qemu-e2k/hw/fdc.c
Jan Kiszka 8217606e6e Introduce reset notifier order
Add the parameter 'order' to qemu_register_reset and sort callbacks on
registration. On system reset, callbacks with lower order will be
invoked before those with higher order. Update all existing users to the
standard order 0.

Note: At least for x86, the existing users seem to assume that handlers
are called in their registration order. Therefore, the patch preserves
this property. If someone feels bored, (s)he could try to identify this
dependency and express it properly on callback registration.

Signed-off-by: Jan Kiszka <jan.kiszka@siemens.com>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
2009-05-22 10:50:34 -05:00

1938 lines
60 KiB
C

/*
* QEMU Floppy disk emulator (Intel 82078)
*
* Copyright (c) 2003, 2007 Jocelyn Mayer
* Copyright (c) 2008 Hervé Poussineau
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* The controller is used in Sun4m systems in a slightly different
* way. There are changes in DOR register and DMA is not available.
*/
#include "hw.h"
#include "fdc.h"
#include "block.h"
#include "qemu-timer.h"
#include "isa.h"
/********************************************************/
/* debug Floppy devices */
//#define DEBUG_FLOPPY
#ifdef DEBUG_FLOPPY
#define FLOPPY_DPRINTF(fmt, ...) \
do { printf("FLOPPY: " fmt , ## __VA_ARGS__); } while (0)
#else
#define FLOPPY_DPRINTF(fmt, ...)
#endif
#define FLOPPY_ERROR(fmt, ...) \
do { printf("FLOPPY ERROR: %s: " fmt, __func__ , ## __VA_ARGS__); } while (0)
/********************************************************/
/* Floppy drive emulation */
#define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv)
#define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive))
/* Will always be a fixed parameter for us */
#define FD_SECTOR_LEN 512
#define FD_SECTOR_SC 2 /* Sector size code */
#define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */
/* Floppy disk drive emulation */
typedef enum fdisk_type_t {
FDRIVE_DISK_288 = 0x01, /* 2.88 MB disk */
FDRIVE_DISK_144 = 0x02, /* 1.44 MB disk */
FDRIVE_DISK_720 = 0x03, /* 720 kB disk */
FDRIVE_DISK_USER = 0x04, /* User defined geometry */
FDRIVE_DISK_NONE = 0x05, /* No disk */
} fdisk_type_t;
typedef enum fdrive_type_t {
FDRIVE_DRV_144 = 0x00, /* 1.44 MB 3"5 drive */
FDRIVE_DRV_288 = 0x01, /* 2.88 MB 3"5 drive */
FDRIVE_DRV_120 = 0x02, /* 1.2 MB 5"25 drive */
FDRIVE_DRV_NONE = 0x03, /* No drive connected */
} fdrive_type_t;
typedef enum fdisk_flags_t {
FDISK_DBL_SIDES = 0x01,
} fdisk_flags_t;
typedef struct fdrive_t {
BlockDriverState *bs;
/* Drive status */
fdrive_type_t drive;
uint8_t perpendicular; /* 2.88 MB access mode */
/* Position */
uint8_t head;
uint8_t track;
uint8_t sect;
/* Media */
fdisk_flags_t flags;
uint8_t last_sect; /* Nb sector per track */
uint8_t max_track; /* Nb of tracks */
uint16_t bps; /* Bytes per sector */
uint8_t ro; /* Is read-only */
} fdrive_t;
static void fd_init (fdrive_t *drv, BlockDriverState *bs)
{
/* Drive */
drv->bs = bs;
drv->drive = FDRIVE_DRV_NONE;
drv->perpendicular = 0;
/* Disk */
drv->last_sect = 0;
drv->max_track = 0;
}
static int _fd_sector (uint8_t head, uint8_t track,
uint8_t sect, uint8_t last_sect)
{
return (((track * 2) + head) * last_sect) + sect - 1;
}
/* Returns current position, in sectors, for given drive */
static int fd_sector (fdrive_t *drv)
{
return _fd_sector(drv->head, drv->track, drv->sect, drv->last_sect);
}
/* Seek to a new position:
* returns 0 if already on right track
* returns 1 if track changed
* returns 2 if track is invalid
* returns 3 if sector is invalid
* returns 4 if seek is disabled
*/
static int fd_seek (fdrive_t *drv, uint8_t head, uint8_t track, uint8_t sect,
int enable_seek)
{
uint32_t sector;
int ret;
if (track > drv->max_track ||
(head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 2;
}
if (sect > drv->last_sect) {
FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n",
head, track, sect, 1,
(drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1,
drv->max_track, drv->last_sect);
return 3;
}
sector = _fd_sector(head, track, sect, drv->last_sect);
ret = 0;
if (sector != fd_sector(drv)) {
#if 0
if (!enable_seek) {
FLOPPY_ERROR("no implicit seek %d %02x %02x (max=%d %02x %02x)\n",
head, track, sect, 1, drv->max_track, drv->last_sect);
return 4;
}
#endif
drv->head = head;
if (drv->track != track)
ret = 1;
drv->track = track;
drv->sect = sect;
}
return ret;
}
/* Set drive back to track 0 */
static void fd_recalibrate (fdrive_t *drv)
{
FLOPPY_DPRINTF("recalibrate\n");
drv->head = 0;
drv->track = 0;
drv->sect = 1;
}
/* Recognize floppy formats */
typedef struct fd_format_t {
fdrive_type_t drive;
fdisk_type_t disk;
uint8_t last_sect;
uint8_t max_track;
uint8_t max_head;
const char *str;
} fd_format_t;
static const fd_format_t fd_formats[] = {
/* First entry is default format */
/* 1.44 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 18, 80, 1, "1.44 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 20, 80, 1, "1.6 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 80, 1, "1.68 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 82, 1, "1.72 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 21, 83, 1, "1.74 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 22, 80, 1, "1.76 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 23, 80, 1, "1.84 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_144, 24, 80, 1, "1.92 MB 3\"1/2", },
/* 2.88 MB 3"1/2 floppy disks */
