qemu-e2k/target/arm/tcg/crypto_helper.c
Richard Henderson bdb01515ed target/arm: Use aesdec_IMC
This implements the AESIMC instruction.  We have converted everything
to crypto/aes-round.h; crypto/aes.h is no longer needed.

Reviewed-by: Philippe Mathieu-Daudé <philmd@linaro.org>
Signed-off-by: Richard Henderson <richard.henderson@linaro.org>
2023-07-09 13:47:05 +01:00

686 lines
18 KiB
C

/*
* crypto_helper.c - emulate v8 Crypto Extensions instructions
*
* Copyright (C) 2013 - 2018 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
#include "crypto/aes-round.h"
#include "crypto/sm4.h"
#include "vec_internal.h"
union CRYPTO_STATE {
uint8_t bytes[16];
uint32_t words[4];
uint64_t l[2];
};
#if HOST_BIG_ENDIAN
#define CR_ST_BYTE(state, i) ((state).bytes[(15 - (i)) ^ 8])
#define CR_ST_WORD(state, i) ((state).words[(3 - (i)) ^ 2])
#else
#define CR_ST_BYTE(state, i) ((state).bytes[i])
#define CR_ST_WORD(state, i) ((state).words[i])
#endif
/*
* The caller has not been converted to full gvec, and so only
* modifies the low 16 bytes of the vector register.
*/
static void clear_tail_16(void *vd, uint32_t desc)
{
int opr_sz = simd_oprsz(desc);
int max_sz = simd_maxsz(desc);
assert(opr_sz == 16);
clear_tail(vd, opr_sz, max_sz);
}
static const AESState aes_zero = { };
void HELPER(crypto_aese)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
AESState *ad = (AESState *)(vd + i);
AESState *st = (AESState *)(vn + i);
AESState *rk = (AESState *)(vm + i);
AESState t;
/*
* Our uint64_t are in the wrong order for big-endian.
* The Arm AddRoundKey comes first, while the API AddRoundKey
* comes last: perform the xor here, and provide zero to API.
*/
if (HOST_BIG_ENDIAN) {
t.d[0] = st->d[1] ^ rk->d[1];
t.d[1] = st->d[0] ^ rk->d[0];
aesenc_SB_SR_AK(&t, &t, &aes_zero, false);
ad->d[0] = t.d[1];
ad->d[1] = t.d[0];
} else {
t.v = st->v ^ rk->v;
aesenc_SB_SR_AK(ad, &t, &aes_zero, false);
}
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
void HELPER(crypto_aesd)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
AESState *ad = (AESState *)(vd + i);
AESState *st = (AESState *)(vn + i);
AESState *rk = (AESState *)(vm + i);
AESState t;
/* Our uint64_t are in the wrong order for big-endian. */
if (HOST_BIG_ENDIAN) {
t.d[0] = st->d[1] ^ rk->d[1];
t.d[1] = st->d[0] ^ rk->d[0];
aesdec_ISB_ISR_AK(&t, &t, &aes_zero, false);
ad->d[0] = t.d[1];
ad->d[1] = t.d[0];
} else {
t.v = st->v ^ rk->v;
aesdec_ISB_ISR_AK(ad, &t, &aes_zero, false);
}
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
void HELPER(crypto_aesmc)(void *vd, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
AESState *ad = (AESState *)(vd + i);
AESState *st = (AESState *)(vm + i);
AESState t;
/* Our uint64_t are in the wrong order for big-endian. */
if (HOST_BIG_ENDIAN) {
t.d[0] = st->d[1];
t.d[1] = st->d[0];
aesenc_MC(&t, &t, false);
ad->d[0] = t.d[1];
ad->d[1] = t.d[0];
} else {
aesenc_MC(ad, st, false);
}
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
void HELPER(crypto_aesimc)(void *vd, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
AESState *ad = (AESState *)(vd + i);
AESState *st = (AESState *)(vm + i);
AESState t;
/* Our uint64_t are in the wrong order for big-endian. */
if (HOST_BIG_ENDIAN) {
t.d[0] = st->d[1];
t.d[1] = st->d[0];
aesdec_IMC(&t, &t, false);
ad->d[0] = t.d[1];
ad->d[1] = t.d[0];
} else {
aesdec_IMC(ad, st, false);
}
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
/*
* SHA-1 logical functions
*/
static uint32_t cho(uint32_t x, uint32_t y, uint32_t z)
{
return (x & (y ^ z)) ^ z;
}
static uint32_t par(uint32_t x, uint32_t y, uint32_t z)
