(fREAD_NPC()); \
|
|
fBRANCH(A, COF_TYPE_CALL); \
|
|
} while (0)
|
|
#define fCALLR(A) \
|
|
do { \
|
|
fWRITE_LR(fREAD_NPC()); \
|
|
fBRANCH(A, COF_TYPE_CALLR); \
|
|
} while (0)
|
|
#define fWRITE_LOOP_REGS0(START, COUNT) \
|
|
do { \
|
|
WRITE_RREG(HEX_REG_LC0, COUNT); \
|
|
WRITE_RREG(HEX_REG_SA0, START); \
|
|
} while (0)
|
|
#define fWRITE_LOOP_REGS1(START, COUNT) \
|
|
do { \
|
|
WRITE_RREG(HEX_REG_LC1, COUNT); \
|
|
WRITE_RREG(HEX_REG_SA1, START);\
|
|
} while (0)
|
|
#define fWRITE_LC0(VAL) WRITE_RREG(HEX_REG_LC0, VAL)
|
|
#define fWRITE_LC1(VAL) WRITE_RREG(HEX_REG_LC1, VAL)
|
|
|
|
#define fSET_OVERFLOW() SET_USR_FIELD(USR_OVF, 1)
|
|
#define fSET_LPCFG(VAL) SET_USR_FIELD(USR_LPCFG, (VAL))
|
|
#define fGET_LPCFG (GET_USR_FIELD(USR_LPCFG))
|
|
#define fWRITE_P0(VAL) WRITE_PREG(0, VAL)
|
|
#define fWRITE_P1(VAL) WRITE_PREG(1, VAL)
|
|
#define fWRITE_P2(VAL) WRITE_PREG(2, VAL)
|
|
#define fWRITE_P3(VAL) WRITE_PREG(3, VAL)
|
|
#define fPART1(WORK) if (part1) { WORK; return; }
|
|
#define fCAST4u(A) ((uint32_t)(A))
|
|
#define fCAST4s(A) ((int32_t)(A))
|
|
#define fCAST8u(A) ((uint64_t)(A))
|
|
#define fCAST8s(A) ((int64_t)(A))
|
|
#define fCAST2_2s(A) ((int16_t)(A))
|
|
#define fCAST2_2u(A) ((uint16_t)(A))
|
|
#define fCAST4_4s(A) ((int32_t)(A))
|
|
#define fCAST4_4u(A) ((uint32_t)(A))
|
|
#define fCAST4_8s(A) ((int64_t)((int32_t)(A)))
|
|
#define fCAST4_8u(A) ((uint64_t)((uint32_t)(A)))
|
|
#define fCAST8_8s(A) ((int64_t)(A))
|
|
#define fCAST8_8u(A) ((uint64_t)(A))
|
|
#define fCAST2_8s(A) ((int64_t)((int16_t)(A)))
|
|
#define fCAST2_8u(A) ((uint64_t)((uint16_t)(A)))
|
|
#define fZE8_16(A) ((int16_t)((uint8_t)(A)))
|
|
#define fSE8_16(A) ((int16_t)((int8_t)(A)))
|
|
#define fSE16_32(A) ((int32_t)((int16_t)(A)))
|
|
#define fZE16_32(A) ((uint32_t)((uint16_t)(A)))
|
|
#define fSE32_64(A) ((int64_t)((int32_t)(A)))
|
|
#define fZE32_64(A) ((uint64_t)((uint32_t)(A)))
|
|
#define fSE8_32(A) ((int32_t)((int8_t)(A)))
|
|
#define fZE8_32(A) ((int32_t)((uint8_t)(A)))
|
|
#define fMPY8UU(A, B) (int)(fZE8_16(A) * fZE8_16(B))
|
|
#define fMPY8US(A, B) (int)(fZE8_16(A) * fSE8_16(B))
|
|
#define fMPY8SU(A, B) (int)(fSE8_16(A) * fZE8_16(B))
|
|
#define fMPY8SS(A, B) (int)((short)(A) * (short)(B))
|
|
#define fMPY16SS(A, B) fSE32_64(fSE16_32(A) * fSE16_32(B))
|
|
#define fMPY16UU(A, B) fZE32_64(fZE16_32(A) * fZE16_32(B))
|
|
#define fMPY16SU(A, B) fSE32_64(fSE16_32(A) * fZE16_32(B))
|
|
