qemu-e2k/util/bufferiszero.c

312 lines
8.6 KiB
C

/*
* Simple C functions to supplement the C library
*
* Copyright (c) 2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qemu/cutils.h"
#include "qemu/bswap.h"
static bool
buffer_zero_int(const void *buf, size_t len)
{
if (unlikely(len < 8)) {
/* For a very small buffer, simply accumulate all the bytes. */
const unsigned char *p = buf;
const unsigned char *e = buf + len;
unsigned char t = 0;
do {
t |= *p++;
} while (p < e);
return t == 0;
} else {
/* Otherwise, use the unaligned memory access functions to
handle the beginning and end of the buffer, with a couple
of loops handling the middle aligned section. */
uint64_t t = ldq_he_p(buf);
const uint64_t *p = (uint64_t *)(((uintptr_t)buf + 8) & -8);
const uint64_t *e = (uint64_t *)(((uintptr_t)buf + len) & -8);
for (; p + 8 <= e; p += 8) {
__builtin_prefetch(p + 8);
if (t) {
return false;
}
t = p[0] | p[1] | p[2] | p[3] | p[4] | p[5] | p[6] | p[7];
}
while (p < e) {
t |= *p++;
}
t |= ldq_he_p(buf + len - 8);
return t == 0;
}
}
#if defined(CONFIG_AVX2_OPT) || defined(__SSE2__)
/* Do not use push_options pragmas unnecessarily, because clang
* does not support them.
*/
#ifdef CONFIG_AVX2_OPT
#pragma GCC push_options
#pragma GCC target("sse2")
#endif
#include <emmintrin.h>
/* Note that each of these vectorized functions require len >= 64. */
static bool
buffer_zero_sse2(const void *buf, size_t len)
{
__m128i t = _mm_loadu_si128(buf);
__m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
__m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
__m128i zero = _mm_setzero_si128();
/* Loop over 16-byte aligned blocks of 64. */
while (likely(p <= e)) {
__builtin_prefetch(p);
t = _mm_cmpeq_epi8(t, zero);
if (unlikely(_mm_movemask_epi8(t) != 0xFFFF)) {
return false;
}
t = p[-4] | p[-3] | p[-2] | p[-1];
p += 4;
}
/* Finish the aligned tail. */
t |= e[-3];
t |= e[-2];
t |= e[-1];
/* Finish the unaligned tail. */
t |= _mm_loadu_si128(buf + len - 16);
return _mm_movemask_epi8(_mm_cmpeq_epi8(t, zero)) == 0xFFFF;
}
#ifdef CONFIG_AVX2_OPT
#pragma GCC pop_options
#endif
#ifdef CONFIG_AVX2_OPT
/* Note that due to restrictions/bugs wrt __builtin functions in gcc <= 4.8,
* the includes have to be within the corresponding push_options region, and
* therefore the regions themselves have to be ordered with increasing ISA.
*/
#pragma GCC push_options
#pragma GCC target("sse4")
#include <smmintrin.h>
static bool
buffer_zero_sse4(const void *buf, size_t len)
{
__m128i t = _mm_loadu_si128(buf);
__m128i *p = (__m128i *)(((uintptr_t)buf + 5 * 16) & -16);
__m128i *e = (__m128i *)(((uintptr_t)buf + len) & -16);
/* Loop over 16-byte aligned blocks of 64. */
while (likely(p <= e)) {
__builtin_prefetch(p);
if (unlikely(!_mm_testz_si128(t, t))) {
return false;
}
t = p[-4] | p[-3] | p[-2] | p[-1];
p += 4;
}
/* Finish the aligned tail. */
t |= e[-3];
t |= e[-2];
t |= e[-1];
/* Finish the unaligned tail. */
t |= _mm_loadu_si128(buf + len - 16);
return _mm_testz_si128(t, t);
}
#pragma GCC pop_options
#pragma GCC push_options
#pragma GCC target("avx2")
#include <immintrin.h>
static bool
buffer_zero_avx2(const void *buf, size_t len)
{
/* Begin with an unaligned head of 32 bytes. */
__m256i t = _mm256_loadu_si256(buf);
__m256i *p = (__m256i *)(((uintptr_t)buf + 5 * 32) & -32);
__m256i *e = (__m256i *)(((uintptr_t)buf + len) & -32);
if (likely(p <= e)) {
/* Loop over 32-byte aligned blocks of 128. */
do {
__builtin_prefetch(p);
if (unlikely(!_mm256_testz_si256(t, t))) {
return false;
}
t = p[-4] | p[-3] | p[-2] | p[-1];
p += 4;
} while (p <= e);
} else {
t |= _mm256_loadu_si256(buf + 32);
if (len <= 128) {
goto last2;
}
}
/* Finish the last block of 128 unaligned. */
t |= _mm256_loadu_si256(buf + len - 4 * 32);
t |= _mm256_loadu_si256(buf + len - 3 * 32);
last2:
t |= _mm256_loadu_si256(buf + len - 2 * 32);
t |= _mm256_loadu_si256(buf + len - 1 * 32);
return _mm256_testz_si256(t, t);
}
#pragma GCC pop_options
#endif /* CONFIG_AVX2_OPT */
/* Note that for test_buffer_is_zero_next_accel, the most preferred
* ISA must have the least significant bit.