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 36, 80, 1, "2.88 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 39, 80, 1, "3.12 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 40, 80, 1, "3.2 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 44, 80, 1, "3.52 MB 3\"1/2", },
{ FDRIVE_DRV_288, FDRIVE_DISK_288, 48, 80, 1, "3.84 MB 3\"1/2", },
/* 720 kB 3"1/2 floppy disks */
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 1, "720 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 80, 1, "800 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 82, 1, "820 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 10, 83, 1, "830 kB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 13, 80, 1, "1.04 MB 3\"1/2", },
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 14, 80, 1, "1.12 MB 3\"1/2", },
/* 1.2 MB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 15, 80, 1, "1.2 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 80, 1, "1.44 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 82, 1, "1.48 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 18, 83, 1, "1.49 MB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 20, 80, 1, "1.6 MB 5\"1/4", },
/* 720 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 80, 1, "720 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 11, 80, 1, "880 kB 5\"1/4", },
/* 360 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 1, "360 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 9, 40, 0, "180 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 41, 1, "410 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 10, 42, 1, "420 kB 5\"1/4", },
/* 320 kB 5"1/4 floppy disks */
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 1, "320 kB 5\"1/4", },
{ FDRIVE_DRV_120, FDRIVE_DISK_288, 8, 40, 0, "160 kB 5\"1/4", },
/* 360 kB must match 5"1/4 better than 3"1/2... */
{ FDRIVE_DRV_144, FDRIVE_DISK_720, 9, 80, 0, "360 kB 3\"1/2", },
/* end */
{ FDRIVE_DRV_NONE, FDRIVE_DISK_NONE, -1, -1, 0, NULL, },
};
/* Revalidate a disk drive after a disk change */
static void fd_revalidate (fdrive_t *drv)
{
const fd_format_t *parse;
uint64_t nb_sectors, size;
int i, first_match, match;
int nb_heads, max_track, last_sect, ro;
FLOPPY_DPRINTF("revalidate\n");
if (drv->bs != NULL && bdrv_is_inserted(drv->bs)) {
ro = bdrv_is_read_only(drv->bs);
bdrv_get_geometry_hint(drv->bs, &nb_heads, &max_track, &last_sect);
if (nb_heads != 0 && max_track != 0 && last_sect != 0) {
FLOPPY_DPRINTF("User defined disk (%d %d %d)",
nb_heads - 1, max_track, last_sect);
} else {
bdrv_get_geometry(drv->bs, &nb_sectors);
match = -1;
first_match = -1;
for (i = 0;; i++) {
parse = &fd_formats[i];
if (parse->drive == FDRIVE_DRV_NONE)
break;
if (drv->drive == parse->drive ||
drv->drive == FDRIVE_DRV_NONE) {
size = (parse->max_head + 1) * parse->max_track *
parse->last_sect;
if (nb_sectors == size) {
match = i;
break;
}
if (first_match == -1)
first_match = i;
}
}
if (match == -1) {
if (first_match == -1)
match = 1;
else
match = first_match;
parse = &fd_formats[match];
}
nb_heads = parse->max_head + 1;
max_track = parse->max_track;
last_sect = parse->last_sect;
drv->drive = parse->drive;
FLOPPY_DPRINTF("%s floppy disk (%d h %d t %d s) %s\n", parse->str,
nb_heads, max_track, last_sect, ro ? "ro" : "rw");
}
if (nb_heads == 1) {
drv->flags &= ~FDISK_DBL_SIDES;
} else {
drv->flags |= FDISK_DBL_SIDES;
}
drv->max_track = max_track;
drv->last_sect = last_sect;
drv->ro = ro;
} else {
FLOPPY_DPRINTF("No disk in drive\n");
drv->last_sect = 0;
drv->max_track = 0;
drv->flags &= ~FDISK_DBL_SIDES;
}
}
/********************************************************/
/* Intel 82078 floppy disk controller emulation */
static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq);
static void fdctrl_reset_fifo (fdctrl_t *fdctrl);
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len);
static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status0);
static uint32_t fdctrl_read_statusA (fdctrl_t *fdctrl);
static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl);
static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl);
static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl);
static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl);
static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_data (fdctrl_t *fdctrl);
static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value);
static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl);
enum {
FD_DIR_WRITE = 0,
FD_DIR_READ = 1,
FD_DIR_SCANE = 2,
FD_DIR_SCANL = 3,
FD_DIR_SCANH = 4,
};
enum {
FD_STATE_MULTI = 0x01, /* multi track flag */
FD_STATE_FORMAT = 0x02, /* format flag */
FD_STATE_SEEK = 0x04, /* seek flag */
};
enum {
FD_REG_SRA = 0x00,
FD_REG_SRB = 0x01,
FD_REG_DOR = 0x02,
FD_REG_TDR = 0x03,
FD_REG_MSR = 0x04,
FD_REG_DSR = 0x04,
FD_REG_FIFO = 0x05,
FD_REG_DIR = 0x07,
};
enum {
FD_CMD_READ_TRACK = 0x02,
FD_CMD_SPECIFY = 0x03,
FD_CMD_SENSE_DRIVE_STATUS = 0x04,
FD_CMD_WRITE = 0x05,
FD_CMD_READ = 0x06,
FD_CMD_RECALIBRATE = 0x07,
FD_CMD_SENSE_INTERRUPT_STATUS = 0x08,
FD_CMD_WRITE_DELETED = 0x09,
FD_CMD_READ_ID = 0x0a,
FD_CMD_READ_DELETED = 0x0c,
FD_CMD_FORMAT_TRACK = 0x0d,
FD_CMD_DUMPREG = 0x0e,
FD_CMD_SEEK = 0x0f,
FD_CMD_VERSION = 0x10,
FD_CMD_SCAN_EQUAL = 0x11,
FD_CMD_PERPENDICULAR_MODE = 0x12,
FD_CMD_CONFIGURE = 0x13,
FD_CMD_LOCK = 0x14,
FD_CMD_VERIFY = 0x16,
FD_CMD_POWERDOWN_MODE = 0x17,
FD_CMD_PART_ID = 0x18,
FD_CMD_SCAN_LOW_OR_EQUAL = 0x19,
FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d,
FD_CMD_SAVE = 0x2c,
FD_CMD_OPTION = 0x33,