#define fMPY16US(A, B) fMPY16SU(B, A)
|
|
#define fMPY32SS(A, B) (fSE32_64(A) * fSE32_64(B))
|
|
#define fMPY32UU(A, B) (fZE32_64(A) * fZE32_64(B))
|
|
#define fMPY32SU(A, B) (fSE32_64(A) * fZE32_64(B))
|
|
#define fMPY3216SS(A, B) (fSE32_64(A) * fSXTN(16, 64, B))
|
|
#define fMPY3216SU(A, B) (fSE32_64(A) * fZXTN(16, 64, B))
|
|
#define fROUND(A) (A + 0x8000)
|
|
#define fCLIP(DST, SRC, U) \
|
|
do { \
|
|
int32_t maxv = (1 << U) - 1; \
|
|
int32_t minv = -(1 << U); \
|
|
DST = fMIN(maxv, fMAX(SRC, minv)); \
|
|
} while (0)
|
|
#define fCRND(A) ((((A) & 0x3) == 0x3) ? ((A) + 1) : ((A)))
|
|
#define fRNDN(A, N) ((((N) == 0) ? (A) : (((fSE32_64(A)) + (1 << ((N) - 1))))))
|
|
#define fCRNDN(A, N) (conv_round(A, N))
|
|
#define fADD128(A, B) (int128_add(A, B))
|
|
#define fSUB128(A, B) (int128_sub(A, B))
|
|
#define fSHIFTR128(A, B) (int128_rshift(A, B))
|
|
#define fSHIFTL128(A, B) (int128_lshift(A, B))
|
|
#define fAND128(A, B) (int128_and(A, B))
|
|
#define fCAST8S_16S(A) (int128_exts64(A))
|
|
#define fCAST16S_8S(A) (int128_getlo(A))
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fEA_RI(REG, IMM) tcg_gen_addi_tl(EA, REG, IMM)
|
|
#define fEA_RRs(REG, REG2, SCALE) \
|
|
do { \
|
|
TCGv tmp = tcg_temp_new(); \
|
|
tcg_gen_shli_tl(tmp, REG2, SCALE); \
|
|
tcg_gen_add_tl(EA, REG, tmp); \
|
|
tcg_temp_free(tmp); \
|
|
} while (0)
|
|
#define fEA_IRs(IMM, REG, SCALE) \
|
|
do { \
|
|
tcg_gen_shli_tl(EA, REG, SCALE); \
|
|
tcg_gen_addi_tl(EA, EA, IMM); \
|
|
} while (0)
|
|
#else
|
|
#define fEA_RI(REG, IMM) \
|
|
do { \
|
|
EA = REG + IMM; \
|
|
} while (0)
|
|
#define fEA_RRs(REG, REG2, SCALE) \
|
|
do { \
|
|
EA = REG + (REG2 << SCALE); \
|
|
} while (0)
|
|
#define fEA_IRs(IMM, REG, SCALE) \
|
|
do { \
|
|
EA = IMM + (REG << SCALE); \
|
|
} while (0)
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fEA_IMM(IMM) tcg_gen_movi_tl(EA, IMM)
|
|
#define fEA_REG(REG) tcg_gen_mov_tl(EA, REG)
|
|
#define fEA_BREVR(REG) gen_helper_fbrev(EA, REG)
|
|
#define fPM_I(REG, IMM) tcg_gen_addi_tl(REG, REG, IMM)
|
|
#define fPM_M(REG, MVAL) tcg_gen_add_tl(REG, REG, MVAL)
|
|
#define fPM_CIRI(REG, IMM, MVAL) \
|
|
do { \
|
|
TCGv tcgv_siV = tcg_constant_tl(siV); \
|
|
gen_helper_fcircadd(REG, REG, tcgv_siV, MuV, \
|
|
hex_gpr[HEX_REG_CS0 + MuN]); \
|
|
} while (0)
|
|
#else
|
|
#define fEA_IMM(IMM) do { EA = (IMM); } while (0)
|
|
#define fEA_REG(REG) do { EA = (REG); } while (0)
|
|
#define fEA_GPI(IMM) do { EA = (fREAD_GP() + (IMM)); } while (0)