{
return x ^ y ^ z;
}
static uint32_t maj(uint32_t x, uint32_t y, uint32_t z)
{
return (x & y) | ((x | y) & z);
}
void HELPER(crypto_sha1su0)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *d = vd, *n = vn, *m = vm;
uint64_t d0, d1;
d0 = d[1] ^ d[0] ^ m[0];
d1 = n[0] ^ d[1] ^ m[1];
d[0] = d0;
d[1] = d1;
clear_tail_16(vd, desc);
}
static inline void crypto_sha1_3reg(uint64_t *rd, uint64_t *rn,
uint64_t *rm, uint32_t desc,
uint32_t (*fn)(union CRYPTO_STATE *d))
{
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
int i;
for (i = 0; i < 4; i++) {
uint32_t t = fn(&d);
t += rol32(CR_ST_WORD(d, 0), 5) + CR_ST_WORD(n, 0)
+ CR_ST_WORD(m, i);
CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3);
CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
CR_ST_WORD(d, 2) = ror32(CR_ST_WORD(d, 1), 2);
CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
CR_ST_WORD(d, 0) = t;
}
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(rd, desc);
}
static uint32_t do_sha1c(union CRYPTO_STATE *d)
{
return cho(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
}
void HELPER(crypto_sha1c)(void *vd, void *vn, void *vm, uint32_t desc)
{
crypto_sha1_3reg(vd, vn, vm, desc, do_sha1c);
}
static uint32_t do_sha1p(union CRYPTO_STATE *d)
{
return par(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
}
void HELPER(crypto_sha1p)(void *vd, void *vn, void *vm, uint32_t desc)
{
crypto_sha1_3reg(vd, vn, vm, desc, do_sha1p);
}
static uint32_t do_sha1m(union CRYPTO_STATE *d)
{
return maj(CR_ST_WORD(*d, 1), CR_ST_WORD(*d, 2), CR_ST_WORD(*d, 3));
}
void HELPER(crypto_sha1m)(void *vd, void *vn, void *vm, uint32_t desc)
{
crypto_sha1_3reg(vd, vn, vm, desc, do_sha1m);
}
void HELPER(crypto_sha1h)(void *vd, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rm = vm;
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(m, 0) = ror32(CR_ST_WORD(m, 0), 2);
CR_ST_WORD(m, 1) = CR_ST_WORD(m, 2) = CR_ST_WORD(m, 3) = 0;
rd[0] = m.l[0];
rd[1] = m.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha1su1)(void *vd, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(d, 0) = rol32(CR_ST_WORD(d, 0) ^ CR_ST_WORD(m, 1), 1);
CR_ST_WORD(d, 1) = rol32(CR_ST_WORD(d, 1) ^ CR_ST_WORD(m, 2), 1);
CR_ST_WORD(d, 2) = rol32(CR_ST_WORD(d, 2) ^ CR_ST_WORD(m, 3), 1);
CR_ST_WORD(d, 3) = rol32(CR_ST_WORD(d, 3) ^ CR_ST_WORD(d, 0), 1);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
/*
* The SHA-256 logical functions, according to
* http://csrc.nist.gov/groups/STM/cavp/documents/shs/sha256-384-512.pdf
*/
static uint32_t S0(uint32_t x)
{
return ror32(x, 2) ^ ror32(x, 13) ^ ror32(x, 22);
}
static uint32_t S1(uint32_t x)
{
return ror32(x, 6) ^ ror32(x, 11) ^ ror32(x, 25);
}
static uint32_t s0(uint32_t x)
{
return ror32(x, 7) ^ ror32(x, 18) ^ (x >> 3);
}
static uint32_t s1(uint32_t x)
{
return ror32(x, 17) ^ ror32(x, 19) ^ (x >> 10);
}
void HELPER(crypto_sha256h)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
int i;
for (i = 0; i < 4; i++) {
uint32_t t = cho(CR_ST_WORD(n, 0), CR_ST_WORD(n, 1), CR_ST_WORD(n, 2))
+ CR_ST_WORD(n, 3) + S1(CR_ST_WORD(n, 0))
+ CR_ST_WORD(m, i);
CR_ST_WORD(n, 3) = CR_ST_WORD(n, 2);
CR_ST_WORD(n, 2) = CR_ST_WORD(n, 1);
CR_ST_WORD(n, 1) = CR_ST_WORD(n, 0);
CR_ST_WORD(n, 0) = CR_ST_WORD(d, 3) + t;
t += maj(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2))
+ S0(CR_ST_WORD(d, 0));
CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1);
CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
CR_ST_WORD(d, 0) = t;
}
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha256h2)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