FD_CMD_RESTORE = 0x4c,
FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e,
FD_CMD_RELATIVE_SEEK_OUT = 0x8f,
FD_CMD_FORMAT_AND_WRITE = 0xcd,
FD_CMD_RELATIVE_SEEK_IN = 0xcf,
};
enum {
FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */
FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */
FD_CONFIG_POLL = 0x10, /* Poll enabled */
FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */
FD_CONFIG_EIS = 0x40, /* No implied seeks */
};
enum {
FD_SR0_EQPMT = 0x10,
FD_SR0_SEEK = 0x20,
FD_SR0_ABNTERM = 0x40,
FD_SR0_INVCMD = 0x80,
FD_SR0_RDYCHG = 0xc0,
};
enum {
FD_SR1_EC = 0x80, /* End of cylinder */
};
enum {
FD_SR2_SNS = 0x04, /* Scan not satisfied */
FD_SR2_SEH = 0x08, /* Scan equal hit */
};
enum {
FD_SRA_DIR = 0x01,
FD_SRA_nWP = 0x02,
FD_SRA_nINDX = 0x04,
FD_SRA_HDSEL = 0x08,
FD_SRA_nTRK0 = 0x10,
FD_SRA_STEP = 0x20,
FD_SRA_nDRV2 = 0x40,
FD_SRA_INTPEND = 0x80,
};
enum {
FD_SRB_MTR0 = 0x01,
FD_SRB_MTR1 = 0x02,
FD_SRB_WGATE = 0x04,
FD_SRB_RDATA = 0x08,
FD_SRB_WDATA = 0x10,
FD_SRB_DR0 = 0x20,
};
enum {
#if MAX_FD == 4
FD_DOR_SELMASK = 0x03,
#else
FD_DOR_SELMASK = 0x01,
#endif
FD_DOR_nRESET = 0x04,
FD_DOR_DMAEN = 0x08,
FD_DOR_MOTEN0 = 0x10,
FD_DOR_MOTEN1 = 0x20,
FD_DOR_MOTEN2 = 0x40,
FD_DOR_MOTEN3 = 0x80,
};
enum {
#if MAX_FD == 4
FD_TDR_BOOTSEL = 0x0c,
#else
FD_TDR_BOOTSEL = 0x04,
#endif
};
enum {
FD_DSR_DRATEMASK= 0x03,
FD_DSR_PWRDOWN = 0x40,
FD_DSR_SWRESET = 0x80,
};
enum {
FD_MSR_DRV0BUSY = 0x01,
FD_MSR_DRV1BUSY = 0x02,
FD_MSR_DRV2BUSY = 0x04,
FD_MSR_DRV3BUSY = 0x08,
FD_MSR_CMDBUSY = 0x10,
FD_MSR_NONDMA = 0x20,
FD_MSR_DIO = 0x40,
FD_MSR_RQM = 0x80,
};
enum {
FD_DIR_DSKCHG = 0x80,
};
#define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI)
#define FD_DID_SEEK(state) ((state) & FD_STATE_SEEK)
#define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT)
struct fdctrl_t {
/* Controller's identification */
uint8_t version;
/* HW */
qemu_irq irq;
int dma_chann;
target_phys_addr_t io_base;
/* Controller state */
QEMUTimer *result_timer;
uint8_t sra;
uint8_t srb;
uint8_t dor;
uint8_t tdr;
uint8_t dsr;
uint8_t msr;
uint8_t cur_drv;
uint8_t status0;
uint8_t status1;
uint8_t status2;
/* Command FIFO */
uint8_t *fifo;
uint32_t data_pos;
uint32_t data_len;
uint8_t data_state;
uint8_t data_dir;
uint8_t eot; /* last wanted sector */
/* States kept only to be returned back */
/* Timers state */
uint8_t timer0;
uint8_t timer1;
/* precompensation */
uint8_t precomp_trk;
uint8_t config;
uint8_t lock;
/* Power down config (also with status regB access mode */
uint8_t pwrd;
/* Sun4m quirks? */
int sun4m;
/* Floppy drives */
fdrive_t drives[MAX_FD];
int reset_sensei;
};
static uint32_t fdctrl_read (void *opaque, uint32_t reg)
{
fdctrl_t *fdctrl = opaque;
uint32_t retval;
switch (reg) {
case FD_REG_SRA:
retval = fdctrl_read_statusA(fdctrl);
break;
case FD_REG_SRB:
retval = fdctrl_read_statusB(fdctrl);
break;
case FD_REG_DOR:
retval = fdctrl_read_dor(fdctrl);
break;
case FD_REG_TDR:
retval = fdctrl_read_tape(fdctrl);
break;
case FD_REG_MSR:
retval = fdctrl_read_main_status(fdctrl);
break;
case FD_REG_FIFO:
retval = fdctrl_read_data(fdctrl);
break;
case FD_REG_DIR:
retval = fdctrl_read_dir(fdctrl);
break;
default:
retval = (uint32_t)(-1);
break;
}
FLOPPY_DPRINTF("read reg%d: 0x%02x\n", reg & 7, retval);
return retval;
}
static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_t *fdctrl = opaque;
FLOPPY_DPRINTF("write reg%d: 0x%02x\n", reg & 7, value);
switch (reg) {
case FD_REG_DOR:
fdctrl_write_dor(fdctrl, value);
break;
case FD_REG_TDR:
fdctrl_write_tape(fdctrl, value);
break;
case FD_REG_DSR:
fdctrl_write_rate(fdctrl, value);
break;
case FD_REG_FIFO:
fdctrl_write_data(fdctrl, value);
break;
default:
break;
}
}
static uint32_t fdctrl_read_port (void *opaque, uint32_t reg)
{
return fdctrl_read(opaque, reg & 7);
}
static void fdctrl_write_port (void *opaque, uint32_t reg, uint32_t value)
{
fdctrl_write(opaque, reg & 7, value);
}
static uint32_t fdctrl_read_mem (void *opaque, target_phys_addr_t reg)
{
return fdctrl_read(opaque, (uint32_t)reg);
}
static void fdctrl_write_mem (void *opaque,
target_phys_addr_t reg, uint32_t value)
{
fdctrl_write(opaque, (uint32_t)reg, value);
}
static CPUReadMemoryFunc *fdctrl_mem_read[3] = {
fdctrl_read_mem,
fdctrl_read_mem,
fdctrl_read_mem,
};
static CPUWriteMemoryFunc *fdctrl_mem_write[3] = {
fdctrl_write_mem,
fdctrl_write_mem,
fdctrl_write_mem,
};
static CPUReadMemoryFunc *fdctrl_mem_read_strict[3] = {
fdctrl_read_mem,
NULL,
NULL,
};
static CPUWriteMemoryFunc *fdctrl_mem_write_strict[3] = {
fdctrl_write_mem,
NULL,
NULL,
};
static void fd_save (QEMUFile *f, fdrive_t *fd)
{
qemu_put_8s(f, &fd->head);
qemu_put_8s(f, &fd->track);
qemu_put_8s(f, &fd->sect);
}
static void fdc_save (QEMUFile *f, void *opaque)
{
fdctrl_t *s = opaque;
uint8_t tmp;
int i;
uint8_t dor = s->dor | GET_CUR_DRV(s);
/* Controller state */
qemu_put_8s(f, &s->sra);
qemu_put_8s(f, &s->srb);
qemu_put_8s(f, &dor);
qemu_put_8s(f, &s->tdr);
qemu_put_8s(f, &s->dsr);
qemu_put_8s(f, &s->msr);
qemu_put_8s(f, &s->status0);
qemu_put_8s(f, &s->status1);
qemu_put_8s(f, &s->status2);
/* Command FIFO */
qemu_put_buffer(f, s->fifo, FD_SECTOR_LEN);
qemu_put_be32s(f, &s->data_pos);
qemu_put_be32s(f, &s->data_len);
qemu_put_8s(f, &s->data_state);
qemu_put_8s(f, &s->data_dir);
qemu_put_8s(f, &s->eot);
/* States kept only to be returned back */
qemu_put_8s(f, &s->timer0);
qemu_put_8s(f, &s->timer1);
qemu_put_8s(f, &s->precomp_trk);
qemu_put_8s(f, &s->config);
qemu_put_8s(f, &s->lock);
qemu_put_8s(f, &s->pwrd);
tmp = MAX_FD;