*/
#define CACHE_AVX2 1
#define CACHE_SSE4 2
#define CACHE_SSE2 4
/* Make sure that these variables are appropriately initialized when
* SSE2 is enabled on the compiler command-line, but the compiler is
* too old to support <cpuid.h>.
*/
#ifdef CONFIG_AVX2_OPT
# define INIT_CACHE 0
# define INIT_ACCEL buffer_zero_int
#else
# ifndef __SSE2__
# error "ISA selection confusion"
# endif
# define INIT_CACHE CACHE_SSE2
# define INIT_ACCEL buffer_zero_sse2
#endif
static unsigned cpuid_cache = INIT_CACHE;
static bool (*buffer_accel)(const void *, size_t) = INIT_ACCEL;
static void init_accel(unsigned cache)
{
bool (*fn)(const void *, size_t) = buffer_zero_int;
if (cache & CACHE_SSE2) {
fn = buffer_zero_sse2;
}
#ifdef CONFIG_AVX2_OPT
if (cache & CACHE_SSE4) {
fn = buffer_zero_sse4;
}
if (cache & CACHE_AVX2) {
fn = buffer_zero_avx2;
}
#endif
buffer_accel = fn;
}
#ifdef CONFIG_AVX2_OPT
#include <cpuid.h>
static void __attribute__((constructor)) init_cpuid_cache(void)
{
int max = __get_cpuid_max(0, NULL);
int a, b, c, d;
unsigned cache = 0;
if (max >= 1) {
__cpuid(1, a, b, c, d);
if (d & bit_SSE2) {
cache |= CACHE_SSE2;
}
#ifdef CONFIG_AVX2_OPT
if (c & bit_SSE4_1) {
cache |= CACHE_SSE4;
}
/* We must check that AVX is not just available, but usable. */
if ((c & bit_OSXSAVE) && (c & bit_AVX) && max >= 7) {
int bv;
__asm("xgetbv" : "=a"(bv), "=d"(d) : "c"(0));
__cpuid_count(7, 0, a, b, c, d);
if ((bv & 6) == 6 && (b & bit_AVX2)) {
cache |= CACHE_AVX2;
}
}
#endif
}
cpuid_cache = cache;
init_accel(cache);
}
#endif /* CONFIG_AVX2_OPT */
bool test_buffer_is_zero_next_accel(void)
{
/* If no bits set, we just tested buffer_zero_int, and there
are no more acceleration options to test. */
if (cpuid_cache == 0) {
return false;
}
/* Disable the accelerator we used before and select a new one. */
cpuid_cache &= cpuid_cache - 1;
init_accel(cpuid_cache);
return true;
}
static bool select_accel_fn(const void *buf, size_t len)
{
if (likely(len >= 64)) {
return buffer_accel(buf, len);
}
return buffer_zero_int(buf, len);
}
#else
#define select_accel_fn buffer_zero_int
bool test_buffer_is_zero_next_accel(void)
{
return false;
}
#endif
/*
* Checks if a buffer is all zeroes
*/
bool buffer_is_zero(const void *buf, size_t len)
{
if (unlikely(len == 0)) {
return true;
}
/* Fetch the beginning of the buffer while we select the accelerator. */
__builtin_prefetch(buf);
/* Use an optimized zero check if possible. Note that this also
includes a check for an unrolled loop over 64-bit integers. */
return select_accel_fn(buf, len);
}