int i;
for (i = 0; i < 4; i++) {
uint32_t t = cho(CR_ST_WORD(d, 0), CR_ST_WORD(d, 1), CR_ST_WORD(d, 2))
+ CR_ST_WORD(d, 3) + S1(CR_ST_WORD(d, 0))
+ CR_ST_WORD(m, i);
CR_ST_WORD(d, 3) = CR_ST_WORD(d, 2);
CR_ST_WORD(d, 2) = CR_ST_WORD(d, 1);
CR_ST_WORD(d, 1) = CR_ST_WORD(d, 0);
CR_ST_WORD(d, 0) = CR_ST_WORD(n, 3 - i) + t;
}
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha256su0)(void *vd, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(d, 0) += s0(CR_ST_WORD(d, 1));
CR_ST_WORD(d, 1) += s0(CR_ST_WORD(d, 2));
CR_ST_WORD(d, 2) += s0(CR_ST_WORD(d, 3));
CR_ST_WORD(d, 3) += s0(CR_ST_WORD(m, 0));
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha256su1)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
CR_ST_WORD(d, 0) += s1(CR_ST_WORD(m, 2)) + CR_ST_WORD(n, 1);
CR_ST_WORD(d, 1) += s1(CR_ST_WORD(m, 3)) + CR_ST_WORD(n, 2);
CR_ST_WORD(d, 2) += s1(CR_ST_WORD(d, 0)) + CR_ST_WORD(n, 3);
CR_ST_WORD(d, 3) += s1(CR_ST_WORD(d, 1)) + CR_ST_WORD(m, 0);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
/*
* The SHA-512 logical functions (same as above but using 64-bit operands)
*/
static uint64_t cho512(uint64_t x, uint64_t y, uint64_t z)
{
return (x & (y ^ z)) ^ z;
}
static uint64_t maj512(uint64_t x, uint64_t y, uint64_t z)
{
return (x & y) | ((x | y) & z);
}
static uint64_t S0_512(uint64_t x)
{
return ror64(x, 28) ^ ror64(x, 34) ^ ror64(x, 39);
}
static uint64_t S1_512(uint64_t x)
{
return ror64(x, 14) ^ ror64(x, 18) ^ ror64(x, 41);
}
static uint64_t s0_512(uint64_t x)
{
return ror64(x, 1) ^ ror64(x, 8) ^ (x >> 7);
}
static uint64_t s1_512(uint64_t x)
{
return ror64(x, 19) ^ ror64(x, 61) ^ (x >> 6);
}
void HELPER(crypto_sha512h)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
uint64_t d0 = rd[0];
uint64_t d1 = rd[1];
d1 += S1_512(rm[1]) + cho512(rm[1], rn[0], rn[1]);
d0 += S1_512(d1 + rm[0]) + cho512(d1 + rm[0], rm[1], rn[0]);
rd[0] = d0;
rd[1] = d1;
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha512h2)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
uint64_t d0 = rd[0];
uint64_t d1 = rd[1];
d1 += S0_512(rm[0]) + maj512(rn[0], rm[1], rm[0]);
d0 += S0_512(d1) + maj512(d1, rm[0], rm[1]);
rd[0] = d0;
rd[1] = d1;
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha512su0)(void *vd, void *vn, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t d0 = rd[0];
uint64_t d1 = rd[1];
d0 += s0_512(rd[1]);
d1 += s0_512(rn[0]);
rd[0] = d0;
rd[1] = d1;
clear_tail_16(vd, desc);
}
void HELPER(crypto_sha512su1)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
rd[0] += s1_512(rn[0]) + rm[0];
rd[1] += s1_512(rn[1]) + rm[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sm3partw1)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t t;
t = CR_ST_WORD(d, 0) ^ CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 1), 17);
CR_ST_WORD(d, 0) = t ^ ror32(t, 17) ^ ror32(t, 9);
t = CR_ST_WORD(d, 1) ^ CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 2), 17);
CR_ST_WORD(d, 1) = t ^ ror32(t, 17) ^ ror32(t, 9);
t = CR_ST_WORD(d, 2) ^ CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 3), 17);
CR_ST_WORD(d, 2) = t ^ ror32(t, 17) ^ ror32(t, 9);
t = CR_ST_WORD(d, 3) ^ CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 0), 17);
CR_ST_WORD(d, 3) = t ^ ror32(t, 17) ^ ror32(t, 9);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
void HELPER(crypto_sm3partw2)(void *vd, void *vn, void *vm, uint32_t desc)
{
uint64_t *rd = vd;
uint64_t *rn = vn;
uint64_t *rm = vm;
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t t = CR_ST_WORD(n, 0) ^ ror32(CR_ST_WORD(m, 0), 25);