|
|
#define fPM_I(REG, IMM) do { REG = REG + (IMM); } while (0)
|
|
#define fPM_M(REG, MVAL) do { REG = REG + (MVAL); } while (0)
|
|
#endif
|
|
#define fSCALE(N, A) (((int64_t)(A)) << N)
|
|
#define fVSATW(A) fVSATN(32, ((long long)A))
|
|
#define fSATW(A) fSATN(32, ((long long)A))
|
|
#define fVSAT(A) fVSATN(32, (A))
|
|
#define fSAT(A) fSATN(32, (A))
|
|
#define fSAT_ORIG_SHL(A, ORIG_REG) \
|
|
((((int32_t)((fSAT(A)) ^ ((int32_t)(ORIG_REG)))) < 0) \
|
|
? fSATVALN(32, ((int32_t)(ORIG_REG))) \
|
|
: ((((ORIG_REG) > 0) && ((A) == 0)) ? fSATVALN(32, (ORIG_REG)) \
|
|
: fSAT(A)))
|
|
#define fPASS(A) A
|
|
#define fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
|
|
: (fCAST##REGSTYPE(SRC) << (SHAMT)))
|
|
#define fBIDIR_ASHIFTL(SRC, SHAMT, REGSTYPE) \
|
|
fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##s)
|
|
#define fBIDIR_LSHIFTL(SRC, SHAMT, REGSTYPE) \
|
|
fBIDIR_SHIFTL(SRC, SHAMT, REGSTYPE##u)
|
|
#define fBIDIR_ASHIFTL_SAT(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) < 0) ? ((fCAST##REGSTYPE##s(SRC) >> ((-(SHAMT)) - 1)) >> 1) \
|
|
: fSAT_ORIG_SHL(fCAST##REGSTYPE##s(SRC) << (SHAMT), (SRC)))
|
|
#define fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) < 0) ? ((fCAST##REGSTYPE(SRC) << ((-(SHAMT)) - 1)) << 1) \
|
|
: (fCAST##REGSTYPE(SRC) >> (SHAMT)))
|
|
#define fBIDIR_ASHIFTR(SRC, SHAMT, REGSTYPE) \
|
|
fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##s)
|
|
#define fBIDIR_LSHIFTR(SRC, SHAMT, REGSTYPE) \
|
|
fBIDIR_SHIFTR(SRC, SHAMT, REGSTYPE##u)
|
|
#define fBIDIR_ASHIFTR_SAT(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) < 0) ? fSAT_ORIG_SHL((fCAST##REGSTYPE##s(SRC) \
|
|
<< ((-(SHAMT)) - 1)) << 1, (SRC)) \
|
|
: (fCAST##REGSTYPE##s(SRC) >> (SHAMT)))
|
|
#define fASHIFTR(SRC, SHAMT, REGSTYPE) (fCAST##REGSTYPE##s(SRC) >> (SHAMT))
|
|
#define fLSHIFTR(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##u(SRC) >> (SHAMT)))
|
|
#define fROTL(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) << (SHAMT)) | \
|
|
((fCAST##REGSTYPE##u(SRC) >> \
|
|
((sizeof(SRC) * 8) - (SHAMT))))))
|
|
#define fROTR(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) == 0) ? (SRC) : ((fCAST##REGSTYPE##u(SRC) >> (SHAMT)) | \
|
|
((fCAST##REGSTYPE##u(SRC) << \
|
|
((sizeof(SRC) * 8) - (SHAMT))))))
|
|
#define fASHIFTL(SRC, SHAMT, REGSTYPE) \
|
|
(((SHAMT) >= (sizeof(SRC) * 8)) ? 0 : (fCAST##REGSTYPE##s(SRC) << (SHAMT)))