qemu_put_8s(f, &tmp);
for (i = 0; i < MAX_FD; i++)
fd_save(f, &s->drives[i]);
}
static int fd_load (QEMUFile *f, fdrive_t *fd)
{
qemu_get_8s(f, &fd->head);
qemu_get_8s(f, &fd->track);
qemu_get_8s(f, &fd->sect);
return 0;
}
static int fdc_load (QEMUFile *f, void *opaque, int version_id)
{
fdctrl_t *s = opaque;
int i, ret = 0;
uint8_t n;
if (version_id != 2)
return -EINVAL;
/* Controller state */
qemu_get_8s(f, &s->sra);
qemu_get_8s(f, &s->srb);
qemu_get_8s(f, &s->dor);
SET_CUR_DRV(s, s->dor & FD_DOR_SELMASK);
s->dor &= ~FD_DOR_SELMASK;
qemu_get_8s(f, &s->tdr);
qemu_get_8s(f, &s->dsr);
qemu_get_8s(f, &s->msr);
qemu_get_8s(f, &s->status0);
qemu_get_8s(f, &s->status1);
qemu_get_8s(f, &s->status2);
/* Command FIFO */
qemu_get_buffer(f, s->fifo, FD_SECTOR_LEN);
qemu_get_be32s(f, &s->data_pos);
qemu_get_be32s(f, &s->data_len);
qemu_get_8s(f, &s->data_state);
qemu_get_8s(f, &s->data_dir);
qemu_get_8s(f, &s->eot);
/* States kept only to be returned back */
qemu_get_8s(f, &s->timer0);
qemu_get_8s(f, &s->timer1);
qemu_get_8s(f, &s->precomp_trk);
qemu_get_8s(f, &s->config);
qemu_get_8s(f, &s->lock);
qemu_get_8s(f, &s->pwrd);
qemu_get_8s(f, &n);
if (n > MAX_FD)
return -EINVAL;
for (i = 0; i < n; i++) {
ret = fd_load(f, &s->drives[i]);
if (ret != 0)
break;
}
return ret;
}
static void fdctrl_external_reset(void *opaque)
{
fdctrl_t *s = opaque;
fdctrl_reset(s, 0);
}
static void fdctrl_handle_tc(void *opaque, int irq, int level)
{
//fdctrl_t *s = opaque;
if (level) {
// XXX
FLOPPY_DPRINTF("TC pulsed\n");
}
}
/* XXX: may change if moved to bdrv */
int fdctrl_get_drive_type(fdctrl_t *fdctrl, int drive_num)
{
return fdctrl->drives[drive_num].drive;
}
/* Change IRQ state */
static void fdctrl_reset_irq (fdctrl_t *fdctrl)
{
if (!(fdctrl->sra & FD_SRA_INTPEND))
return;
FLOPPY_DPRINTF("Reset interrupt\n");
qemu_set_irq(fdctrl->irq, 0);
fdctrl->sra &= ~FD_SRA_INTPEND;
}
static void fdctrl_raise_irq (fdctrl_t *fdctrl, uint8_t status0)
{
/* Sparc mutation */
if (fdctrl->sun4m && (fdctrl->msr & FD_MSR_CMDBUSY)) {
/* XXX: not sure */
fdctrl->msr &= ~FD_MSR_CMDBUSY;
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->status0 = status0;
return;
}
if (!(fdctrl->sra & FD_SRA_INTPEND)) {
qemu_set_irq(fdctrl->irq, 1);
fdctrl->sra |= FD_SRA_INTPEND;
}
fdctrl->reset_sensei = 0;
fdctrl->status0 = status0;
FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0);
}
/* Reset controller */
static void fdctrl_reset (fdctrl_t *fdctrl, int do_irq)
{
int i;
FLOPPY_DPRINTF("reset controller\n");
fdctrl_reset_irq(fdctrl);
/* Initialise controller */
fdctrl->sra = 0;
fdctrl->srb = 0xc0;
if (!fdctrl->drives[1].bs)
fdctrl->sra |= FD_SRA_nDRV2;
fdctrl->cur_drv = 0;
fdctrl->dor = FD_DOR_nRESET;
fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0;
fdctrl->msr = FD_MSR_RQM;
/* FIFO state */
fdctrl->data_pos = 0;
fdctrl->data_len = 0;
fdctrl->data_state = 0;
fdctrl->data_dir = FD_DIR_WRITE;
for (i = 0; i < MAX_FD; i++)
fd_recalibrate(&fdctrl->drives[i]);
fdctrl_reset_fifo(fdctrl);
if (do_irq) {
fdctrl_raise_irq(fdctrl, FD_SR0_RDYCHG);
fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT;
}
}
static inline fdrive_t *drv0 (fdctrl_t *fdctrl)
{
return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2];
}
static inline fdrive_t *drv1 (fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2))
return &fdctrl->drives[1];
else
return &fdctrl->drives[0];
}
#if MAX_FD == 4
static inline fdrive_t *drv2 (fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2))
return &fdctrl->drives[2];
else
return &fdctrl->drives[1];
}
static inline fdrive_t *drv3 (fdctrl_t *fdctrl)
{
if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2))
return &fdctrl->drives[3];
else
return &fdctrl->drives[2];
}
#endif
static fdrive_t *get_cur_drv (fdctrl_t *fdctrl)
{
switch (fdctrl->cur_drv) {
case 0: return drv0(fdctrl);
case 1: return drv1(fdctrl);
#if MAX_FD == 4
case 2: return drv2(fdctrl);
case 3: return drv3(fdctrl);
#endif
default: return NULL;
}
}
/* Status A register : 0x00 (read-only) */
static uint32_t fdctrl_read_statusA (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->sra;
FLOPPY_DPRINTF("status register A: 0x%02x\n", retval);
return retval;
}
/* Status B register : 0x01 (read-only) */
static uint32_t fdctrl_read_statusB (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->srb;
FLOPPY_DPRINTF("status register B: 0x%02x\n", retval);
return retval;
}
/* Digital output register : 0x02 */
static uint32_t fdctrl_read_dor (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->dor;
/* Selected drive */
retval |= fdctrl->cur_drv;
FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_dor (fdctrl_t *fdctrl, uint32_t value)
{
FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value);
/* Motors */
if (value & FD_DOR_MOTEN0)
fdctrl->srb |= FD_SRB_MTR0;
else
fdctrl->srb &= ~FD_SRB_MTR0;
if (value & FD_DOR_MOTEN1)
fdctrl->srb |= FD_SRB_MTR1;
else
fdctrl->srb &= ~FD_SRB_MTR1;
/* Drive */
if (value & 1)
fdctrl->srb |= FD_SRB_DR0;
else
fdctrl->srb &= ~FD_SRB_DR0;
/* Reset */
if (!(value & FD_DOR_nRESET)) {
if (fdctrl->dor & FD_DOR_nRESET) {
FLOPPY_DPRINTF("controller enter RESET state\n");
}
} else {
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("controller out of RESET state\n");
fdctrl_reset(fdctrl, 1);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
}
}
/* Selected drive */
fdctrl->cur_drv = value & FD_DOR_SELMASK;
fdctrl->dor = value;
}
/* Tape drive register : 0x03 */
static uint32_t fdctrl_read_tape (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->tdr;
FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_write_tape (fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value);
/* Disk boot selection indicator */
fdctrl->tdr = value & FD_TDR_BOOTSEL;
/* Tape indicators: never allow */
}
/* Main status register : 0x04 (read) */
static uint32_t fdctrl_read_main_status (fdctrl_t *fdctrl)
{
uint32_t retval = fdctrl->msr;
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
fdctrl->dor |= FD_DOR_nRESET;
FLOPPY_DPRINTF("main status register: 0x%02x\n", retval);
return retval;
}
/* Data select rate register : 0x04 (write) */
static void fdctrl_write_rate (fdctrl_t *fdctrl, uint32_t value)
{
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value);
/* Reset: autoclear */
if (value & FD_DSR_SWRESET) {
fdctrl->dor &= ~FD_DOR_nRESET;
fdctrl_reset(fdctrl, 1);
fdctrl->dor |= FD_DOR_nRESET;
}
if (value & FD_DSR_PWRDOWN) {
fdctrl_reset(fdctrl, 1);
}
fdctrl->dsr = value;
}
static int fdctrl_media_changed(fdrive_t *drv)
{
int ret;
if (!drv->bs)
return 0;
ret = bdrv_media_changed(drv->bs);
if (ret) {
fd_revalidate(drv);
}
return ret;
}
/* Digital input register : 0x07 (read-only) */
static uint32_t fdctrl_read_dir (fdctrl_t *fdctrl)
{
uint32_t retval = 0;
if (fdctrl_media_changed(drv0(fdctrl))
|| fdctrl_media_changed(drv1(fdctrl))
#if MAX_FD == 4
|| fdctrl_media_changed(drv2(fdctrl))
|| fdctrl_media_changed(drv3(fdctrl))
#endif
)
retval |= FD_DIR_DSKCHG;
if (retval != 0)
FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval);
return retval;
}
/* FIFO state control */
static void fdctrl_reset_fifo (fdctrl_t *fdctrl)
{
fdctrl->data_dir = FD_DIR_WRITE;
fdctrl->data_pos = 0;
fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO);
}
/* Set FIFO status for the host to read */
static void fdctrl_set_fifo (fdctrl_t *fdctrl, int fifo_len, int do_irq)
{
fdctrl->data_dir = FD_DIR_READ;
fdctrl->data_len = fifo_len;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO;
if (do_irq)
fdctrl_raise_irq(fdctrl, 0x00);
}
/* Set an error: unimplemented/unknown command */
static void fdctrl_unimplemented (fdctrl_t *fdctrl, int direction)
{
FLOPPY_ERROR("unimplemented command 0x%02x\n", fdctrl->fifo[0]);
fdctrl->fifo[0] = FD_SR0_INVCMD;
fdctrl_set_fifo(fdctrl, 1, 0);
}
/* Seek to next sector */
static int fdctrl_seek_to_next_sect (fdctrl_t *fdctrl, fdrive_t *cur_drv)
{
FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track, cur_drv->sect,
fd_sector(cur_drv));
/* XXX: cur_drv->sect >= cur_drv->last_sect should be an
error in fact */
if (cur_drv->sect >= cur_drv->last_sect ||
cur_drv->sect == fdctrl->eot) {
cur_drv->sect = 1;
if (FD_MULTI_TRACK(fdctrl->data_state)) {
if (cur_drv->head == 0 &&
(cur_drv->flags & FDISK_DBL_SIDES) != 0) {
cur_drv->head = 1;
} else {
cur_drv->head = 0;
cur_drv->track++;
if ((cur_drv->flags & FDISK_DBL_SIDES) == 0)
return 0;
}
} else {
cur_drv->track++;
return 0;
}
FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n",
cur_drv->head, cur_drv->track,
cur_drv->sect, fd_sector(cur_drv));
} else {
cur_drv->sect++;
}
return 1;
}
/* Callback for transfer end (stop or abort) */
static void fdctrl_stop_transfer (fdctrl_t *fdctrl, uint8_t status0,
uint8_t status1, uint8_t status2)
{
fdrive_t *cur_drv;
cur_drv = get_cur_drv(fdctrl);
FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n",
status0, status1, status2,
status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl));
fdctrl->fifo[0] = status0 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl->fifo[1] = status1;
fdctrl->fifo[2] = status2;
fdctrl->fifo[3] = cur_drv->track;
fdctrl->fifo[4] = cur_drv->head;
fdctrl->fifo[5] = cur_drv->sect;
fdctrl->fifo[6] = FD_SECTOR_SC;
fdctrl->data_dir = FD_DIR_READ;
if (!(fdctrl->msr & FD_MSR_NONDMA)) {
DMA_release_DREQ(fdctrl->dma_chann);
}
fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO;
fdctrl->msr &= ~FD_MSR_NONDMA;
fdctrl_set_fifo(fdctrl, 7, 1);
}
/* Prepare a data transfer (either DMA or FIFO) */
static void fdctrl_start_transfer (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
int did_seek = 0;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[2];
kh = fdctrl->fifo[3];
ks = fdctrl->fifo[4];
FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
did_seek = 1;
break;
default:
break;
}
/* Set the FIFO state */
fdctrl->data_dir = direction;
fdctrl->data_pos = 0;
fdctrl->msr |= FD_MSR_CMDBUSY;
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
if (did_seek)
fdctrl->data_state |= FD_STATE_SEEK;
else
fdctrl->data_state &= ~FD_STATE_SEEK;
if (fdctrl->fifo[5] == 00) {
fdctrl->data_len = fdctrl->fifo[8];
} else {
int tmp;
fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]);
tmp = (fdctrl->fifo[6] - ks + 1);
if (fdctrl->fifo[0] & 0x80)
tmp += fdctrl->fifo[6];
fdctrl->data_len *= tmp;
}
fdctrl->eot = fdctrl->fifo[6];
if (fdctrl->dor & FD_DOR_DMAEN) {
int dma_mode;
/* DMA transfer are enabled. Check if DMA channel is well programmed */
dma_mode = DMA_get_channel_mode(fdctrl->dma_chann);
dma_mode = (dma_mode >> 2) & 3;
FLOPPY_DPRINTF("dma_mode=%d direction=%d (%d - %d)\n",
dma_mode, direction,
(128 << fdctrl->fifo[5]) *
(cur_drv->last_sect - ks + 1), fdctrl->data_len);
if (((direction == FD_DIR_SCANE || direction == FD_DIR_SCANL ||
direction == FD_DIR_SCANH) && dma_mode == 0) ||
(direction == FD_DIR_WRITE && dma_mode == 2) ||
(direction == FD_DIR_READ && dma_mode == 1)) {
/* No access is allowed until DMA transfer has completed */
fdctrl->msr &= ~FD_MSR_RQM;
/* Now, we just have to wait for the DMA controller to
* recall us...