CR_ST_WORD(d, 0) ^= t;
CR_ST_WORD(d, 1) ^= CR_ST_WORD(n, 1) ^ ror32(CR_ST_WORD(m, 1), 25);
CR_ST_WORD(d, 2) ^= CR_ST_WORD(n, 2) ^ ror32(CR_ST_WORD(m, 2), 25);
CR_ST_WORD(d, 3) ^= CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(m, 3), 25) ^
ror32(t, 17) ^ ror32(t, 2) ^ ror32(t, 26);
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(vd, desc);
}
static inline void QEMU_ALWAYS_INLINE
crypto_sm3tt(uint64_t *rd, uint64_t *rn, uint64_t *rm,
uint32_t desc, uint32_t opcode)
{
union CRYPTO_STATE d = { .l = { rd[0], rd[1] } };
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t imm2 = simd_data(desc);
uint32_t t;
assert(imm2 < 4);
if (opcode == 0 || opcode == 2) {
/* SM3TT1A, SM3TT2A */
t = par(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
} else if (opcode == 1) {
/* SM3TT1B */
t = maj(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
} else if (opcode == 3) {
/* SM3TT2B */
t = cho(CR_ST_WORD(d, 3), CR_ST_WORD(d, 2), CR_ST_WORD(d, 1));
} else {
qemu_build_not_reached();
}
t += CR_ST_WORD(d, 0) + CR_ST_WORD(m, imm2);
CR_ST_WORD(d, 0) = CR_ST_WORD(d, 1);
if (opcode < 2) {
/* SM3TT1A, SM3TT1B */
t += CR_ST_WORD(n, 3) ^ ror32(CR_ST_WORD(d, 3), 20);
CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 23);
} else {
/* SM3TT2A, SM3TT2B */
t += CR_ST_WORD(n, 3);
t ^= rol32(t, 9) ^ rol32(t, 17);
CR_ST_WORD(d, 1) = ror32(CR_ST_WORD(d, 2), 13);
}
CR_ST_WORD(d, 2) = CR_ST_WORD(d, 3);
CR_ST_WORD(d, 3) = t;
rd[0] = d.l[0];
rd[1] = d.l[1];
clear_tail_16(rd, desc);
}
#define DO_SM3TT(NAME, OPCODE) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ crypto_sm3tt(vd, vn, vm, desc, OPCODE); }
DO_SM3TT(crypto_sm3tt1a, 0)
DO_SM3TT(crypto_sm3tt1b, 1)
DO_SM3TT(crypto_sm3tt2a, 2)
DO_SM3TT(crypto_sm3tt2b, 3)
#undef DO_SM3TT
static void do_crypto_sm4e(uint64_t *rd, uint64_t *rn, uint64_t *rm)
{
union CRYPTO_STATE d = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE n = { .l = { rm[0], rm[1] } };
uint32_t t, i;
for (i = 0; i < 4; i++) {
t = CR_ST_WORD(d, (i + 1) % 4) ^
CR_ST_WORD(d, (i + 2) % 4) ^
CR_ST_WORD(d, (i + 3) % 4) ^
CR_ST_WORD(n, i);
t = sm4_sbox[t & 0xff] |
sm4_sbox[(t >> 8) & 0xff] << 8 |
sm4_sbox[(t >> 16) & 0xff] << 16 |
sm4_sbox[(t >> 24) & 0xff] << 24;
CR_ST_WORD(d, i) ^= t ^ rol32(t, 2) ^ rol32(t, 10) ^ rol32(t, 18) ^
rol32(t, 24);
}
rd[0] = d.l[0];
rd[1] = d.l[1];
}
void HELPER(crypto_sm4e)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_sm4e(vd + i, vn + i, vm + i);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
static void do_crypto_sm4ekey(uint64_t *rd, uint64_t *rn, uint64_t *rm)
{
union CRYPTO_STATE d;
union CRYPTO_STATE n = { .l = { rn[0], rn[1] } };
union CRYPTO_STATE m = { .l = { rm[0], rm[1] } };
uint32_t t, i;
d = n;
for (i = 0; i < 4; i++) {
t = CR_ST_WORD(d, (i + 1) % 4) ^
CR_ST_WORD(d, (i + 2) % 4) ^
CR_ST_WORD(d, (i + 3) % 4) ^
CR_ST_WORD(m, i);
t = sm4_sbox[t & 0xff] |
sm4_sbox[(t >> 8) & 0xff] << 8 |
sm4_sbox[(t >> 16) & 0xff] << 16 |
sm4_sbox[(t >> 24) & 0xff] << 24;
CR_ST_WORD(d, i) ^= t ^ rol32(t, 13) ^ rol32(t, 23);
}
rd[0] = d.l[0];
rd[1] = d.l[1];
}
void HELPER(crypto_sm4ekey)(void *vd, void *vn, void* vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
for (i = 0; i < opr_sz; i += 16) {
do_crypto_sm4ekey(vd + i, vn + i, vm + i);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}
void HELPER(crypto_rax1)(void *vd, void *vn, void *vm, uint32_t desc)
{
intptr_t i, opr_sz = simd_oprsz(desc);
uint64_t *d = vd, *n = vn, *m = vm;
for (i = 0; i < opr_sz / 8; ++i) {
d[i] = n[i] ^ rol64(m[i], 1);
}
clear_tail(vd, opr_sz, simd_maxsz(desc));
}