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fLOAD(NUM, SIZE, SIGN, EA, DST) MEM_LOAD##SIZE##SIGN(DST, EA)
|
|
#else
|
|
#define fLOAD(NUM, SIZE, SIGN, EA, DST) \
|
|
DST = (size##SIZE##SIGN##_t)MEM_LOAD##SIZE##SIGN(EA)
|
|
#endif
|
|
|
|
#define fMEMOP(NUM, SIZE, SIGN, EA, FNTYPE, VALUE)
|
|
|
|
#define fGET_FRAMEKEY() READ_REG(HEX_REG_FRAMEKEY)
|
|
#define fFRAME_SCRAMBLE(VAL) ((VAL) ^ (fCAST8u(fGET_FRAMEKEY()) << 32))
|
|
#define fFRAME_UNSCRAMBLE(VAL) fFRAME_SCRAMBLE(VAL)
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
#define fFRAMECHECK(ADDR, EA) do { } while (0) /* Not modelled in linux-user */
|
|
#else
|
|
/* System mode not implemented yet */
|
|
#define fFRAMECHECK(ADDR, EA) g_assert_not_reached();
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fLOAD_LOCKED(NUM, SIZE, SIGN, EA, DST) \
|
|
gen_load_locked##SIZE##SIGN(DST, EA, ctx->mem_idx);
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, insn->slot)
|
|
#else
|
|
#define fSTORE(NUM, SIZE, EA, SRC) MEM_STORE##SIZE(EA, SRC, slot)
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fSTORE_LOCKED(NUM, SIZE, EA, SRC, PRED) \
|
|
gen_store_conditional##SIZE(ctx, PRED, EA, SRC);
|
|
#endif
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define GETBYTE_FUNC(X) \
|
|
__builtin_choose_expr(TYPE_TCGV(X), \
|
|
gen_get_byte, \
|
|
__builtin_choose_expr(TYPE_TCGV_I64(X), \
|
|
gen_get_byte_i64, (void)0))
|
|
#define fGETBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, true)
|
|
#define fGETUBYTE(N, SRC) GETBYTE_FUNC(SRC)(BYTE, N, SRC, false)
|
|
#else
|
|
#define fGETBYTE(N, SRC) ((int8_t)((SRC >> ((N) * 8)) & 0xff))
|
|
#define fGETUBYTE(N, SRC) ((uint8_t)((SRC >> ((N) * 8)) & 0xff))
|
|
#endif
|
|
|
|
#define fSETBYTE(N, DST, VAL) \
|
|
do { \
|
|
DST = (DST & ~(0x0ffLL << ((N) * 8))) | \
|
|
(((uint64_t)((VAL) & 0x0ffLL)) << ((N) * 8)); \
|
|
} while (0)
|
|
|
|
#ifdef QEMU_GENERATE
|
|
#define fGETHALF(N, SRC) gen_get_half(HALF, N, SRC, true)
|
|
#define fGETUHALF(N, SRC) gen_get_half(HALF, N, SRC, false)
|
|
#else
|
|
#define fGETHALF(N, SRC) ((int16_t)((SRC >> ((N) * 16)) & 0xffff))
|
|
#define fGETUHALF(N, SRC) ((uint16_t)((SRC >> ((N) * 16)) & 0xffff))
|
|
#endif
|
|
#define fSETHALF(N, DST, VAL) \
|
|
do { \
|
|
DST = (DST & ~(0x0ffffLL << ((N) * 16))) | \
|
|
(((uint64_t)((VAL) & 0x0ffff)) << ((N) * 16)); \
|
|
} while (0)
|
|
#define fSETHALFw fSETHALF
|
|
#define fSETHALFd fSETHALF
|
|
|
|
#define fGETWORD(N, SRC) \
|
|