*/
DMA_hold_DREQ(fdctrl->dma_chann);
DMA_schedule(fdctrl->dma_chann);
return;
} else {
FLOPPY_ERROR("dma_mode=%d direction=%d\n", dma_mode, direction);
}
}
FLOPPY_DPRINTF("start non-DMA transfer\n");
fdctrl->msr |= FD_MSR_NONDMA;
if (direction != FD_DIR_WRITE)
fdctrl->msr |= FD_MSR_DIO;
/* IO based transfer: calculate len */
fdctrl_raise_irq(fdctrl, 0x00);
return;
}
/* Prepare a transfer of deleted data */
static void fdctrl_start_transfer_del (fdctrl_t *fdctrl, int direction)
{
FLOPPY_ERROR("fdctrl_start_transfer_del() unimplemented\n");
/* We don't handle deleted data,
* so we don't return *ANYTHING*
*/
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
}
/* handlers for DMA transfers */
static int fdctrl_transfer_handler (void *opaque, int nchan,
int dma_pos, int dma_len)
{
fdctrl_t *fdctrl;
fdrive_t *cur_drv;
int len, start_pos, rel_pos;
uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00;
fdctrl = opaque;
if (fdctrl->msr & FD_MSR_RQM) {
FLOPPY_DPRINTF("Not in DMA transfer mode !\n");
return 0;
}
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SNS;
if (dma_len > fdctrl->data_len)
dma_len = fdctrl->data_len;
if (cur_drv->bs == NULL) {
if (fdctrl->data_dir == FD_DIR_WRITE)
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
len = 0;
goto transfer_error;
}
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) {
len = dma_len - fdctrl->data_pos;
if (len + rel_pos > FD_SECTOR_LEN)
len = FD_SECTOR_LEN - rel_pos;
FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x "
"(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos,
fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head,
cur_drv->track, cur_drv->sect, fd_sector(cur_drv),
fd_sector(cur_drv) * FD_SECTOR_LEN);
if (fdctrl->data_dir != FD_DIR_WRITE ||
len < FD_SECTOR_LEN || rel_pos != 0) {
/* READ & SCAN commands and realign to a sector for WRITE */
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0) {
FLOPPY_DPRINTF("Floppy: error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
switch (fdctrl->data_dir) {
case FD_DIR_READ:
/* READ commands */
DMA_write_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
break;
case FD_DIR_WRITE:
/* WRITE commands */
DMA_read_memory (nchan, fdctrl->fifo + rel_pos,
fdctrl->data_pos, len);
if (bdrv_write(cur_drv->bs, fd_sector(cur_drv),
fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
goto transfer_error;
}
break;
default:
/* SCAN commands */
{
uint8_t tmpbuf[FD_SECTOR_LEN];
int ret;
DMA_read_memory (nchan, tmpbuf, fdctrl->data_pos, len);
ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len);
if (ret == 0) {
status2 = FD_SR2_SEH;
goto end_transfer;
}
if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) ||
(ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) {
status2 = 0x00;
goto end_transfer;
}
}
break;
}
fdctrl->data_pos += len;
rel_pos = fdctrl->data_pos % FD_SECTOR_LEN;
if (rel_pos == 0) {
/* Seek to next sector */
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv))
break;
}
}
end_transfer:
len = fdctrl->data_pos - start_pos;
FLOPPY_DPRINTF("end transfer %d %d %d\n",
fdctrl->data_pos, len, fdctrl->data_len);
if (fdctrl->data_dir == FD_DIR_SCANE ||
fdctrl->data_dir == FD_DIR_SCANL ||
fdctrl->data_dir == FD_DIR_SCANH)
status2 = FD_SR2_SEH;
if (FD_DID_SEEK(fdctrl->data_state))
status0 |= FD_SR0_SEEK;
fdctrl->data_len -= len;
fdctrl_stop_transfer(fdctrl, status0, status1, status2);
transfer_error:
return len;
}
/* Data register : 0x05 */
static uint32_t fdctrl_read_data (fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint32_t retval = 0;
int pos;
cur_drv = get_cur_drv(fdctrl);
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_ERROR("controller not ready for reading\n");
return 0;
}
pos = fdctrl->data_pos;
if (fdctrl->msr & FD_MSR_NONDMA) {
pos %= FD_SECTOR_LEN;
if (pos == 0) {
if (fdctrl->data_pos != 0)
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return 0;
}
if (bdrv_read(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_DPRINTF("error getting sector %d\n",
fd_sector(cur_drv));
/* Sure, image size is too small... */
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
}
}
}
retval = fdctrl->fifo[pos];
if (++fdctrl->data_pos == fdctrl->data_len) {
fdctrl->data_pos = 0;
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->msr & FD_MSR_NONDMA) {
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
} else {
fdctrl_reset_fifo(fdctrl);
fdctrl_reset_irq(fdctrl);
}
}
FLOPPY_DPRINTF("data register: 0x%02x\n", retval);
return retval;
}
static void fdctrl_format_sector (fdctrl_t *fdctrl)
{
fdrive_t *cur_drv;
uint8_t kh, kt, ks;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
kt = fdctrl->fifo[6];
kh = fdctrl->fifo[7];
ks = fdctrl->fifo[8];
FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n",
GET_CUR_DRV(fdctrl), kh, kt, ks,
_fd_sector(kh, kt, ks, cur_drv->last_sect));
switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) {
case 2:
/* sect too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 3:
/* track too big */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 4:
/* No seek enabled */
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00);
fdctrl->fifo[3] = kt;
fdctrl->fifo[4] = kh;
fdctrl->fifo[5] = ks;
return;
case 1:
fdctrl->data_state |= FD_STATE_SEEK;
break;
default:
break;
}
memset(fdctrl->fifo, 0, FD_SECTOR_LEN);
if (cur_drv->bs == NULL ||
bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("formatting sector %d\n", fd_sector(cur_drv));
fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00);
} else {
if (cur_drv->sect == cur_drv->last_sect) {
fdctrl->data_state &= ~FD_STATE_FORMAT;
/* Last sector done */
if (FD_DID_SEEK(fdctrl->data_state))
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
else
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
} else {
/* More to do */
fdctrl->data_pos = 0;
fdctrl->data_len = 4;
}
}
}
static void fdctrl_handle_lock (fdctrl_t *fdctrl, int direction)
{
fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0;
fdctrl->fifo[0] = fdctrl->lock << 4;
fdctrl_set_fifo(fdctrl, 1, fdctrl->lock);
}
static void fdctrl_handle_dumpreg (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
fdctrl->fifo[0] = drv0(fdctrl)->track;
fdctrl->fifo[1] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[2] = drv2(fdctrl)->track;
fdctrl->fifo[3] = drv3(fdctrl)->track;
#else
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
#endif
/* timers */
fdctrl->fifo[4] = fdctrl->timer0;
fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0);
fdctrl->fifo[6] = cur_drv->last_sect;