((int64_t)((int32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
|
|
#define fGETUWORD(N, SRC) \
|
|
((uint64_t)((uint32_t)((SRC >> ((N) * 32)) & 0x0ffffffffLL)))
|
|
|
|
#define fSETWORD(N, DST, VAL) \
|
|
do { \
|
|
DST = (DST & ~(0x0ffffffffLL << ((N) * 32))) | \
|
|
(((VAL) & 0x0ffffffffLL) << ((N) * 32)); \
|
|
} while (0)
|
|
|
|
#define fSETBIT(N, DST, VAL) \
|
|
do { \
|
|
DST = (DST & ~(1ULL << (N))) | (((uint64_t)(VAL)) << (N)); \
|
|
} while (0)
|
|
|
|
#define fGETBIT(N, SRC) (((SRC) >> N) & 1)
|
|
#define fSETBITS(HI, LO, DST, VAL) \
|
|
do { \
|
|
int j; \
|
|
for (j = LO; j <= HI; j++) { \
|
|
fSETBIT(j, DST, VAL); \
|
|
} \
|
|
} while (0)
|
|
#define fCOUNTONES_2(VAL) ctpop16(VAL)
|
|
#define fCOUNTONES_4(VAL) ctpop32(VAL)
|
|
#define fCOUNTONES_8(VAL) ctpop64(VAL)
|
|
#define fBREV_8(VAL) revbit64(VAL)
|
|
#define fBREV_4(VAL) revbit32(VAL)
|
|
#define fCL1_8(VAL) clo64(VAL)
|
|
#define fCL1_4(VAL) clo32(VAL)
|
|
#define fCL1_2(VAL) (clz32(~(uint16_t)(VAL) & 0xffff) - 16)
|
|
#define fINTERLEAVE(ODD, EVEN) interleave(ODD, EVEN)
|
|
#define fDEINTERLEAVE(MIXED) deinterleave(MIXED)
|
|
#define fHIDE(A) A
|
|
#define fCONSTLL(A) A##LL
|
|
#define fECHO(A) (A)
|
|
|
|
#define fTRAP(TRAPTYPE, IMM) helper_raise_exception(env, HEX_EXCP_TRAP0)
|
|
#define fPAUSE(IMM)
|
|
|
|
#define fALIGN_REG_FIELD_VALUE(FIELD, VAL) \
|
|
((VAL) << reg_field_info[FIELD].offset)
|
|
#define fGET_REG_FIELD_MASK(FIELD) \
|
|
(((1 << reg_field_info[FIELD].width) - 1) << reg_field_info[FIELD].offset)
|
|
#define fREAD_REG_FIELD(REG, FIELD) \
|
|
fEXTRACTU_BITS(env->gpr[HEX_REG_##REG], \
|
|
reg_field_info[FIELD].width, \
|
|
reg_field_info[FIELD].offset)
|
|
#define fGET_FIELD(VAL, FIELD)
|
|
#define fSET_FIELD(VAL, FIELD, NEWVAL)
|
|
#define fBARRIER()
|
|
#define fSYNCH()
|
|
#define fISYNC()
|
|
#define fDCFETCH(REG) \
|
|
do { (void)REG; } while (0) /* Nothing to do in qemu */
|
|
#define fICINVA(REG) \
|
|
do { (void)REG; } while (0) /* Nothing to do in qemu */
|
|
#define fL2FETCH(ADDR, HEIGHT, WIDTH, STRIDE, FLAGS)
|
|
#define fDCCLEANA(REG) \
|
|
do { (void)REG; } while (0) /* Nothing to do in qemu */
|
|
#define fDCCLEANINVA(REG) \
|
|
do { (void)REG; } while (0) /* Nothing to do in qemu */
|
|
|
|
#define fDCZEROA(REG) do { env->dczero_addr = (REG); } while (0)
|
|
|
|
#define fBRANCH_SPECULATE_STALL(DOTNEWVAL, JUMP_COND, SPEC_DIR, HINTBITNUM, \
|
|
STRBITNUM) /* Nothing */
|
|
|
|
|
|
#endif
|