fdctrl->fifo[7] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[8] = fdctrl->config;
fdctrl->fifo[9] = fdctrl->precomp_trk;
fdctrl_set_fifo(fdctrl, 10, 0);
}
static void fdctrl_handle_version (fdctrl_t *fdctrl, int direction)
{
/* Controller's version */
fdctrl->fifo[0] = fdctrl->version;
fdctrl_set_fifo(fdctrl, 1, 1);
}
static void fdctrl_handle_partid (fdctrl_t *fdctrl, int direction)
{
fdctrl->fifo[0] = 0x41; /* Stepping 1 */
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_restore (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Drives position */
drv0(fdctrl)->track = fdctrl->fifo[3];
drv1(fdctrl)->track = fdctrl->fifo[4];
#if MAX_FD == 4
drv2(fdctrl)->track = fdctrl->fifo[5];
drv3(fdctrl)->track = fdctrl->fifo[6];
#endif
/* timers */
fdctrl->timer0 = fdctrl->fifo[7];
fdctrl->timer1 = fdctrl->fifo[8];
cur_drv->last_sect = fdctrl->fifo[9];
fdctrl->lock = fdctrl->fifo[10] >> 7;
cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF;
fdctrl->config = fdctrl->fifo[11];
fdctrl->precomp_trk = fdctrl->fifo[12];
fdctrl->pwrd = fdctrl->fifo[13];
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_save (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
fdctrl->fifo[0] = 0;
fdctrl->fifo[1] = 0;
/* Drives position */
fdctrl->fifo[2] = drv0(fdctrl)->track;
fdctrl->fifo[3] = drv1(fdctrl)->track;
#if MAX_FD == 4
fdctrl->fifo[4] = drv2(fdctrl)->track;
fdctrl->fifo[5] = drv3(fdctrl)->track;
#else
fdctrl->fifo[4] = 0;
fdctrl->fifo[5] = 0;
#endif
/* timers */
fdctrl->fifo[6] = fdctrl->timer0;
fdctrl->fifo[7] = fdctrl->timer1;
fdctrl->fifo[8] = cur_drv->last_sect;
fdctrl->fifo[9] = (fdctrl->lock << 7) |
(cur_drv->perpendicular << 2);
fdctrl->fifo[10] = fdctrl->config;
fdctrl->fifo[11] = fdctrl->precomp_trk;
fdctrl->fifo[12] = fdctrl->pwrd;
fdctrl->fifo[13] = 0;
fdctrl->fifo[14] = 0;
fdctrl_set_fifo(fdctrl, 15, 1);
}
static void fdctrl_handle_readid (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* XXX: should set main status register to busy */
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
qemu_mod_timer(fdctrl->result_timer,
qemu_get_clock(vm_clock) + (ticks_per_sec / 50));
}
static void fdctrl_handle_format_track (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl->data_state |= FD_STATE_FORMAT;
if (fdctrl->fifo[0] & 0x80)
fdctrl->data_state |= FD_STATE_MULTI;
else
fdctrl->data_state &= ~FD_STATE_MULTI;
fdctrl->data_state &= ~FD_STATE_SEEK;
cur_drv->bps =
fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2];
#if 0
cur_drv->last_sect =
cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] :
fdctrl->fifo[3] / 2;
#else
cur_drv->last_sect = fdctrl->fifo[3];
#endif
/* TODO: implement format using DMA expected by the Bochs BIOS
* and Linux fdformat (read 3 bytes per sector via DMA and fill
* the sector with the specified fill byte
*/
fdctrl->data_state &= ~FD_STATE_FORMAT;
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
static void fdctrl_handle_specify (fdctrl_t *fdctrl, int direction)
{
fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF;
fdctrl->timer1 = fdctrl->fifo[2] >> 1;
if (fdctrl->fifo[2] & 1)
fdctrl->dor &= ~FD_DOR_DMAEN;
else
fdctrl->dor |= FD_DOR_DMAEN;
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_sense_drive_status (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
cur_drv->head = (fdctrl->fifo[1] >> 2) & 1;
/* 1 Byte status back */
fdctrl->fifo[0] = (cur_drv->ro << 6) |
(cur_drv->track == 0 ? 0x10 : 0x00) |
(cur_drv->head << 2) |
GET_CUR_DRV(fdctrl) |
0x28;
fdctrl_set_fifo(fdctrl, 1, 0);
}
static void fdctrl_handle_recalibrate (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fd_recalibrate(cur_drv);
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static void fdctrl_handle_sense_interrupt_status (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if(fdctrl->reset_sensei > 0) {
fdctrl->fifo[0] =
FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei;
fdctrl->reset_sensei--;
} else {
/* XXX: status0 handling is broken for read/write
commands, so we do this hack. It should be suppressed
ASAP */
fdctrl->fifo[0] =
FD_SR0_SEEK | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
}
fdctrl->fifo[1] = cur_drv->track;
fdctrl_set_fifo(fdctrl, 2, 0);
fdctrl_reset_irq(fdctrl);
fdctrl->status0 = FD_SR0_RDYCHG;
}
static void fdctrl_handle_seek (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
fdctrl_reset_fifo(fdctrl);
if (fdctrl->fifo[2] > cur_drv->max_track) {
fdctrl_raise_irq(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK);
} else {
cur_drv->track = fdctrl->fifo[2];
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
}
static void fdctrl_handle_perpendicular_mode (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[1] & 0x80)
cur_drv->perpendicular = fdctrl->fifo[1] & 0x7;
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_configure (fdctrl_t *fdctrl, int direction)
{
fdctrl->config = fdctrl->fifo[2];
fdctrl->precomp_trk = fdctrl->fifo[3];
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_powerdown_mode (fdctrl_t *fdctrl, int direction)
{
fdctrl->pwrd = fdctrl->fifo[1];
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl_set_fifo(fdctrl, 1, 1);
}
static void fdctrl_handle_option (fdctrl_t *fdctrl, int direction)
{
/* No result back */
fdctrl_reset_fifo(fdctrl);
}
static void fdctrl_handle_drive_specification_command (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x80) {
/* Command parameters done */
if (fdctrl->fifo[fdctrl->data_pos - 1] & 0x40) {
fdctrl->fifo[0] = fdctrl->fifo[1];
fdctrl->fifo[2] = 0;
fdctrl->fifo[3] = 0;
fdctrl_set_fifo(fdctrl, 4, 1);
} else {
fdctrl_reset_fifo(fdctrl);
}
} else if (fdctrl->data_len > 7) {
/* ERROR */
fdctrl->fifo[0] = 0x80 |
(cur_drv->head << 2) | GET_CUR_DRV(fdctrl);
fdctrl_set_fifo(fdctrl, 1, 1);
}
}
static void fdctrl_handle_relative_seek_out (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) {
cur_drv->track = cur_drv->max_track - 1;
} else {
cur_drv->track += fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static void fdctrl_handle_relative_seek_in (fdctrl_t *fdctrl, int direction)
{
fdrive_t *cur_drv;
SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK);
cur_drv = get_cur_drv(fdctrl);
if (fdctrl->fifo[2] > cur_drv->track) {
cur_drv->track = 0;
} else {
cur_drv->track -= fdctrl->fifo[2];
}
fdctrl_reset_fifo(fdctrl);
/* Raise Interrupt */
fdctrl_raise_irq(fdctrl, FD_SR0_SEEK);
}
static const struct {
uint8_t value;
uint8_t mask;
const char* name;
int parameters;
void (*handler)(fdctrl_t *fdctrl, int direction);
int direction;
} handlers[] = {
{ FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE },
{ FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek },
{ FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status },
{ FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate },
{ FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track },
{ FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ },
{ FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */
{ FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */
{ FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ },
{ FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE },
{ FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_unimplemented },
{ FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL },
{ FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH },
{ FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE },
{ FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid },
{ FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify },
{ FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status },
{ FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode },
{ FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure },
{ FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode },
{ FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option },
{ FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command },
{ FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out },
{ FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented },
{ FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in },
{ FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock },
{ FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg },
{ FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version },
{ FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid },
{ FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */
{ 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */
};
/* Associate command to an index in the 'handlers' array */
static uint8_t command_to_handler[256];
static void fdctrl_write_data (fdctrl_t *fdctrl, uint32_t value)
{
fdrive_t *cur_drv;
int pos;
/* Reset mode */
if (!(fdctrl->dor & FD_DOR_nRESET)) {
FLOPPY_DPRINTF("Floppy controller in RESET state !\n");
return;
}
if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) {
FLOPPY_ERROR("controller not ready for writing\n");
return;
}
fdctrl->dsr &= ~FD_DSR_PWRDOWN;
/* Is it write command time ? */
if (fdctrl->msr & FD_MSR_NONDMA) {
/* FIFO data write */
pos = fdctrl->data_pos++;
pos %= FD_SECTOR_LEN;
fdctrl->fifo[pos] = value;
if (pos == FD_SECTOR_LEN - 1 ||
fdctrl->data_pos == fdctrl->data_len) {
cur_drv = get_cur_drv(fdctrl);
if (bdrv_write(cur_drv->bs, fd_sector(cur_drv), fdctrl->fifo, 1) < 0) {
FLOPPY_ERROR("writing sector %d\n", fd_sector(cur_drv));
return;
}
if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) {
FLOPPY_DPRINTF("error seeking to next sector %d\n",
fd_sector(cur_drv));
return;
}
}
/* Switch from transfer mode to status mode
* then from status mode to command mode
*/
if (fdctrl->data_pos == fdctrl->data_len)
fdctrl_stop_transfer(fdctrl, FD_SR0_SEEK, 0x00, 0x00);
return;
}
if (fdctrl->data_pos == 0) {
/* Command */
pos = command_to_handler[value & 0xff];
FLOPPY_DPRINTF("%s command\n", handlers[pos].name);
fdctrl->data_len = handlers[pos].parameters + 1;
}
FLOPPY_DPRINTF("%s: %02x\n", __func__, value);
fdctrl->fifo[fdctrl->data_pos++] = value;
if (fdctrl->data_pos == fdctrl->data_len) {
/* We now have all parameters
* and will be able to treat the command
*/
if (fdctrl->data_state & FD_STATE_FORMAT) {
fdctrl_format_sector(fdctrl);
return;
}
pos = command_to_handler[fdctrl->fifo[0] & 0xff];
FLOPPY_DPRINTF("treat %s command\n", handlers[pos].name);
(*handlers[pos].handler)(fdctrl, handlers[pos].direction);
}
}
static void fdctrl_result_timer(void *opaque)
{
fdctrl_t *fdctrl = opaque;
fdrive_t *cur_drv = get_cur_drv(fdctrl);
/* Pretend we are spinning.
* This is needed for Coherent, which uses READ ID to check for
* sector interleaving.
*/
if (cur_drv->last_sect != 0) {
cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1;
}
fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00);
}
/* Init functions */
static fdctrl_t *fdctrl_init_common (qemu_irq irq, int dma_chann,
target_phys_addr_t io_base,
BlockDriverState **fds)
{
fdctrl_t *fdctrl;
int i, j;
/* Fill 'command_to_handler' lookup table */
for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) {
for (j = 0; j < sizeof(command_to_handler); j++) {
if ((j & handlers[i].mask) == handlers[i].value)
command_to_handler[j] = i;
}
}
FLOPPY_DPRINTF("init controller\n");
fdctrl = qemu_mallocz(sizeof(fdctrl_t));
fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN);
fdctrl->result_timer = qemu_new_timer(vm_clock,
fdctrl_result_timer, fdctrl);
fdctrl->version = 0x90; /* Intel 82078 controller */
fdctrl->irq = irq;
fdctrl->dma_chann = dma_chann;
fdctrl->io_base = io_base;
fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */
if (fdctrl->dma_chann != -1) {
DMA_register_channel(dma_chann, &fdctrl_transfer_handler, fdctrl);
}
for (i = 0; i < MAX_FD; i++) {
fd_init(&fdctrl->drives[i], fds[i]);
}
fdctrl_external_reset(fdctrl);
register_savevm("fdc", io_base, 2, fdc_save, fdc_load, fdctrl);
qemu_register_reset(fdctrl_external_reset, 0, fdctrl);
for (i = 0; i < MAX_FD; i++) {
fd_revalidate(&fdctrl->drives[i]);
}
return fdctrl;
}
fdctrl_t *fdctrl_init (qemu_irq irq, int dma_chann, int mem_mapped,
target_phys_addr_t io_base,
BlockDriverState **fds)
{
fdctrl_t *fdctrl;
int io_mem;
fdctrl = fdctrl_init_common(irq, dma_chann, io_base, fds);
fdctrl->sun4m = 0;
if (mem_mapped) {
io_mem = cpu_register_io_memory(0, fdctrl_mem_read, fdctrl_mem_write,
fdctrl);
cpu_register_physical_memory(io_base, 0x08, io_mem);
} else {
register_ioport_read((uint32_t)io_base + 0x01, 5, 1,
&fdctrl_read_port, fdctrl);
register_ioport_read((uint32_t)io_base + 0x07, 1, 1,
&fdctrl_read_port, fdctrl);
register_ioport_write((uint32_t)io_base + 0x01, 5, 1,
&fdctrl_write_port, fdctrl);
register_ioport_write((uint32_t)io_base + 0x07, 1, 1,
&fdctrl_write_port, fdctrl);
}
return fdctrl;
}
fdctrl_t *sun4m_fdctrl_init (qemu_irq irq, target_phys_addr_t io_base,
BlockDriverState **fds, qemu_irq *fdc_tc)
{
fdctrl_t *fdctrl;
int io_mem;
fdctrl = fdctrl_init_common(irq, -1, io_base, fds);
fdctrl->sun4m = 1;
io_mem = cpu_register_io_memory(0, fdctrl_mem_read_strict,
fdctrl_mem_write_strict,
fdctrl);
cpu_register_physical_memory(io_base, 0x08, io_mem);
*fdc_tc = *qemu_allocate_irqs(fdctrl_handle_tc, fdctrl, 1);
return fdctrl;
}